首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Type 2 diabetes (T2D) is strongly associated with cardiovascular risk and requires medications that improve glycemic control and other cardiovascular risk factors. The authors aimed to assess the relative effectiveness of pioglitazone (Pio), metformin (Met) and any sulfonylurea (SU) combinations in non-insulin-treated T2D patients who were failing previous hypoglycemic therapy.

Methods

Over a 1-year period, two multicenter, open-labeled, controlled, 1-year, prospective, observational studies evaluated patients with T2D (n = 4585) from routine clinical practice in Spain and Greece with the same protocol. Patients were eligible if they had been prescribed Pio + SU, Pio + Met or SU + Met serving as a control cohort, once they had failed with previous therapy. Anthropometric measurements, lipid and glycemic profiles, blood pressure, and the proportions of patients at microvascular and macrovascular risk were assessed.

Results

All study treatment combinations rendered progressive 6-month and 12-month lipid, glycemic, and blood pressure improvements. Pio combinations, especially Pio + Met, were associated with increases in HDL-cholesterol and decreases in triglycerides and in the atherogenic index of plasma. The proportion of patients at high risk decreased after 12 months in all study cohorts. Minor weight changes (gain or loss) and no treatment-related fractures occurred during the study. The safety profile was good and proved similar among treatments, except for more hypoglycemic episodes in patients receiving SU and for the occurrence of edema in patients using Pio combinations. Serious cardiovascular events were rarely reported.

Conclusions

In patients with T2D failing prior hypoglycemic therapies, Pio combinations with SU or Met (especially Pio + Met) improved blood lipid and glycemic profiles, decreasing the proportion of patients with a high microvascular or macrovascular risk. The combination of Pio with SU or Met may therefore be recommended for T2D second-line therapy in the routine clinical practice, particularly in patients with dyslipidemia.  相似文献   

2.
Thermal denaturation of porcine pancreatic elastase was studied by difference spectrophotometry. At 293 nm, and pH 8.0, the thermal transition of elastase occurs with a midpoint temperature (Tm) of (58.0 +/- 0.5) degrees C. Mg2+ and Ca2+ stabilize the native form in increasing the midpoint temperature of the transition, Ca2+ being more effective than Mg2+ in the 0-0.02 M concentration range. Furthermore, Ca2+ protects pancreatic elastase against the destabilizing effect of Cu2+. Whatever be the temperature between 40 degrees C and 55 degrees C, Ca2+ protects pancreatic elastase against loss of enzymatic activity.  相似文献   

3.
Apolipoprotein C-III (apoC-III) is a marker of triglyceride (TG)-rich lipoproteins, which are often increased in metabolic syndrome (MS). The T-455C polymorphism in the insulin-responsive element of the APOC3 gene influences TG and apoC-III levels. To evaluate the contribution of apoC-III levels and T-455C polymorphisms in the coronary artery disease (CAD) risk of MS patients, we studied 873 patients, 549 with CAD and 251 with normal coronary arteries. Patients were classified also as having or not having MS (MS, n = 270; MS-free, n = 603). Lipids, insulin, apolipoprotein levels, and APOC3 T-455C genotypes were evaluated. ApoC-III levels were significantly increased in MS patients, and the probability of having MS was correlated with increasing quartiles of apoC-III levels. MS patients with CAD had significantly higher apoC-III levels than did CAD-free MS patients. The carriership for the -455C variant multiplied the probability of CAD in MS in an allele-specific way and was associated with increased apoC-III and TG levels. Obesity was less frequent in MS carriers of the -455C allele than in MS noncarriers (21.6% vs. 34.8%, P < 0.05). In conclusion, apoC-III-rich lipoprotein metabolism and the APOC3 polymorphism have relevant impacts on the CAD risk of MS patents.  相似文献   

4.
Calmodulin level and cAMP-dependent protein kinase activity of ram germ cells at different stages of spermatogenesis have been determined. Calmodulin levels decrease during maturation. Simultaneously, calmodulin localization changes during cell differentiation. In round, elongating, and elongated spermatids, calmodulin is closely associated with the developing acrosome; in spermatozoa, it becomes present in the postacrosome, the neck region and the tail. Protein kinase activity is relatively low in testicular cells but increases dramatically during epididymal maturation of spermatozoa. A concerted regulation by cAMP and Ca2+ of biochemical events in spermatogenic cells and spermatozoa is suggested.  相似文献   

5.
Endosomes, lysosomes and lysosome-related organelles are emerging as important Ca2+ storage cellular compartments with a central role in intracellular Ca2+ signalling. Endocytosis at the plasma membrane forms endosomal vesicles which mature to late endosomes and culminate in lysosomal biogenesis. During this process, acquisition of different ion channels and transporters progressively changes the endolysosomal luminal ionic environment (e.g. pH and Ca2+) to regulate enzyme activities, membrane fusion/fission and organellar ion fluxes, and defects in these can result in disease. In the present review we focus on the physiology of the inter-related transport mechanisms of Ca2+ and H+ across endolysosomal membranes. In particular, we discuss the role of the Ca2+-mobilizing messenger NAADP (nicotinic acid adenine dinucleotide phosphate) as a major regulator of Ca2+ release from endolysosomes, and the recent discovery of an endolysosomal channel family, the TPCs (two-pore channels), as its principal intracellular targets. Recent molecular studies of endolysosomal Ca2+ physiology and its regulation by NAADP-gated TPCs are providing exciting new insights into the mechanisms of Ca2+-signal initiation that control a wide range of cellular processes and play a role in disease. These developments underscore a new central role for the endolysosomal system in cellular Ca2+ regulation and signalling.  相似文献   

6.
A single nucleotide polymorphism that results in substitution at residue 700 of a serine (Ser-700) for an asparagine (Asn-700) in thrombospondin-1 is associated with familial premature coronary artery disease. The polymorphism is located in the first of 13 Ca2+ -binding motifs, within a consensus sequence in which Asn-700 likely coordinates Ca2+. Equilibrium dialysis of constructs comprised of the adjoining epidermal growth factor-like module and the Ca2+ -binding region (E3Ca) demonstrated that E3Ca Ser-700 binds significantly less Ca2+ than E3Ca Asn-700 at low [Ca2+]. The hypothesis that this difference is due to loss of a binding site in Ser-700 protein was tested with truncations of E3Ca containing four (Tr4), three (Tr3), two (Tr2), or one (Tr1) N-terminal Ca2+ -binding motifs. The Ser-700 truncation constructs bound 1 fewer Ca2+ than matching Asn-700 constructs and exhibited decreased binding affinities. Intrinsic fluorescence of a tryptophan at residue 698 (Trp-698) in the most N-terminal motif was cooperatively quenched by the addition of Ca2+ to Asn-700 Tr2, Tr3, and Tr4 constructs. In Ser-700 constructs, quenching of Trp-698 was incomplete in the Tr2 and Tr3 constructs and complete only in the Tr4 construct. Ca2+ -induced quenching of Ser-700 constructs required higher [Ca2+] and was slower as shown in stopped-flow experiments than quenching of Asn-700 constructs. Such differences were not found with Tb3+, which quenched the fluorescence of Asn-700 and Ser-700 constructs equivalently. Thus, the Ser-700 polymorphism alters a rapidly filled, high affinity Ca2+ -binding site in the first Ca2+ -binding motif. Slower Ca2+ binding to adjoining motifs partly compensates for the change.  相似文献   

7.
The hypothesis that Na+-dependent calcium extrusion is important in protecting against neuronal excitotoxicity was tested. In cocultures of embryonic rat hippocampal neurons and mouse neuroblastoma hybrid (NCB-20) cells, calcium ionophore A23187 (1 microM) or high levels of extracellular K+ killed hippocampal neurons selectively, leaving NCB-20 cells unscathed. Hippocampal neurons showed large, sustained rises in intracellular calcium in response to A23187 or K+, whereas NCB-20 cells showed only transient calcium responses. The ability of NCB-20 cells to reduce the calcium load and to survive exposure to A23187 or K+ were dependent on extracellular Na+, suggesting that an active Na+/Ca2+ exchange mechanism was important in protecting against cell death. Finally, removal of extracellular Na+ reduced the threshold for glutamate neurotoxicity in hippocampal neurons, demonstrating the importance of Na+/Ca2+ exchange in protecting against excitotoxicity. Taken together, these findings suggest that differences in cell calcium-regulating systems may determine whether a neuron lives or degenerates in the face of an excitatory challenge.  相似文献   

8.
9.
Thorne GD  Ishida Y  Paul RJ 《Cell calcium》2004,36(3-4):201-208
The mechanisms of oxygen sensing in vascular smooth muscle have been studied extensively in a variety of tissue types and the results of these studies indicate that the mechanism of hypoxia-induced vasodilation probably involves several mechanisms that combined to assure the appropriate response. After a short discussion of the regulatory mechanisms for smooth muscle contractility, we present the evidence indicating that hypoxic vasorelaxation involves both Ca2+-dependent and Ca2+-independent mechanisms. More recent experiments using proteomic approaches in organ cultures of porcine coronary artery reveal important changes evoked by hypoxia in both Ca2+-dependent and Ca2+-independent pathways.  相似文献   

10.
The authors studied the protective action of carnosine on sarcoplasmic reticulum (SR) membranes from frog skeletal muscles destroyed by ascorbic acid-dependent lipid peroxidation (LPO). It was demonstrated that addition of carnosine to the incubation medium at a concentration of 25 mM sharply decelerated inactivation of Ca-ATPase of SR membranes, maintaining at the same time the coupling of hydrolysing and transport functions of the Ca-pump. When given at the same concentration carnosine inhibited the accumulation of LPO products reacting with 2-thiobarbituric acid. This effect of carnosine was followed by its utilization.  相似文献   

11.
Ossabaw swine have a 'thrifty genotype' (propensity to obesity) that enables them to survive seasonal food shortages in their native environment. Consumption of excess kcal causes animals of the thrifty genotype to manifest components of the metabolic syndrome, including central (intra-abdominal) obesity, insulin resistance, impaired glucose tolerance, dyslipidemia, and hypertension. We determined whether female Ossabaw swine manifest multiple components of the metabolic syndrome by comparing lean pigs fed a normal maintenance diet (7% kcal from fat; lean, n = 9) or excess chow with 45% kcal from fat and 2% cholesterol (obese, n = 8). After 9 wk, body composition, glucose tolerance, plasma lipids, and intravascular ultrasonography and histopathology of coronary arteries were assessed. Computed tomography (CT) assessed subcutaneous and intra-abdominal fat deposition and was compared with traditional methods, including anatomical measurements, backfat ultrasonography, and proximate chemical composition analysis. Compared with lean animals, obese swine showed 2-fold greater product of the plasma insulin x glucose concentrations, 4.1-fold greater total cholesterol, 1.6-fold greater postprandial triglycerides, 4.6-fold greater low- to high-density lipoprotein cholesterol ratio, hypertension, and neointimal hyperplasia of coronary arteries. The 1.5-fold greater body weight in obese swine was largely accounted for by the 3-fold greater carcass fat mass. High correlation (0.79 to 0.95) of CT, anatomical measurements, and ultrasonography with direct chemical measures of subcutaneous, retroperitoneal, and visceral fat indicates high validity of all indirect methods. We conclude that relatively brief feeding of excess atherogenic diet produces striking features of metabolic syndrome and coronary artery disease in female Ossabaw swine.  相似文献   

12.
A study was made of certain information from studies of the State Department of Public Health which bear upon the hypotheses that cigarette-smoking and physical exercise are factors in coronary artery disease. The data supported an association of the disease with cigarette smoking, but not with exercise. An incidental finding was a strong relationship between coronary heart disease and the beginning of the wearing of reading glasses or bifocals at an early age. In the present state of investigations aimed at determining the etiology of coronary artery disease it appears desirable to give serious consideration to multiple factors rather than seeking to find a single cause.  相似文献   

13.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+ mobilizing nucleotide essentially involved in T cell activation. Using combined microinjection and single cell calcium imaging, we demonstrate that co-injection of NAADP and the D-myo-inositol 1,4,5-trisphosphate antagonist heparin did not inhibit Ca2+ mobilization. In contrast, co-injection of the ryanodine receptor antagonist ruthenium red efficiently blocked NAADP induced Ca2+ signalling. This pharmacological approach was confirmed using T cell clones stably transfected with plasmids expressing antisense mRNA targeted specifically against ryanodine receptors. NAADP induced Ca2+ signaling was strongly reduced in these clones. In addition, inhibition of Ca2+ entry by SK&F 96365 resulted in a dramatically decreased Ca2+ signal upon NAADP injection. Gd3+, a known blocker of Ca2+ release activated Ca2+ entry, only partially inhibited NAADP mediated Ca2+ signaling. These data indicate that in T cells (i) ryanodine receptor are the major intracellular Ca2+ release channels involved in NAADP induced Ca2+ signals, and that (ii) such Ca2+ release events are largely amplified by Ca2+ entry.  相似文献   

14.
The annexins, a family of Ca(2+)- and lipid-binding proteins, are involved in a range of intracellular processes. Recent findings have implicated annexin A1 in the resealing of plasmalemmal injuries. Here, we demonstrate that another member of the annexin protein family, annexin A6, is also involved in the repair of plasmalemmal lesions induced by a bacterial pore-forming toxin, streptolysin O. An injury-induced elevation in the intracellular concentration of Ca(2+) ([Ca(2+)](i)) triggers plasmalemmal repair. The highly Ca(2+)-sensitive annexin A6 responds faster than annexin A1 to [Ca(2+)](i) elevation. Correspondingly, a limited plasmalemmal injury can be promptly countered by annexin A6 even without the participation of annexin A1. However, its high Ca(2+) sensitivity makes annexin A6 highly amenable to an unproductive binding to the uninjured plasmalemma; during an extensive injury accompanied by a massive elevation in [Ca(2+)](i), its active pool is severely depleted. In contrast, annexin A1 with a much lower Ca(2+) sensitivity is ineffective at the early stages of injury; however, it remains available for the repair even at high [Ca(2+)](i). Our findings highlight the role of the annexins in the process of plasmalemmal repair; a number of annexins with different Ca(2+)-sensitivities provide a cell with the means to react promptly to a limited injury in its early stages and, at the same time, to withstand a sustained injury accompanied by the continuous formation of plasmalemmal lesions.  相似文献   

15.
16.
Ca2+ and activation mechanisms in skeletal muscle   总被引:12,自引:0,他引:12  
  相似文献   

17.
Unified mechanisms of Ca2+ regulation across the Ca2+ channel family   总被引:3,自引:0,他引:3  
L-type (CaV1.2) and P/Q-type (CaV2.1) calcium channels possess lobe-specific CaM regulation, where Ca2+ binding to one or the other lobe of CaM triggers regulation, even with inverted polarity of modulation between channels. Other major members of the CaV1-2 channel family, R-type (CaV2.3) and N-type (CaV2.2), have appeared to lack such CaM regulation. We report here that R- and N-type channels undergo Ca(2+)-dependent inactivation, which is mediated by the CaM N-terminal lobe and present only with mild Ca2+ buffering (0.5 mM EGTA) characteristic of many neurons. These features, together with the CaM regulatory profiles of L- and P/Q-type channels, are consistent with a simplifying principle for CaM signal detection in CaV1-2 channels-independent of channel context, the N- and C-terminal lobes of CaM appear invariably specialized for decoding local versus global Ca2+ activity, respectively.  相似文献   

18.
The aim of this study was to investigate the association between C-reactive protein (CRP) gene polymorphism and metabolic syndrome (MetS) with premature coronary artery disease (PCAD). 116 patients with PCAD (58 with MetS and 58 without MetS) and 119 controls were included in the study. CRP gene + 1059 G>C polymorphism was analyzed by polymerase chain reaction. Serum hs-CRP was measured using high-sensitivity enzyme-linked immunosorbent assay. Carriers of C allele of the CRP + 1059 G>C polymorphism had 3.37 fold increased risk to develop MetS in patients with PCAD. In addition CRP gene and hs-CRP levels were independent risk factors for PCAD and MetS. The present study provides new evidence that the presence of CRP + 1059 G>C polymorphism and hs-CRP levels are independent determinants of PCAD and MetS in Egyptians. The results of our study suggest a synergistic effect of CRP C allele with classical risk factors such as hypertension, obesity, dyslipidemia and MetS.  相似文献   

19.
The sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) plays a critical role in Ca(2+) homeostasis via sequestration of this ion in the sarco/endoplasmic reticulum. The activity of this pump is inhibited by oxidants and impaired in aging tissues and cardiovascular disease. We have shown previously that the myeloperoxidase (MPO)-derived oxidants HOCl and HOSCN target thiols and mediate cellular dysfunction. As SERCA contains Cys residues critical to ATPase activity, we hypothesized that HOCl and HOSCN might inhibit SERCA activity, via thiol oxidation, and increase cytosolic Ca(2+) levels in human coronary artery endothelial cells (HCAEC). Exposure of sarcoplasmic reticulum vesicles to preformed or enzymatically generated HOCl and HOSCN resulted in a concentration-dependent decrease in ATPase activity; this was also inhibited by the SERCA inhibitor thapsigargin. Decomposed HOSCN and incomplete MPO enzyme systems did not decrease activity. Loss of ATPase activity occurred concurrent with oxidation of SERCA Cys residues and protein modification. Exposure of HCAEC, with or without external Ca(2+), to HOSCN or HOCl resulted in a time- and concentration-dependent increase in intracellular Ca(2+) under conditions that did not result in immediate loss of cell viability. Thapsigargin, but not inhibitors of plasma membrane or mitochondrial Ca(2+) pumps/channels, completely attenuated the increase in intracellular Ca(2+) consistent with a critical role for SERCA in maintaining endothelial cell Ca(2+) homeostasis. Angiotensin II pretreatment potentiated the effect of HOSCN at low concentrations. MPO-mediated modulation of intracellular Ca(2+) levels may exacerbate endothelial dysfunction, a key early event in atherosclerosis, and be more marked in smokers because of their higher SCN(-) levels.  相似文献   

20.
Exercise training enhances endothelium-dependent coronary vasodilatation, improving perfusion and contractile function of collateral-dependent myocardium. Paradoxically, studies from our laboratory have revealed increased Ca(2+)-dependent basal active tone in collateral-dependent arteries of exercise-trained pigs. In this study, we tested the hypothesis that exercise training enhances agonist-mediated contractile responses of collateral-dependent arteries by promoting Ca(2+) sensitization. Ameroid constrictors were surgically placed around the proximal left circumflex coronary (LCX) artery of female Yucatan miniature pigs. Eight weeks postoperatively, pigs were randomized into sedentary (pen confined) or exercise-training (treadmill run; 5 days/wk; 14 wk) groups. Arteries (~150 μm luminal diameter) were isolated from the collateral-dependent and nonoccluded (left anterior descending artery supplied) myocardial regions, and measures of contractile tension or simultaneous tension and intracellular free Ca(2+) concentration levels (fura-2) were completed. Exercise training enhanced contractile responses to endothelin-1 in collateral-dependent compared with nonoccluded arteries, an effect that was more pronounced in the presence of nitric oxide synthase inhibition (N(ω)-nitro-l-arginine methyl ester; 100 μM). Contractile responses to endothelin-1 were not altered by coronary occlusion alone. Exercise training produced increased tension at comparable levels of intracellular free Ca(2+) concentration in collateral-dependent compared with nonoccluded arteries, indicative of exercise training-enhanced Ca(2+) sensitization. Inhibition of PKC (calphostin C; 1 μM), but not Rho-kinase (Y-27632, 10 μM; or hydroxyfasudil, 30 μM), abolished the training-enhanced endothelin-1-mediated contractile response. Exercise training also increased sensitivity to the PKC activator phorbol 12,13-dibutyrate in collateral-dependent compared with nonoccluded arteries. Taken together, these data reveal that exercise training enhances endothelin-1-mediated contractile responses in collateral-dependent coronary arteries likely via increased PKC-mediated Ca(2+) sensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号