首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The administration of such a transient receptor potential vanilloid 1 (TRPV1) agonist as capsaicin, which is a pungent ingredient of red pepper, promotes energy metabolism and suppresses visceral fat accumulation. We have recently identified monoacylglycerols (MGs) having an unsaturated long-chain fatty acid as the novel TRPV1 agonist in foods. We investigated in this present study the effects of dietary MGs on uncoupling protein 1 (UCP1) expression in interscapular brown adipose tissue (IBAT) and on fat accumulation in mice fed with a high-fat, high-sucrose diet. The MG30 diet that substituted 30% of all lipids for MGs (a mixture of 1-oleoylglycerol, 1-linoleoylglycerol and 1-linolenoylglycerol) significantly increased the UCP1 content of IBAT and decreased the weight of epididymal white adipose tissue, and the serum glucose, total cholesterol and free fatty acid levels. The diet containing only 1-oleoylglycerol as MG also increased UCP1 expression in IBAT. MGs that activated TRPV1 also therefore induced the expression of UCP 1 and prevented visceral fat accumulation as well as capsaicin.  相似文献   

2.
Oleuropein is the pungent principle of raw olives. Oleuropein aglycone (OA) is a major phenolic compound in extra virgin olive oil and the absorbed form of oleuropein. We aimed to determine the mechanism underlying the nutritional effects of oleuropein and OA on interscapular brown adipose tissue (IBAT) in rats with high-fat (HF) diet-induced obesity by examining the agonistic activity of oleuropein and OA toward the transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1). Four-week-old male Sprague–Dawley rats were fed an HF (palm oil 30% wt:wt) diet alone or with oleuropein (HF-O, 1 g/kg diet) for 28 days. In rats fed HF-O compared to HF, urinary noradrenaline, adrenaline and UCP1 levels in IBAT were significantly higher, whereas plasma leptin levels and the total weight of the abdominal cavity adipose tissue were significantly lower. In anaesthetized 7-week-old male Sprague–Dawley rats, the OA (3.8 mg of intravenous injection)-induced increase in plasma noradrenaline secretion was suppressed by TRPA1 or TRPV1 antagonist and by a β2- or β3-adrenoceptor antagonist. Furthermore, OA-activated rat and human TRPV1s expressed on HEK293 cells at the same level as zingerone (pungent component in ginger). OA also activated humanTRPA1, and its potency was approximately 10-fold stronger than that for TRPV1. These findings suggest that OA is the agonist of both TRPA1 and TRPV1 and that OA enhances UCP1 expression in IBAT with a concomitant decrease in the visceral fat mass of HF-diet-induced obese rats through enhanced noradrenaline secretion via β-adrenergic action following TRPA1 and TRPV1 activation.  相似文献   

3.
Leung FW 《Life sciences》2008,83(1-2):1-5
This report summarizes clinical and experimental data in support of the hypothesis that capsaicin-sensitive intestinal mucosal afferent mechanism plays a role in regulating body fat distribution. Epidemiological data have revealed that the consumption of foods containing capsaicin is associated with a lower prevalence of obesity. Rural Thai people consume diets containing 0.014% capsaicin. Rodents fed a diet containing 0.014% capsaicin showed no change in caloric intake but a significant 24% and 29% reduction in the visceral (peri-renal) fat weight. Increase in intestinal blood flow facilitates nutrient energy absorption and decrease in adipose tissue blood flow facilitates storage of nutrient energy in adipose tissue. Stimulation of intestinal mucosal afferent nerves increases intestinal blood flow, but decreases visceral (mesenteric) adipost tissue blood flow. In in vitro cell studies capsaicin has a direct effect on adipocytes. Intravenous capsaicin produces measurable plasma level and subcutaneous capsaicin retards accumulation of adipose tissue. The data on a direct effect of oral capsaicin on adipose tissue at remote sites, however, are conflicting. Capsaicin absorbed from the gut lumen is almost completely metabolized before reaching the general circulation. Oral capsaicin significantly increases transient receptor potential vanilloid type-1 (TRPV1) channel expression as well as TRPV1 messenger ribonucleic acid (mRNA) in visceral adipose tissue. In TRPV1 knockout mice on a high fat diet the body weight was not significantly different in the absence or presence of oral capsaicin. In rodent experiments, daily intragastric administration of capsaicin for two weeks led to defunctionalization of intestinal mucosal afferent nerves, manifested by loss of acute mucosal capsaicin-induced effects; but not the corneal afferent nerves, with preservation of the paw wiping reflex of the eye exposed briefly to dilute capsaicin. The latter indicated the absence of an oral capsaicin effect at one remote site. There was an accompanying decrease and an increase in the proportion of body fat in visceral and subcutaenous compartments, respectively. Taken together, if oral capsaicin could regulate adipose tissue distribution, the process might involve the effect of intestinal mucosal afferent nerves in modulating intestinal and visceral adipose tissue blood flow. The hypothesis that the intestinal mucosal afferent mechanism is a plausible therapeutic target for abating visceral obesity deserves to be further evaluated.  相似文献   

4.

Objective:

Visceral obesity contributes to the development of obesity‐related disorders such as diabetes, hyperlipidemia, and fatty liver disease, as well as cardiovascular diseases. In this study, we determined whether topical application of capsaicin can reduce fat accumulation in visceral adipose tissues.

Methods and Results:

We first observed that topical application of 0.075% capsaicin to male mice fed a high‐fat diet significantly reduced weight gain and visceral fat. Fat cells were markedly smaller in the mesenteric and epididymal adipose tissues of mice treated with capsaicin cream. The capsaicin treatment also lowered serum levels of fasting glucose, total cholesterol, and triglycerides. Immunoblot analysis and RT‐PCR revealed increased expression of adiponectin and other adipokines including peroxisome proliferator‐activated receptor (PPAR) α, PPARγ, visfatin, and adipsin, but reduced expression of tumor necrosis factor‐α and IL‐6.

Conclusions:

These results indicate that topical application of capsaicin to obese mice limits fat accumulation in adipose tissues and may reduce inflammation and increase insulin sensitivity.  相似文献   

5.
6.
Yu Q  Wang Y  Yu Y  Li Y  Zhao S  Chen Y  Waqar AB  Fan J  Liu E 《Molecular biology reports》2012,39(7):7583-7589
The capsaicin receptor, known as transient receptor potential vanilloid subfamily member 1 (TRPV1), is an important membrane receptor that has been implicated in obesity, diabetes, metabolic syndrome and cardiovascular diseases. The rabbit model is considered excellent for studying cardiovascular and metabolic diseases, however, the tissue expression of TRPV1 and physiological functions of its ligand capsaicin on diet-induced obesity have not been fully defined in this model. In the current study, we investigated the tissue expression of TRPV1 in normal rabbits using real-time RT-PCR and Western blot analysis. Rabbit TRPV1 mRNA was highly expressed in a variety of organs, including the kidneys, adrenal gland, spleen and brain. A phylogenetic analysis showed that the amino acid sequence of rabbit TRPV1 was closer to human TRPV1 than rodent TRPV1. To examine the effect of capsaicin (a pungent compound in hot pepper) on body weight, rabbits were fed with either a high fat diet (as control) or high fat diet containing 1% hot pepper. We found that the body weight of the hot pepper-fed rabbits was significantly lower than the control group. We conclude that the intake of capsaicin can prevent diet-induced obesity and rabbit model is useful for the study of TRPV1 function in cardiovascular and metabolic diseases.  相似文献   

7.
8.
The effects of extra virgin olive oil (EV-olive oil) on triglyceride metabolism were investigated by measuring the degree of thermogenesis in interscapular brown adipose tissue (IBAT) and the rates of noradrenaline and adrenaline secretions in rats, both in vivo and in situ. In Experiment 1 (in vivo), rats were given an isoenergetic high-fat diet (30% fat diet) containing corn oil, refined olive oil, or EV-olive oil. After 28 days of feeding, the final body weight, weight gain, energy efficiency, perirenal adipose tissue and epididymal fat pad and plasma triglyceride concentrations were the lowest in the rats fed the EV-olive oil diet. The content of uncoupling protein 1 (UCP1) in IBAT and the rates of urinary noradrenaline and adrenaline excretions were the highest in the rats fed the EV-olive oil diet. In Experiment 2 (in situ), the effects of the extract of the phenolic fraction from EV-olive oil and a compound having excellent characteristics as components of EV-olive oil, hydroxytyrosol, on noradrenaline and adrenaline secretions were evaluated. The intravenous administration of the extract of the phenolic fraction from EV-olive oil significantly increased plasma noradrenaline and adrenaline concentrations, whereas that of hydroxytyrosol had no effect. These results suggest that phenols except hydroxytyrosol in EV-olive oil enhance thermogenesis by increasing the UCP1 content in IBAT and enhancing noradrenaline and adrenaline secretions in rats.  相似文献   

9.
We quantified uncoupling proteins (UCPs) in molar amounts and assessed proton conductance in mitochondria isolated from interscapular brown adipose tissue (IBAT) and hindlimb muscle [known from prior work to contain ectopic brown adipose tissue (BAT) interspersed between muscle fibers] of obesity-resistant 129S6/SvEvTac (129) and obesity-prone C57BL/6 (B6) mice under conditions of low (LF) and high-fat (HF) feeding. With usual feeding, IBAT mitochondrial UCP1 content and proton conductance were greater in 129 mice than B6. However, with HF feeding, UCP1 and proton conductance increased more in B6 mice. Moreover, with HF feeding GDP-inhibitable proton conductance, specific for UCP1, equaled that seen in the 129 strain. UCP1 expression was substantial in mitochondria from hindlimb muscle tissue (ectopic BAT) of 129 mice as opposed to B6 but did not increase with HF feeding in either strain. As expected, muscle UCP3 expression increased with HF feeding in both strains but did not differ by strain. Moreover, the proton conductance of mitochondria isolated from hindlimb muscle tissue did not differ by strain or diet. Our data uncover a response to weight gain in obesity-prone (compared to resistant) mice unrecognized in prior studies that examined only UCP1 mRNA. Obesity-prone mice have the capacity to increase both IBAT UCP1 protein and mitochondrial proton conductance as much or more than obesity-resistant mice. But, this is only achieved only at a higher body mass and, therefore, may be adaptive rather than preventative. Neither obesity-prone nor resistant mice respond to HF feeding by expressing more UCP1 in ectopic BAT within muscle tissue.  相似文献   

10.
The aim of the present work was to assess whether changes in adipose tissue gene expression related with adipogenesis and/or thermogenesis could be involved in the mechanism conferring susceptibility or resistance to develop obesity in high-fat fed outbreed rats. For this purpose, male Wistar rats were fed with standard laboratory diet (control group) or high fat diet. After 15 days, two groups of rats with significant differences on body weight gain in response to the high fat diet were characterized and identified as diet-induced obesity (DIO) and diet resistant (DR) rats. A significant increase in visceral white adipose tissue (WAT) PPARgamma and aP2 (p < 0.05) mRNA levels associated to a decrease in RARgamma expression (p < 0.05) was observed in DIO rats, suggesting an increase of adipogenesis. Furthermore, our data showed a marked increase in brown adipose tissue (BAT) of UCP1 mRNA in DIO animals (p < 0.01) (without affecting PGC-1alpha gene expression), whereas no changes were found in WAT UCP2 gene expression. All these data suggest that the variations found in the expression pattern of PPARgamma, aP2 and RARgamma by high-fat diet could be involved, at least in part, in the differences in body weight gain and adiposity observed between DR and DIO animals. The compensatory adaptations through the increase in energy expenditure by changes on the expression levels of UCP1 seem not to be enough to avoid the obesity onset in the DIO group.  相似文献   

11.
Published research suggests that activation of transient receptor potential vanilloid subfamily 1 (TRPV1) enhances the expression and deacetylation of peroxisome proliferator-activated receptor gamma (PPARγ) to cause browning of white adipose tissue. Here, we show that TRPV1 activation by capsaicin significantly prevents high fat diet-induced obesity in mice. This is associated with an increase in the expression and deacetylation of PPARγ in the epididymal fat of these mice. Consistent with the TRPV1 activation in vivo, overexpression of TRPV1 enhanced the PPARγ and other thermogenic genes in cultured 3T3-L1 preadipocytes. To determine the interaction between TRPV1 and PPARγ signaling, we analyzed the effect of Troglitazone (Trog; a thiazolidinedione derivative and an agonist of PAARγ) treatment on cultured 3T3-L1 cells. Trog enhanced the expression of TRPV1, PPARγ and thermogenic proteins in undifferentiated 3T3-L1 cells but not in differentiated cells. Acute application of Trog stimulated a robust Ca2+ influx into 3T3-L1 cells and TRPV1 inhibition by capsazepine prevented this. More interestingly, Trog or capsaicin treatment caused the deacetylation of PPARγ in 3T3-L1 cells and inhibition of TRPV1 or Sirtuin 1 - prevented this. Our data suggest a novel effect of Trog to induce PPARγ deacetylation by activating TRPV1. This research has a significant implication on the role of TRPV1 and PPARγ signaling in the browning of white adipose tissue.  相似文献   

12.
Interscapular brown adipose tissue (IBAT) hyperplasia involves a new metabolic and structural profile, resulting from acclimation of animals to a cold environment. Cold-induced changes of several antioxidative defense (AD) components in IBAT and their interrelationship with uncoupling protein 1 (UCP1), sympathetic innervation and apoptosis were studied using cold-acclimated adult rat males (4 +/- 1 degrees C, 45 days). Their age-matches were maintained at 22 +/- 1 degrees C serving as the controls. In cold-adapted rats, activities of CuZn- and Mn-superoxide dismutase (SOD) and apoptosis were reduced, while catalase (CAT), glutathione peroxidase (GSH-Px), glutathione S-transferase (GST) activities and glutathione (GSH) content were increased compared to the control. IBAT mass, protein content, plasma free fatty acid (FFA) concentration, sympathetic innervation and UCP1 level were significantly increased in cold-acclimated group compared to the corresponding control. These results suggest that decreased CuZn and MnSOD activities in IBAT represent an adaptive response due to UCP1-induced mitochondrial uncoupling. Additionally, intensive fatty acid oxidation led to an increased H(2)O(2) production which resulted in increased CAT, GSH-Px and GST activities and GSH level. Generally speaking, cold-induced changes of AD in the IBAT are closely connected with newly established metabolic profile in this tissue, thus making an important part of the entire tissue homeostasis including cell survival.  相似文献   

13.

Objective

Targeting the energy storing white adipose tissue (WAT) by pharmacological and dietary means in order to promote its conversion to energy expending “brite” cell type holds promise as an anti-obesity approach. Present study was designed to investigate/revisit the effect of capsaicin on adipogenic differentiation with special reference to induction of “brite” phenotype during differentiation of 3T3-L1 preadipocytes.

Methods

Multiple techniques such as Ca2+ influx assay, Oil Red-O staining, nutrigenomic analysis in preadipocytes and matured adipocytes have been employed to understand the effect of capsaicin at different doses. In addition to in-vitro experiments, in-vivo studies were carried out in high-fat diet (HFD) fed rats treated with resiniferatoxin (RTX) (a TRPV1 agonist) and in mice administered capsaicin.

Results

TRPV1 channels are expressed in preadipocytes but not in adipocytes. In preadipocytes, both capsaicin and RTX stimulate Ca2+ influx in dose-dependent manner. This stimulation may be prevented by capsazepine, a TRPV1 antagonist. At lower doses, capsaicin inhibits lipid accumulation and stimulates TRPV1 gene expression, while at higher doses it enhances accumulation of lipids and suppresses expression of its receptor. In doses of 0.1–100 µM, capsaicin promotes expression of major pro-adipogenic factor PPARγ and some of its downstream targets. In concentrations of 1 µM, capsaicin up-regulates anti-adipogenic genes. Low-dose capsaicin treatment of 3T3-L1 preadipocytes differentiating into adipocytes results in increased expression of brown fat cell marker genes. In white adipose of mice, capsaicin administration leads to increase in browning-specific genes. Global TRPV1 ablation (i.p. by RTX administration) leads to increase in locomotor activity with no change in body weight.

Conclusion

Our findings suggest the dual modulatory role of capsaicin in adipogenesis. Capsaicin inhibits adipogenesis in 3T3-L1 via TRPV1 activation and induces brown-like phenotype whereas higher doses.  相似文献   

14.
Obesity-related increase in body fat mass is a risk factor for many diseases, including type 2 diabetes. Controlling adiposity by targeted modulation of adipocyte enzymes could offer an attractive alternative to current dietary approaches. Brown adipose tissue, which is present in rodents but not in adult humans, expresses the mitochondrial uncoupling protein 1 (UCP1) that promotes cellular energy dissipation as heat. Here, we report on the direct metabolic effects of forced UCP1 expression in white adipocytes derived from a murine (3T3-L1) preadipocyte cell line. After stable integration, the ucp1 gene product was continuously expressed during differentiation and reduced the total lipid accumulation by approximately 30% without affecting other adipocyte markers, such as cytosolic glycerol-3-phosphate dehydrogenase activity and leptin production. The expression of UCP1 also decreased glycerol output and increased glucose uptake, lactate output, and the sensitivity of cellular ATP content to nutrient removal. However, oxygen consumption and beta-oxidation were minimally affected. Together, our results suggest that the reduction in intracellular lipid by constitutive expression of UCP1 reflects a downregulation of fat synthesis rather than an upregulation of fatty acid oxidation.  相似文献   

15.
Visceral fat accretion is a hallmark of aging and is associated with aging-induced metabolic dysfunction. PPARγ agonist was reported to improve insulin sensitivity by redistributing fat from visceral fat to subcutaneous fat. The purpose of this study was to investigate the underlying mechanisms by which aging affects adipose tissue remodeling in a type 2 diabetic animal model and through which PPARγ activation modulates aging-related fat tissue distribution. At the ages of 21, 31 and 43 weeks, OLETF rats as an animal model of type 2 diabetes were evaluated for aging-related effects on adipose tissue metabolism in subcutaneous and visceral fat depots. During aging, the ratio of visceral fat weight to subcutaneous fat weight (V/S ratio) increased. Aging significantly increased the mRNA expression of genes involved in lipogenesis such as lipoprotein lipase, fatty acid binding protein aP2, lipin 1, and diacylglycerol acyltransferase 1, which were more prominent in visceral fat than subcutaneous fat. The mRNA expression of adipose triglyceride lipase, which is involved in basal lipolysis and fatty acid recycling, was also increased, more in visceral fat compared to subcutaneous fat during aging. The mRNA levels of the genes associated with lipid oxidation were increased, whereas the mRNA levels of genes associated with energy expenditure showed no significant change during aging. PPARγ agonist treatment in OLETF rats resulted in fat redistribution with a decreasing V/S ratio and improved glucose intolerance. The genes involved in lipogenesis decreased in visceral fat of the PPARγ agonist-treated rats. During aging, fat distribution was changed by stimulating lipid uptake and esterification in visceral fat rather than subcutaneous fat, and by altering the lipid oxidation.  相似文献   

16.
Mitochondrial uncoupling protein 1 (UCP1) is usually expressed only in brown adipose tissue (BAT) and a key molecule for metabolic thermogenesis to avoid an excess of fat accumulation. However, there is little BAT in adult humans. Therefore, UCP1 expression in tissues other than BAT is expected to reduce abdominal fat. Here, we show reduction of abdominal white adipose tissue (WAT) weights in rats and mice by feeding lipids from edible seaweed, Undaria pinnatifida. Clear signals of UCP1 protein and mRNA were detected in WAT of mice fed the Undaria lipids, although there is little expression of UCP1 in WAT of mice fed control diet. The Undaria lipids mainly consisted of glycolipids and seaweed carotenoid, fucoxanthin. In the fucoxanthin-fed mice, WAT weight significantly decreased and UCP1 was clearly expressed in the WAT, while there was no difference in WAT weight and little expression of UCP1 in the glycolipids-fed mice. This result indicates that fucoxanthin upregulates the expression of UCP1 in WAT, which may contribute to reducing WAT weight.  相似文献   

17.
Human epidemiological studies have supported the hypothesis that a dairy food-rich diet is associated with lower fat accumulation, although prospective studies and intervention trials are not so conclusive and contradictory data exist in animal models. The purpose of this study was to assess the effects on body weight and fat depots of dairy calcium (12 g/kg diet) in wild-type mice under ad libitum high-fat (43%) and normal-fat (12%) diets and to gain comprehension on the underlying mechanism of dairy calcium effects. Our results show that calcium intake decreases body weight and body fat depot gain under high-fat diet and accelerates weight loss under normal-fat diet, without differences in food intake. No differences in gene or protein expression of UCP1 in brown adipose tissue or UCP2 in white adipose tissue were found that could be related with calcium feeding, suggesting that calcium intake contributed to modulate body weight in wild-type mice by a mechanism that is not associated with activation of brown adipose tissue thermogenesis. UCP3 protein but not gene expression increased in muscle due to calcium feeding. In white adipose tissue there were effects of calcium intake decreasing the expression of proteins related to calcium signalling, in particular of stanniocalcin 2. CaSR levels could play a role in decreasing cytosolic calcium in adipocytes and, therefore, contribute to the diminution of fat accretion. Results support the anti-obesity effect of dietary calcium in male mice and indicate that, at least at the time-point studied, activation of thermogenesis is not involved.  相似文献   

18.
The inability to maintain body weight within prescribed ranges occurs in a significant portion of the human spinal cord injury (SCI) population. Using a rodent model of long-term high thoracic (spinal level T3) spinal cord transection (TX), we aimed to identify derangements in body weight, body composition, plasma insulin, glucose tolerance, and metabolic function, as measured by uncoupling protein 1 (UCP1) expression in interscapular brown adipose tissue (IBAT). Sixteen weeks after SCI, body weights of injured female rats stabilized and were significantly lower than surgical control animals. At the same time point, SCI rats had a significantly lower whole body fat:lean tissue mass ratio than controls, as measured indirectly by NMR. Despite lower body weight and fat mass, the cumulative consumption of standard laboratory chow (4.0 kcal/g) and mean energy intake (kcal.day(-1).100 g body wt(-1)) of chronic SCI rats was significantly more than controls. Glucose tolerance tests indicated a significant enhancement in glucose handling in 16-wk SCI rats, which were coupled with lower serum insulin levels. The post mortem weight of gonadal and retroperitoneal fat pads was significantly reduced after SCI and IBAT displayed significantly lower real-time PCR expression of UCP1 mRNA. The reduced fat mass and IBAT UCP1 mRNA expression are contraindicative of the cumulative caloric intake by the SCI rats. The prolonged postinjury loss of body weight, including fat mass, is not due to hypophagia but possibly to permanent changes in gastrointestinal transit and absorption, as well as whole body homeostatic mechanisms.  相似文献   

19.
目的:棕色脂肪组织活化和白色脂肪组织棕化是改善减肥的良好策略。本研究利用冷刺激作为阳性对照,观察京尼平对小鼠脂肪组织活化与棕化的作用。方法:8周龄雄性C57BL/6J小鼠30只,随机分为正常对照组、京尼平组、冷刺激组, 每组10只。京尼平组小鼠腹腔注射给予京尼平处理(15 mg/(kg·d),连续9 d),对照组用生理盐水处理,冷刺激组小鼠在室温(22℃±2℃)下处理4 d后,置于4℃环境中进行冷刺激处理5 d(24 h/d)。检测各组小鼠每天摄食量、体重和体温变化,取肩胛下区、腹股沟区及附睾周围部分脂肪组织观察形态学的变化,测定棕色脂肪组织、皮下白色脂肪组织以及内脏白色脂肪组织解偶联蛋白1(UCP1)的表达。结果:与正常对照组相比,京尼平组小鼠白色脂肪湿重下降16%,冷刺激组下降28%,均有明显差异(P<0.05);京尼平组和冷刺激组白色脂肪组织颜色变深,HE染色显示脂肪细胞内的脂滴变小,数量增加;京尼平组小鼠的皮下、内脏白色脂肪组织和棕色3种脂肪组织中的UCP1表达量均明显增加(P<0.05)。结论:京尼平通过上调UCP1的表达促进棕色脂肪组织活化和白色脂肪组织棕化,此效应是京尼平降脂减轻体重的作用机制之一。  相似文献   

20.
Four overlapping cDNA fragments encoding a partial sequence for uncoupling protein 2 (UCP2) were amplified by PCR using degenerate primers from the liver of a marine teleost fish, red sea bream (Pagrus major). The partial sequence was 674 bp long, encoding 224 amino acids. The deduced amino acid sequence from the cDNA partial sequence contained the signature motifs for mitochondrial transporter protein and revealed positional identity higher than 72.8% with UCP2 from mammals. The fish UCP2 gene was highly expressed in the liver but almost undetectable in the visceral mesenteric adipose tissue. Using beta-actin as control, the UCP2 mRNA level was determined to be at least 20-fold higher in the liver than in the visceral mesenteric adipose tissues. Neither 48 h starvation nor high lipid diet had any significant effect on liver UCP2 gene expression, indicating that the abundant UCP2 gene expression was stable and might have some basic function in a fish liver that always contains high lipid content. The striking contrast of UCP2 gene expression in the two fish fat-depot organs is consistent with their large differences in oxidative capacity. We suggest that the fish liver may adapt to a constantly high fat deposit by maintaining high UCP2 expression to constrain reactive oxygen species (ROS) production and protect hepatocytes from apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号