首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 644 毫秒
1.
Within taxonomic groups, most species are restricted in their geographic range sizes, with only a few being widespread. The possibility that species-level selection on range sizes contributes to the characteristic form of such species-range size distributions has previously been raised. This would require that closely related species have similar range sizes, an indication of "heritability" of range sizes at the species level. Support for this view came from a positive correlation between the range sizes of closely related pairs of fossil mollusc species. We extend this analysis by considering the relationship between the geographic range sizes of 103 pairs of contemporary avian sister species. Range sizes in these sister species show no evidence of being more similar to each other than expected by chance. A reassessment of the mollusc data also suggests that the high correlation was probably overestimated because of the skewed nature of range size data. The fact that sister species tend to have similar life histories and ecologies suggests that any relationship between range sizes and biology is likely to be complicated and will be influenced by historical factors, such as mode of speciation and postspeciation range size transformations.  相似文献   

2.
Phylogenetic conservatism or heritability of the geographic range sizes of species has been predicted to occur because of the phylogenetic conservatism of niche traits. However, evidence for range size conservatism is mixed, and even when statistically significant is often rather weak and of questionable biological importance. Here, we test the prediction that such conservatism will be more strongly expressed when the amount of spatial overlap between sister species increases. We used the global distributions of 1136 avian species (>10% of extant members of this Class), and tested the conservatism of geographic range sizes using the coefficients of correlation between values for pairs of sister species. We used a null model to test whether the range sizes of sister species were more similar to one another than expected by chance. We found that sister species showed a significant positive relationship between their geographic range sizes whatever the degree of spatial overlap. However, as predicted, the level of conservatism increases with the level of range overlap between sister species. More precisely, the strong increase in the coefficient of correlation between sister species' range sizes when we add species with some range overlap to the pool of pairs without any such overlap indicates an important threshold effect. These results suggest that niche conservatism is more likely to lead to marked heritability of the range sizes of species when similar niche traits are expressed under more similar environmental conditions. These results have significant implications because they suggest 1) that previous analyses of conservatism of range sizes have been confounded by the level of spatial overlap, and 2) that closely related species experiencing similar conditions may tend to expand or restrict their geographic ranges in parallel when faced with climate change.  相似文献   

3.
Most models of allopatric speciation predict that the two daughter species will have range sizes different from each other's and potentially from that of their common ancestor. However, I find that this difference is less than that expected under a variety of null models of range evolution. Sister species' range values may therefore become more similar in the time following speciation. Greater-than-expected similarity (symmetry) has also been treated as a form of range size heritability. I therefore compare the results of this symmetry approach to a test for phylogenetic signal, using the range sizes of North American birds. I find that range size is heritable under both tests. I suggest that null models for range size heritability should be informed by an explicit model of evolution. Comparative methods may give erroneous results if they fail to take the unusual form of inheritance of range size into account.  相似文献   

4.
Aim Phylogenetic conservatism or heritability of the geographical range sizes of species (i.e. the tendency for closely related species to share similar range sizes) has been predicted to occur because of the strong phylogenetic conservatism of niche traits. However, the extent of such heritability in range size is disputed and the role of biology in shaping this attribute remains unclear. Here, we investigate the level of heritability of geographical range sizes that is generated from neutral models assuming no biological differences between species. Methods We used three different neutral models, which differ in their speciation mode, to simulate the life‐history of 250,000 individuals in a square lattice of 50 × 50 cells. These individuals can speciate, reproduce, migrate and die in the metacommunity according to stochastic events. We ran each model for 3000 steps and recorded the range size of each species at each step. The heritability of geographical range size was assessed using an asymmetry coefficient between range sizes of sister species and using the coefficient of correlation between the range sizes of ancestors and their descendants. Results Our results demonstrated the ability of neutral models to mimic some important observed patterns in the heritability of geographical range size. Consistently, sister species exhibited higher asymmetry in range sizes than expected by chance, and correlations between the range sizes of ancestor–descendant species pairs, although often weak, were almost invariably positive. Main conclusions Our findings suggest that, even without any biological trait differences, statistically significant heritability in the geographical range sizes of species can be found. This heritability is weaker than that observed in some empirical studies, but suggests that even here a substantial component of heritability may not necessarily be associated with niche conservatism. We also conclude that both present‐day and fossil data sets may provide similar information on the heritability of the geographical range sizes of species, while the omission of rare species will tend to overestimate this heritability.  相似文献   

5.
Species' borders: a unifying theme in ecology   总被引:6,自引:0,他引:6  
Biologists have long been fascinated by species' borders, and with good reason. Understanding the ecological and evolutionary dynamics of species' borders may prove to be the key that unlocks new understanding across a wide range of biological phenomena. After all, geographic range limits are a point of entry into understanding the ecological niche and threshold responses to environmental change. Elucidating patterns of gene flow to, and returning from, peripheral populations can provide important insights into the nature of adaptation, speciation and coevolution. Species' borders form natural laboratories for the study of the spatial structure of species interactions. Comparative studies from the center to the margin of species' ranges allow us to explore species' demographic responses along gradients of increasing environmental stress. Range dynamics further permit investigation into invasion dynamics and represent bellwethers for a changing climate. This set of papers explores ecological and evolutionary dynamics of species' borders from diverse empirical and theoretical perspectives.  相似文献   

6.
In this study, we developed a simulation model based on the ecological and evolutionary dynamics of geographical ranges, to understand the role of species' environmental tolerances and the strength of the environmental gradient in determining spatial patterns in species richness. Using an one-dimensional space, we present the model and dissect its parameters. Also, we test the ability of the model to simulate richness in complex two-dimensional domains and to fit real patterns in species richness, using South American Tyrannidae as an example. We found that a mid-spatial peak in species richness arises spontaneously under conditions of high environmental tolerances and/or a weak environmental gradient, since this condition causes wide species' geographic ranges, which are constrained by domain's boundary and tend to overlap in the middle. Our model was also a good predictor of real patterns in species richness, especially under conditions of high environmental strength and small species' tolerance. We conclude that this kind of spatial simulation models based on species' physiological tolerance may be an important tool to understand the evolutionary dynamics of species' geographic ranges and in spatial patterns of species richness.  相似文献   

7.
Geographic range size and evolutionary age in birds   总被引:3,自引:0,他引:3  
Together with patterns of speciation and extinction, post-speciation transformations in the range sizes of individual species determine the form of contemporary species range-size distributions. However, the methodological problems associated with tracking the dynamics of a species' range size over evolutionary time have precluded direct study of such range-size transformations, although indirect evidence has led to several models being proposed describing the form that they might take. Here, we use independently derived molecular data to estimate ages of species in six monophyletic groups of birds, and examine the relationship between species age and global geographic range size. We present strong evidence that avian range sizes are not static over evolutionary time. In addition, it seems that, with the regular exception of certain taxa (for example island endemics and some threatened species), range-size transformations are non-random in birds. In general, range sizes appear to expand relatively rapidly post speciation; subsequently; and perhaps more gradually, they then decline as species age. We discuss these results with reference to the various models of range-size dynamics that have been proposed.  相似文献   

8.
Aim  The effects of resolution and spatial extent on range measures were explored in estimates of the geographic distribution of tropical hawkmoths. Furthermore, data were tested for phylogenetic autocorrelation.
Location  South-East Asia.
Methods  Various range measures, such as geographic information system (GIS)-supported range estimates, minimum convex polygons, latitudinal and longitudinal extents, and their products, were derived from original distribution records and compared to each other. A taxonomic classification of the species was used to analyse phylogenetic effects on range sizes.
Results  Range size measures exhibit a strongly right-skewed frequency distribution with many geographically restricted species and few widespread taxa. Rankings from GIS-supported, comprehensive range size estimates do not deviate greatly from more crude measurements of lower resolution. Comprehensive ranges and ranges within South-East Asia are correlated strongly, but already at this rather large scale the ranking of species changes considerably. Other measures of occupancy with an increasingly more localized consideration of 'range' show decreasing strengths of correlation. We found a weak, but significant, autocorrelation in range area data: related groups of species have ranges of similar size.
Main conclusions  Spatial resolution did not affect range ranking greatly in our data. However, macroecological studies based only on parts of species' ranges must be viewed critically, particularly if their extent is small compared to comprehensive ranges. Phylogenetic non-independence of range size data must be considered in comparative analyses.  相似文献   

9.
Pigot AL  Owens IP  Orme CD 《PLoS biology》2012,10(2):e1001260
While the geographic range of a species is a fundamental unit of macroecology and a leading predictor of extinction risk, the evolutionary dynamics of species' ranges remain poorly understood. Based on statistical associations between range size and species age, many studies have claimed support for general models of range evolution in which the area occupied by a species varies predictably over the course of its life. Such claims have been made using both paleontological data and molecular estimates of the age of extant species. However, using a stochastic model, we show that the appearance of trends in range size with species' age can arise even when range sizes have evolved at random through time. This occurs because the samples of species used in existing studies are likely to be biased with respect to range size: for example, only those species that happened to have large or expanding ranges are likely to survive to the present, while extinct species will tend to be those whose ranges, by chance, declined through time. We compared the relationship between the age and range size of species arising under our stochastic model to those observed across 1,269 species of extant birds and mammals and 140 species of extinct Cenozoic marine mollusks. We find that the stochastic model is able to generate the full spectrum of empirical age-area relationships, implying that such trends cannot be simply interpreted as evidence for models of directional range size evolution. Our results therefore challenge the theory that species undergo predictable phases of geographic expansion and contraction through time.  相似文献   

10.
A number of mechanisms have been proposed to explain the widely observed positive interspecific relationship between local abundance and extent of geographic distribution in animals Here, we use data on British birds to assess two of these hypotheses that the relationship results from the relative position of a study area with respect to the geographic ranges of the species which occur there, and that the relationship results from a simple difference between taxonomic groups, rather than any general tendency for more abundant species to have larger range sizes We find support for neither hypothesis Phylogenetically controlled comparative analyses reveal that the positive abundance-range size relationship is consistently found within taxa, even when abundance and range size are calculated at a variety of spatial and temporal scales Analyses both across species and within taxa show that bird species for which Britain is near to the centre of their distribution in Europe tend to have larger British range sizes and higher abundances than do species where Britain is close to the edge of their range in Europe However, these relationships do not cause that between abundance and range size, because this latter relationship persists within different range position categories Whether a species is near the centre or edge of its geographic range in Britain may affect its position on the abundance-range size relationship, but does not produce the relationship Range position in Britain does, however, seem to be related to the magnitude of temporal changes in the range sizes of British birds There is some evidence to suggest that species for which Britain is nearer to their European range centre have shown smaller changes in distribution over the period 1970–1990 than have species for which Britain is close to their European range edge  相似文献   

11.
Hunt G  Roy K  Jablonski D 《The American naturalist》2005,166(1):129-35; discussion 136-43
For many current issues in macroevolution and macroecology, it is important to know to what degree the attributes of species are shared among closely related lineages, a concept sometimes referred to as species-level heritability. Recently, Webb and Gaston proposed a new method for analyzing the heritability of geographic range size and concluded that range size is not heritable in Cretaceous gastropods (data from Jablonski) and modern birds (their data). Here we show that Webb and Gaston's method is flawed in that it implicitly assumes that range sizes are uniformly distributed. When range size distributions show their characteristic strong right skew, Webb and Gaston's method spuriously tends to find that range sizes of closely related pairs of species are more dissimilar than the random expectation. A reanalysis of Jablonski's data finds range size to be robustly and strongly heritable in Cretaceous gastropods and less strongly but still significantly heritable in present-day birds.  相似文献   

12.
Aim  We tested various species-level traits for their potential to explain species' range sizes and dispersal abilities.
Location  Southeast Asia and Malay Archipelago.
Methods  We used published maps of geographical distribution estimates for sphingid moths to calculate range areas and classify species according to their dispersion across (present or historical) water straits in the Malay Archipelago. We tested forewing length (FWL), wing load (thorax width/FWL), presence or absence of a functional proboscis (i.e. adult feeding), larval diet breadth and larval diet composition for univariate correlations with range size and inter-island dispersion. We used multivariate, phylogenetically controlled models to test for independent effects of parameters.
Results  Range size correlated strongly with larval diet breadth, a result that was also confirmed in the multivariate model. Adult feeding had a significant impact on range sizes only within the multivariate model, but not in the univariate correlation. Dispersal class also correlated with larval diet breadth, but was additionally influenced by forewing length, wing load and larval diet composition. A univariate effect of adult feeding became non-significant in the multivariate, phylogenetically controlled model.
Main conclusions  Larval diet breadth is the best predictor of range size as well as inter-island dispersion, confirming the importance of niche breadth on the geographic ranges of species. A number of other factors are shown to have additional impact on predictions of range size or inter-island dispersal ability. Our analyses cannot determine the causal mechanisms of these correlations, but may stimulate further research on the adaptive significance of traits affecting range size and dispersal in this system.  相似文献   

13.
Ecologists often consider how environmental factors limit a species' geographic range. However, recent models suggest that geographic distribution also may be determined by a species' ability to adapt to novel environmental conditions. In this study, we empirically tested whether further evolution would be necessary for northern expansion of the weedy annual cocklebur (Xanthium strumarium) in its native North American range. We transplanted seedlings beyond the northern border and photoperiodically manipulated reproductive timing, a trait important for adaptation to shorter growing seasons at higher latitudes within the range, to determine whether further evolution of this trait would result in a phenotype viable beyond the range. Earlier reproductive induction enabled plants to produce mature seeds beyond the range and to achieve a reproductive output similar to those grown within the range. Therefore, evolution of earlier reproduction in marginal populations would be necessary for northward range expansion. This study is the first to empirically show that evolution in an ecologically important trait would enable a species to survive and reproduce beyond its current range. These results suggest that relatively few traits may limit a species' range and that identifying evolutionary constraints on such traits could be important for predicting geographic distribution.  相似文献   

14.
Range limits of species are determined by combined effects of physical, historical, ecological, and evolutionary forces. We consider a subset of these factors by using spatial models of competition, hybridization, and local adaptation to examine the effects of partial dispersal barriers on the locations of borders between similar species. Prompted by results from population genetic models and biogeographic observations, we investigate the conditions under which species' borders are attracted to regions of reduced dispersal. For borders maintained by competition or hybridization, we find that dispersal barriers can attract borders whose positions would otherwise be either neutrally stable or moving across space. Borders affected strongly by local adaptation and gene flow, however, are repelled from dispersal barriers. These models illustrate how particular biotic and abiotic factors may combine to limit species' ranges, and they help to elucidate mechanisms by which range limits of many species may coincide.  相似文献   

15.
There has been much recent interest in explaining patterns of body size variation within species assemblages. One observation is that frequency distributions of species' body size commonly exhibit a right-skew, even on a logarithmic scale. Here we examine the species' body size distributions in two assemblages of large Costa Rican moths. We find that neither adult Sphingidae or Saturniidae exhibit the classic log right-skewed pattern. Furthermore, the species' body size distributions in these two groups are markedly different, which we suggest is a result of differential selective pressures related to resource and mate acquisition. For Sphingidae, we show (1) that body size is positively correlated with tongue length, and (2) that the distribution of sphingid body sizes/tongue lengths closely matches the distribution of flower corolla tube depths in sphingid-pollinated plants. Thus, morphological fitting between plants and pollinators seems to underlie the species' body size distribution of this sphingid assemblage. We discuss the significance of these results in the context of current theory on mechanisms driving species' body size distributions. Finally, we present an evolutionary hypothesis for the diversity of body sizes seen in this sphingid assemblage related to reciprocal interactions between plants and pollinators. This hypothesis can be tested within a rigorous phylogenetic framework, although a systematic phylogenetic analysis of Neotropical Sphingidae does not currently exist.  相似文献   

16.
The concept of species-level heritability is widely contested. Because it is most likely to apply to emergent, species-level traits, one of the central discussions has focused on the potential heritability of geographic range size. However, a central argument against range-size heritability has been that it is not compatible with the observed shape of present-day species range-size distributions (SRDs), a claim that has never been tested. To assess this claim, we used forward simulation of range-size evolution in clades with varying degrees of range-size heritability, and compared the output of three different models to the range-size distribution of the South American avifauna. Although there were differences among the models, a moderate-to-high degree of range-size heritability consistently leads to SRDs that were similar to empirical data. These results suggest that range-size heritability can generate realistic SRDs, and may play an important role in shaping observed patterns of range sizes.  相似文献   

17.
Host specificity and geographic range in haematophagous ectoparasites   总被引:1,自引:0,他引:1  
A negative interspecific correlation between the degree of habitat specialization and the size of a species' geographic range has been documented for several free living groups of organisms, providing support for the niche breadth hypothesis. In contrast, practically nothing is known about the geographic range sizes of parasitic organisms and their determinants. In the context of the niche breadth hypothesis, parasites represent ideal study systems, because of the well documented variation in host specificity among parasite species. Here, we investigated the relationship between host specificity (a measure of niche breadth) and geographic range size among flea species parasitic on small mammals, using data from seven distinct geographical regions. Two measures of host specificity were used: the number of host species used by a flea species, and a measure of the average taxonomic distance between the host species used by a flea; the latter index provides an evolutionary perspective on host specificity. After correcting for phylogenetic influences, and using either of our two measures of host specificity, the degree of host specificity of fleas was negatively correlated with the size of their geographic range in all seven regions studied here, with only one minor exception. Overall, these results provide strong support for the niche breadth hypothesis, although other explanations cannot be ruled out.  相似文献   

18.
1.  The geographical range sizes of individual species vary considerably in extent, although the factors underlying this variation remain poorly understood, and could include a number of ecological and evolutionary processes. A favoured explanation for range size variation is that this result from differences in fundamental niche breadths, suggesting a key role for physiology in determining range size, although to date empirical tests of these ideas remain limited.
2.  Here we explore relationships between thermal physiology and biogeography, whilst controlling for possible differences in dispersal ability and phylogenetic relatedness, across 14 ecologically similar congeners which differ in geographical range extent; European diving beetles of the genus Deronectes Sharp (Coleoptera, Dytiscidae). Absolute upper and lower temperature tolerance and acclimatory abilities are determined for populations of each species, following acclimation in the laboratory.
3.  Absolute thermal tolerance range is the best predictor of both species' latitudinal range extent and position, differences in dispersal ability (based on wing size) apparently being less important in this group. In addition, species' northern and southern range limits are related to their tolerance of low and high temperatures respectively. In all cases, absolute temperature tolerances, rather than acclimatory abilities are the best predictors of range parameters, whilst the use of independent contrasts suggested that species' thermal acclimation abilities may also relate to biogeography, although increased acclimatory ability does not appear to be associated with increased range size.
4.  Our study is the first to provide empirical support for a relationship between thermal physiology and range size variation in widespread and restricted species, conducted using the same experimental design, within a phylogenetically and ecologically controlled framework.  相似文献   

19.
Signal divergence is an important process underpinning the diversification of lineages. Research has shown that signal divergence is greatest in species pairs that possess high geographic range overlap. However, the influence of range‐size differences within pairs is less understood. We investigated how these factors have shaped signal divergence within brightly coloured coral reef butterflyfishes (genus: Chaetodon). Using a novel digital imaging methodology, we quantified both colouration and pattern using 250 000 sample points on each fish image. Surprisingly, evolutionary age did not affect colour pattern dissimilarity between species pairs, with average differences arising in just 300 000 years. However, the effect of range overlap and range symmetry was significant. Species‐pair colour patterns become more different with increasing overlap, but only when ranges are similar in size. When ranges differ markedly in area, species‐pair colour patterns become more similar with increasing overlap. This suggests that species with small ranges may maintain non‐colour‐based species boundaries.  相似文献   

20.
Phenotypic variation is fundamental to evolutionary change. Variation not only evinces the connectivity of populations but it is also associated with the adaptability and evolvability of taxa. Despite the potential importance of morphological variation in structuring evolutionary patterns, little is known about how relative differences in intraspecific morphological variation and its geographic structure are linked to differences in species longevity. This study offers a novel combination of analyses that reveal the quantitative relationships among intraspecific variation, geographic range size and duration in the fossil record using late Cambrian trilobites. Results show that geographic range size and duration are positively correlated. Surprisingly, longer lived species tend to have less intraspecific variation. Phylogenetic effects were also explored and found not to determine the association between these variables. However, the distribution of geographic range sizes shows strong phylogenetic signal. In light of previous work, one possible explanation for these results is that species with shorter durations have comparatively higher rates of morphological evolution, reflected in higher phenotypic variation overall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号