首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular interactions of 5,6-dichloro-2-(trifluoromethyl)-1H-benzimidazole (G2), an antiprotozoa with poor aqueous solubility, with 2-hydroxypropyl-α-cyclodextrin (HPαCD), methyl-β-cyclodextrin (MβCD) and 2-hydroxypropyl-β-cyclodextrin (HPβCD) were examined. The aqueous solubility enhancement by cyclodextrins (CDs) was evidenced in phase-solubility diagrams, and the stoichiometry of G2/CD systems was determined by Job's plots. Two-dimensional NMR spectroscopic data revealed that a different mode of interaction took place between G2 and CDs in solution. With HPαCD, a non-inclusion complex was generated. In the case of MβCD, a typical host-guest system was obtained and with HPβCD a partial inclusion complex through the narrow side of the macrocycle was formed. ESI-mass spectrometric data confirmed the stoichiometry and mode of interaction of these systems in solution. Solid-state characterization (scanning calorimetry and powder X-ray diffraction) supported the inclusion complex formation. The leishmanicidal activity, trypanocidal activity and non-toxic profile of G2/MβCD showed the advantages of using this inclusion complex to promote the biological assays extension of G2.  相似文献   

2.
This study aimed to improve the water solubility of 5,7-dimethoxyflavone (5,7-DMF) isolated from Kaempferia parviflora by complexation with 2-hydroxypropyl-β-cyclodextrin (HPβ-CD). The phase solubility profile of 5,7-DMF in the presence of HPβ-CD was classified as AL-type and indicated a 1:1 mole ratio. Differential scanning colorimetry, X-ray diffraction, NMR and SEM analyses supported the formation of a 5,7-DMF/HPβ-CD inclusion complex involving the A ring of 5,7-DMF inside the HPβ-CD cavity. This is the first example of CD inclusion with the A ring of non-hydroxyl flavones. The stability and binding constants of the complexes were determined using the phase solubility and UV-vis absorption spectroscopy, respectively. The water solubility of 5,7-DMF was increased 361.8-fold by complexation with HPβ-CD and overcame the precipitation problem observed in aqueous buffers, such as during in vitro anti-butyrylcholinesterase activity assays. The 1:1 mole ratio of the 5,7-DMF/HPβ-CD complex showed a 2.7-fold higher butyrylcholinesterase inhibitory activity (in terms of the IC50 value) compared to the non-complexed compound.  相似文献   

3.
The inclusion complexes of Luteolin (LU) with cyclodextrins (CDs) including β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD) and dimethyl-β-cyclodextrin (DMβCD), Scheme 1, have been investigated using the method of steady-state fluorescence. The stoichiometric ratio of the three complexes was found to be 1:1 and the stability constants (K) were estimated from spectrofluorometric titrations, as well as the thermodynamic parameters. Maximum inclusion ability was obtained in the case of HPβCD followed by DMβCD and βCD. Moreover, 1H NMR and 2D NMR were carried out, revealing that LU has different form of inclusion which is in agreement with molecular modeling studies. These models confirm that when LU–βCD and LU–DMβCD complexes are formed, the B-ring is oriented toward the primary rim; however, for LU–HPβCD complex this ring is oriented toward the secondary rim. The ESR results showed that the antioxidant activity of luteolin was the order LU–HPβCD > LU–DMβCD > LU–βCD > LU, hence the LU-complexes behave are better antioxidants than luteolin free.  相似文献   

4.
The complexation between two isomers of citral in lemongrass oil and varying types of cyclodextrins (CDs), α-CD, β-CD, and HP-β-CD, were studied by molecular modeling and physicochemical characterization. The results obtained revealed that the most favorable complex formation governing between citrals in lemongrass oil and CDs were found at a 1:2 mole ratio for all CDs. Complex formation between E-citral and CD was more favorable than between Z-citral and CD. The thermal stability of the inclusion complex was observed compared to the citral in the lemongrass oil. The release time course of citral from the inclusion complex was the diffusion control, and it correlated well with Avrami's equation. The release rate constants of the E- and Z-citral inclusion complexes at 50 °C, 50% RH were observed at 1.32×10(-2) h(-1) and 1.43×10(-2) h(-1) respectively.  相似文献   

5.
Triclosan (TCS), an antimicrobial agent widely used in consumer and medical products, was complexed with 2-hydroxypropyl-β-cyclodextrin (HPβCD) and methyl-β-cyclodextrin (MβCD). Phase-solubility studies indicated that inclusion complexes of 1:1 stoichiometry were formed and allowed estimation of the associated equilibrium constants and free-energy changes. At the highest cyclodextrin concentrations investigated, an almost 20-fold increase in the apparent water solubility of TCS was determined. Susceptibility tests against Escherichia coli and Staphylococcus aureus showed that the TCS–HPβCD and TCS–MβCD complexes exhibited antibacterial properties higher than those of uncomplexed TCS. The two complexes were also found capable of interfering with cell-to-cell communication mechanisms in the C. violaceum model system relying on N-acylhomoserine lactone autoinducers. The inhibitory activity of TCS increased significantly upon inclusion of the drug in HPβCD or MβCD, with small differences between the two CDs. The results obtained suggest that the investigated complexes could be used for treating infections caused by TCS-susceptible pathogens or for preventing biofilm formation on indwelling medical devices such as catheters, stents and orthopedic implants.  相似文献   

6.
The knowledge of the host-guest complexes using cyclodextrins (CDs) has prompted an increase in the development of new formulations. The capacity of these organic host structures of including guest within their hydrophobic cavities, improves physicochemical properties of the guest. In the case of pesticides, several inclusion complexes with cyclodextrins have been reported. However, in order to explore rationally new pesticide formulations, it is essential to know the effect of cyclodextrins on the properties of guest molecules.In this study, the inclusion complexes of bentazon (Btz) with native βCD and two derivatives, 2-hydroxypropyl-β-cyclodextrin (HPCD) and sulfobutylether-β-cyclodextrin (SBECD), were prepared by two methods: kneading and freeze-drying, and their characterization was investigated with different analytical techniques including Fourier transform infrared spectroscopy (FT-IR), differential thermal analysis (DTA), X-ray diffractometry (XRD) and differential pulse voltammetry (DPV). All these approaches indicate that Btz forms inclusion complexes with CDs in solution and in solid state, with a stoichiometry of 1∶1, although some of them are obtained in mixtures with free Btz. The calculated association constant of the Btz/HPCD complex by DPV was 244±19 M(-1) being an intermediate value compared with those obtained with βCD and SBECD. The use of CDs significantly increases Btz photostability, and depending on the CDs, decreases the surface tension. The results indicated that bentazon forms inclusion complexes with CDs showing improved physicochemical properties compared to free bentazon indicating that CDs may serve as excipient in herbicide formulations.  相似文献   

7.
Liu HJ  Cai WD  Huang RN  Xia HL  Wen YZ 《Chirality》2012,24(2):181-187
Cyclodextrins (CDs) possess a variety of chiral centers and are capable of recognizing enantiomeric molecules through the formation of inclusion complexes. Two types of CDs, α-cyclodextrin (α-CD) and β-cyclodextrin (β-CD), were selected to evaluate the effects of the enantioselective ecotoxicity of racemic metolachlor (Rac-metolachlor) and its S-enantiomer (S-metolachlor) on the freshwater algae Scenedesmus obliquus (S. obliquus) by acute toxicity test. The results showed that the aquatic toxicity of S-metolachlor was higher than Rac-metolachlor and that CDs enhanced the toxicity of metolachlor enantioselectively by increasing the aquatic toxicity of Rac-metolachlor rather than that of S-metolachlor to S. obliquus. The equilibrium constant for Rac-metolachlor-CD complexes was higher than that of S-metolachlor-CDs, which was responsible for the greater aquatic toxicity shift effect of Rac-metolachlor. Thermodynamic studies of CD complexes showed that inclusion for all of the complexes was primarily a spontaneous, enthalpy-driven process. These results will help to understand the preliminary mechanism of shifting aquatic toxicity of metolachlor by CDs and the CDs mediated environmental processes of metolachlor, to correctly apply CDs to chiral pesticides formulation and environmental remediation of chiral contaminants.  相似文献   

8.
The complexation between two isomers of citral in lemongrass oil and varying types of cyclodextrins (CDs), α-CD, β-CD, and HP-β-CD, were studied by molecular modeling and physicochemical characterization. The results obtained revealed that the most favorable complex formation governing between citrals in lemongrass oil and CDs were found at a 1:2 mole ratio for all CDs. Complex formation between E-citral and CD was more favorable than between Z-citral and CD. The thermal stability of the inclusion complex was observed compared to the citral in the lemongrass oil. The release time course of citral from the inclusion complex was the diffusion control, and it correlated well with Avrami’s equation. The release rate constants of the E- and Z-citral inclusion complexes at 50 °C, 50% RH were observed at 1.32×10?2 h?1 and 1.43×10?2 h?1 respectively.  相似文献   

9.
Posaconazole is a triazole antifungal drug that with extremely poor aqueous solubility. Up to now, this drug can be administered via intravenous injection and oral suspension. However, its oral bioavailability is greatly limited by the dissolution rate of the drug. This study aimed to improve water solubility and dissolution of posaconazole through characterizing the inclusion complexes of posaconazole with β-cyclodextrin (β-CD) and 2,6-di-O-methyl-β-cyclodextrin (DM-β-CD). Phase solubility studies were performed to calculate the stability constants in solution. The results of FT-IR, PXRD, 1H and ROESY 2D NMR, and DSC all verified the formation of the complexes in solid state. The complexes showed remarkably improved water solubility and dissolution rate than pure posaconazole. Especially, the aqueous solubility of the DM-β-CD complex is nine times higher than that of the β-CD complex. Preliminary in vitro antifungal susceptibility tests showed that the two inclusion complexes maintained high antifungal activities. These results indicated that the DM-β-CD complexes have great potential for application in the delivery of poorly water-soluble antifungal agents, such as posaconazole.  相似文献   

10.
The aim of the present study was to prepare a stable complex of doxycycline (Doxy) and hydroxypropyl-β-cyclodextrin (HPβCD) for ophthalmic delivery and investigate the inclusion mechanism and the inclusion effects on the stability of Doxy. The Doxy/HPβCD complex was prepared by solution stirring and then characterized by scanning electron microscopy and ultraviolet spectroscopy. Based on results of nuclear magnetic resonance, molecular model of Doxy/HPβCD complex was established using computational simulation of PM3 method implemented in Gaussian 03. Stabilities of Doxy/HPβCD complex in both aqueous solution and solid state at 25°C were evaluated by HPLC. Finally, in vitro antibacterial activity of the Doxy/HPβCD complex was evaluated by disk diffusion test. It was found that the stabilities of Doxy/HPβCD complex in both aqueous solution and solid state were improved obviously as compared with Doxy alone. This stability enhancement is consistent with the inclusion mechanism between HPβCD and Doxy, which showed that the unstable site of Doxy molecule at 6-CH3 was protected in the hydrophobic cavity of HPβCD, additionally, the chelation of Mg2+ provided a synergetic protection of the other unstable site of Doxy at 4-N(CH3)2. The antibacterial activity results indicated that Doxy/HPβCD complex might have potential for clinical applications.  相似文献   

11.
Solubilisation of six polycyclic aromatic hydrocarbons (PAHs) (acenaphthene, anthracene, fluoranthene, fluorene, phenanthrene and pyrene) by three synthetic cyclodextrins (CDs) (2-hydroxypropyl-β-CD, hydroxypropyl-γ-CD and ramdomly methylated-β-CD) was investigated in order to select the CD which presents the greatest increase in solubility and better complexation parameters for its use in contaminated scenarios. The presence of the three cyclodextrins greatly enhanced the apparent water solubility of all the PAHs through the formation of inclusion complexes of 1∶1 stoichiometry. Anthracene, fluoranthene, fluorene and phenanthrene clearly presented a higher solubility when β-CD derivatives were used, and especially the complexes with the ramdomly methylated-β-CD were favoured. On the contrary, pyrene presented its best solubility results when using 2-hydroxypropyl-γ-CD, but for acenaphthene the use of any of the three CDs gave the same results. Complementary to experimental phase-solubility studies, a more in-depth estimation of the inclusion process for the different complexes was carried out using molecular modelling in order to find a correlation between the degree of solubilisation and the fit of PAH molecules within the cavity of the different CDs and to know the predominant driving forces of the complexation.  相似文献   

12.
The interaction of poor water-soluble drug loratadine (LOR) with β-cyclodextrin (β-CD) or hydroxypropyl-β-cyclodextrin (HP-β-CD) in aqueous or solid state was investigated. Mechanical grinding effect on the inclusion steps, thermodynamic kinetics and inclusion efficiency of inclusion complex formation of LOR with β-CD or HP-β-CD was quantitatively investigated by DSC and FT-IR microspectroscopy with curve-fitting analysis. The phase solubility profiles of LOR with β-CD and HP-β-CD were classified as AL-type phase diagram. The grinding-induced reduction in LOR crystallinity in the presence of β-CD or HP-β-CD was found to be apparent zero-order kinetics. The inclusion efficiency of solid inclusion complex for LOR/β-CD or LOR/HP-β-CD was significantly correlated with the reduction in LOR crystallinity and the grinding time. The mechanism of inclusion complex formation for LOR/β-CD or LOR/HP-β-CD was proposed through the progressive reduction in LOR crystallinity, the promoted LOR amorphization, and molecular inclusion processes in the continuous energy input process of mechanical grinding.  相似文献   

13.
The configurational stability of (+)- and (−)-diethylpropion [(+)- and (−)-2-(diethyl)-1-phenyl-1-propanone or (+)- and (−)-DEP ] was investigated systematically from chemical, pharmaceutical, and pharmacological aspects. The enantiomeric ratio was monitored directly with a recently developed stability-indicating enantioselective HPLC method. In aqueous solutions, the rate of racemization increased non-linearly with increasing pH and with increasing phosphate buffer concentration. The racemization rate showed a positive slope with increasing temperature and decreasing ionic strength. The racemization rates of (+)- and (−)-DEP in the presence of cyclodextrins (CDs) did not differ significantly. CDs that were added to (+)- and (−)-DEP in a molar ratio 5:1 showed the following effects after dissolution in 10 mM phosphate buffer (final pH 6.7): sulfobutyl ether-β-CD (SBE-β-CD) and methylated-β-CD (Me-β-CD) retarded racemization; whereas hydroxypropyl-β-CD (HP-β-CD), acetyl-γ-CD (Ac-γ-CD), acetyl-β-CD (Ac-β-CD), γ-CD, and β-CD showed a weak destabilising effect. In contrast to the described CDs, α-CD distinctly accelerated the rate of racemization. The configurational stability of (+)- and (−)-DEP was also studied under physiological conditions. The half-life of racemization in heparinised human plasma was for both enantiomers determined to be approximately 23–25 min. In phosphate buffer (10 mM, pH 7.4), rac-DEP showed a high, but unselective affinity towards human α1-acid glycoprotein (orosomucoid) immobilised on silica (Chiral AGP). The rate of racemization of the free base of (−)-DEP dissolved in organic solutions generally increases with the polarity of the solvating agent. Chirality 10:307–315, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
The purpose of this work is to study the molecular association that occurs between 2-hydroxypropyl-β-cyclodextrin (HPβCD) and 6-chloro-5-(1-naphthyloxy)-2-(trifluoromethyl)-1H-benzimidazole (RCB20), an antiparasitic compound recently found by our research group, with poor aqueous solubility. The complex stability constant and stoichiometric ratio determined by phase-solubility diagram and Job's plot provided evidence that HPβCD enhanced water solubility of RCB20 through inclusion complex formation. Two-dimensional 1H NMR spectroscopy is used to study the molecular arrangement of inclusion complex in solution. These results are further supported using molecular modeling studies. In the solid state, the complexation is confirmed by differential scanning calorimetry, powder X-ray diffraction, and scanning electron microscopy. Finally, RCB20/HPβCD complex has better activity than RCB20 against the adult and muscle larvae phase of Trichinella spiralis.  相似文献   

15.
Efavirenz (EFV) is an oral antihuman immunodeficiency virus type 1 drug with extremely poor aqueous solubility. Thus, its gastrointestinal absorption is limited by the dissolution rate of the drug. The objective of this study was to characterize the inclusion complexes of EFV with β-cyclodextrin (β-CD), hydroxypropyl β-CD (HPβCD), and randomly methylated β-CD (RMβCD) to improve the solubility and dissolution of EFV. The inclusion complexation of EFV with cyclodextrins in the liquid state was characterized by phase solubility studies. The solid-state characterization of various EFV and CD systems was performed by X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy analyses. Dissolution studies were carried out in distilled water using US Pharmacopeia dissolution rate testing equipment. Phase solubility studies provided an AL-type solubility diagram for β-CD and AP-type solubility diagram for HPβCD and RMβCD. The phase solubility data enabled calculating stability constants (K s) for EFV-βCD, EFV-HPβCD, and EFV-RMβCD systems which were 288, 469, and 1,073 M−1, respectively. The physical and kneaded mixtures of EFV with CDs generally provided higher dissolution of EFV as expected. The dissolution of EFV was substantially higher with HPβCD and RMβCD inclusion complexes prepared by the freeze drying method. Thus, complexation with HPβCD and RMβCD could possibly improve the dissolution rate-limited absorption of EFV.  相似文献   

16.
Enantioselective host-guest complexation between five racemic Ru(II) trisdiimine complexes and eight derivatized cyclodextrins (CDs) has been examined by NMR techniques. The appearance of non-equivalent complexation-induced shifts of between the Δ and Λ-enantionomers of the Ru(II) trisdiimine complexes and derivatized CDs is readily observed by NMR. In particular, sulfobutyl ether-β-cyclodextrin sodium salt (SBE-β-CD), R-naphtylethyl carbamate β-cyclodextrin (RN-β-CD), and S-naphtylethyl carbamate β-cyclodextrin (SN-β-CD) showed good enantiodiscrimination for all five Ru complexes examined, which indicates that aromatic and anionic derivatizing groups are beneficial for chiral recognition. The complexation stoichiometry between SBE-β-CD and [Ru(phen)3]2+ was found to be 1:1 and binding constants reveal that Λ-[Ru(phen)3]2+ binds more strongly to SBE-β-CD than the Δ-enantiomer. Correlations between this NMR method and separative techniques based on CDs as chiral discriminating agents (i.e., selectors) are discussed in detail.  相似文献   

17.
We investigated the effects of various cyclodextrins (CDs) on the aqueous solubility and thermal stability of α-lipoic acid, a compound with low water solubility. α-CD, β-CD, and γ-CD had little effect on the aqueous solubility of α-lipoic acid. In contrast, 6-O-α-maltosyl-CDs increased it in a concentration-dependent manner, 6-O-α-maltosyl-β-CD enhancing solubility the most. The thermal stability of α-lipoic acid in the solid state was improved by the addition of G2-β-CD(?), a commercial product of 6-O-α-maltosyl-β-CD. The thermal stability of α-lipoic acid was also improved by the addition of β-CD. Analysis by differential scanning calorimetry showed that G2-β-CD(?), a mixture of maltosyl-β-CDs, and β-CD efficiently formed complexes with α-lipoic acid. These results suggest that the sizes and shapes of these β-CD compounds are compatible with complexation with α-lipoic acid. Moreover, both the formation of an aqueous complex with G2-β-CD(?) and an insoluble complex with β-CD increased the thermal stability of α-lipoic acid.  相似文献   

18.
In the present study we evaluated the complexation of daidzein/genistein/glycitein, present in an isoflavone enriched fraction (IEF), with β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin (HPβCD). Based on the increased solubility and higher complexation efficiency, IEF and HPβCD solid complexes were prepared by kneading, freeze-drying, co-evaporation, spray-drying and microwave. The solid complexes were characterized using Fourier transformed-infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, and nuclear magnetic resonance spectroscopy, and the isoflavone content and solubility were determined by liquid chromatography. The results suggest that the isoflavones daidzein, genistein and glycitein may be externally associated to HPβCD as well as that isoflavones/HPβCD inclusion complexes are formed through the insertion of B-ring into the cyclodextrin cavity. Except for the freeze-dried IEF/HPβCD solid complex, all complexes showed similar content and solubility. In conclusion, the three isoflavones showed to be able to simultaneously complex with HPβCD.  相似文献   

19.
Due to their size and high surface-to-volume ratio, nanogels can give some unique drug delivery opportunities. A novel technique to prepare cyclodextrin (CD) nanogels, in which the cross-linking takes place simultaneously with an emulsification/solvent evaporation process, has been implemented. The aqueous phase consisted of γ-cyclodextrin (γCD) or hydroxypropyl-β-cyclodextrin (HPβCD) at a fix concentration of 20% (w/w) with or without hydroxypropyl methylcellulose (HPMC) or agar at various concentrations. The incorporation of the cross-linking agent, ethyleneglycol diglycidyl ether (EGDE), was essential for the nanogel formation. By contrast, nanogels could be formed in the absence of surfactant such as Span 80, which can be attributed to the emulsion stabilizing effect of CDs by forming inclusion complexes with the organic solvent at the interface. Gas chromatography-mass spectrometry (GC-MS) analysis of the nanogels confirmed that dichloromethane levels were below the safety limit and, therefore, that these conditions of the organic solvent evaporation (60 °C for 180 min) led to nanogels that satisfy residual solvent requirements. Infrared analysis (IR), transmission electron microscopy (TEM) and dynamic light scattering (DLS) provided information about the cross-linking degree, the size and the size distribution of the nanogels. The ability of the nanogels to host a molecule that can form inclusion complexes and to sustain its release was tested using 3-methylbenzoic acid (3-MBA) as a probe with a high affinity for both β-cyclodextrin (βCD) and γCD. Permeability tests confirmed that 3-MBA was indeed taken up by the nanogels and then slowly released.  相似文献   

20.
The decomposition of allyl isothiocyanate (AITC) in an aqueous solution was depressed in the presence of cyclodextrin (CD), it's suppression effect increasing in the order of none < beta-CD < alpha-CD. The results of kinetic and thermodynamic analysis of the CD-AITC inclusion complexes showed that the inclusion process was mostly governed by an enthalpy change (delta H degree) rather than by an entrophy change (delta S degree), and that Van der Waals forces played a primary role int he inclusion. Steric factors were important for the reaction activity of AITC inclusion into the CD cavity, especially significant being the stereospecificity between the size of the CD cavity and the AITC molecule which is the main factor concerning it's activity. Our results suggest that the association stability and activity of the included AITC molecule are important factors in the suppression mechanism for CDs. Therefore, both these factors would make an alpha-CD-AITC system more advantageous than a beta-CD-AITC system, and the marked suppression effect of alpha-CD on the decomposition of AITC can be attributed to the formation of inclusion complexes in an aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号