首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this investigation was to study the effect of different levels of chemical fertilizers alone and in combination with farmyard manure and lime on growth, nitrogen fixation, yield and kernel quality of peanut in an acid lateritic soil. Five fertilization levels viz., no chemical fertilizer (CF) (F0), CF @ 20:40:30 (F1), CF @ 40:80:60 (F2) kg ha(-1) NPK, F1 +2.5 t ha(-1) FYM (F3) and F2 +5 t ha(-1) FYM (F4) with and without liming (2 t ha(-1)) were tested. Results revealed that integrated application of FYM+CF at F3 level significantly (P0.05) improved the nitrogen content of nodules (12.4%), kernel yield (19.3%), mineral composition, oil content (4.8%), protein content (28.2%) and hydration coefficient (11.6%) of kernels over sole CF at F1 level. Maximum level of CF or FYM+CF though improved the population of symbiotic nitrogen fixing bacteria in the peanut rhizosphere, however, could not improve nitrogen fixation, yield and kernel quality.  相似文献   

2.
Two-year field experiments were conducted to evaluate the effect of fertilizer with or without farmyard manure (FYM) application on cotton productivity and fibre quality. A partial nutrient balance was calculated by the difference method (nutrient applied--crop removal). Seed cotton yield was improved with addition of FYM (5 Mg ha(-1)). Application of both N and P resulted in significant improvements in seed cotton yield than the control and without N plots (PK). Uniformity ratio and ginning outturn (GOT) was greater in the FYM amended plots than the plots without FYM. Nitrogen and P balance was positive in the fertilizer-N and P applied plots whereas K balance was negative in spite of the addition of fertilizer-K. Potassium balance was positive only when FYM was applied. These studies suggest that it is advantageous to apply FYM as it improves fibre yield by way of improved GOT and maintains a positive nutrient balance.  相似文献   

3.
A pot experiment was conducted in the green house to investigate the establishment of phosphate solubilizing strains of Azotobacter chroococcum, including soil isolates and their mutants, in the rhizosphere and their effect on growth parameters and root biomass of three genetically divergent wheat cultivars (Triticum aestivum L.). Five fertilizer treatments were performed: Control, 90 kg N ha(-1), 90 kg N + 60 kg P2O5 ha(-1), 120 kg N ha(-1) and 120 kg N + 60 kg P2O5 ha(-1). Phosphate solubilizing and phytohormone producing parent soil isolates and mutant strains of A. chroococcum were isolated and selected by an enrichment method. In vitro phosphate solubilization and growth hormone production by mutant strains was increased compared with soil isolates. Seed inoculation of wheat varieties with P solubilizing and phytohormone producing A. chroococcum showed better response compared with controls. Mutant strains of A. chroococcum showed higher increase in grain (12.6%) and straw (11.4%) yield over control and their survival (12-14%) in the rhizosphere as compared to their parent soil isolate (P4). Mutant strain M37 performed better in all three varieties in terms of increase in grain yield (14.0%) and root biomass (11.4%) over control.  相似文献   

4.
A bacterium, isolated from contaminated soils around a chemical factory and named strain DSP3 was capable of biodegrading both chlorpyrifos and 3,5,6-trichloro-2-pyridinol. Based on the results of phenotypic features, phylogenetic similarity of 16S rRNA gene sequences, DNA G+C content, and DNA homology between strain DSP3 and reference strains, strain DSP3 was identified as Alcaligenes faecalis. Chlorpyrifos was utilized as the sole source of carbon and phosphorus by strain DSP3. We examined the role of strain DSP3 in the degradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol under different culture conditions. Parathion and diazinon could also be degraded by strain DSP3 when provided as the sole sources of carbon and phosphorus. An addition of strain DSP3 (10(8)cells g(-1)) to soil with chlorpyrifos (100 mg kg(-1)) resulted in a higher degradation rate than the one obtained from non-inoculated soils. Different degradation rates of chlorpyrifos in six types of treated soils suggested that soils used for cabbage growing in combination with inoculation of strain DSP3 showed enhanced microbial degradation of chlorpyrifos.  相似文献   

5.
《Fungal biology》2019,123(6):481-488
Maize plants infected by Ustilago maydis develop galls known as “cuitlacoche”, a food product appreciated in the Mexican gastronomy. The virulence of different U. maydis isolates was assessed, as well as the development of the infection on one commercial maize variety. Sporidia were isolated of wild galls collected in Mexico. Sexual compatibility patterns were determined using the Fuzz reaction, showing a 1:1:1:1 segregation of mating type specificities. Ten U. maydis compatible strains were selected on the basis of their virulence, namely: four wild-type compatible sporidia, one multi-teliosporic strain, two hybrids between wild-type and tester strains, and three tester strains. Maize plants of a commercial hybrid (Tornado XR) were inoculated with these strains of U. maydis, using a randomized complete block experimental design. Phenological and phenotypic characteristics of plants, as well as production, quality and sensory attributes of the resulting galls, were evaluated. Greater yields of galls were recorded in tester strains (incidence >90 %, severity >80 %, productivity >12 t/ha), a hybrid strain (EM1-6 × FB1) [incidence 82.6 %, severity 51.8 %, productivity 5.6 t/ha] and a wild-type strain (EM4-10 × EM2-4) [incidence 68.2 %, severity 44.0 %, productivity 4.8 t/ha]. Wild-type strains showed better flavor, characterized by less bitterness and acidity, but prevailing sweet, umami and maize flavor.  相似文献   

6.
Actinobacteria from special habitats are of interest due to their producing of bioactive compounds and diverse ecological functions. However, little is known of the diversity and functional traits of actinobacteria inhabiting coastal salt marsh soils. We assessed actinobacterial diversity from eight coastal salt marsh rhizosphere soils from Jiangsu Province, China, using culture-based and 16S rRNA gene high throughput sequencing (HTS) methods, in addition to evaluating their plant growth-promoting (PGP) traits of isolates. Actinobacterial sequences represented 2.8%–43.0% of rhizosphere bacterial communities, as determined by HTS technique. The actinobacteria community comprised 34 families and 79 genera. In addition, 196 actinobacterial isolates were obtained, of which 92 representative isolates were selected for further 16S rRNA gene sequencing and phylogenetic analysis. The 92 strains comprised seven suborders, 12 families, and 20 genera that included several potential novel species. All representative strains were tested for their ability of producing indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate deaminase (ACCD), hydrolytic enzymes, and phosphate solubilization. Based on the presence of multiple PGP traits, two strains, Streptomyces sp. KLBMP S0051 and Micromonospora sp. KLBMP S0019 were selected for inoculation of wheat seeds grown under salt stress. Both strains promoted seed germination, and KLBMP S0019 significantly enhanced seedling growth under NaCl stress. Our study demonstrates that coastal salt marsh rhizosphere soils harbor a diverse reservoir of actinobacteria that are potential resources for the discovery of novel species and functions. Moreover, several of the isolates identified here are good candidates as PGP bacteria that may contribute to plant adaptions to saline soils.  相似文献   

7.
Soil nitrogen mineralization potential (N min) has to be spatially quantified to enable farmers to vary N fertilizer rates, optimize crop yields, and minimize N transfer from soils to the environment. The study objectives were to assess the spatial variability in soil N min potential based on clay and organic matter (OM) contents and the impact of grouping soils using these criteria on corn grain (Zea mays L.) yield, N uptake response curves to N fertilizer, and soil residual N. Four indicators were used: OM content and three equations involving OM and clay content. The study was conducted on a 15-ha field near Montreal, Quebec, Canada. In the spring 2000, soil samples (n = 150) were collected on a 30- x 30-m grid and six rates of N fertilizer (0 to 250 kg N ha(-1)) were applied. Kriged maps of particle size showed areas of clay, clay loam, and fine sandy loam soils. The N min indicators were spatially structured but soil nitrate (NO3-) was not. The N fertilizer rate to reach maximum grain yield (N max), as estimated by a quadratic model, varied among textural classes and Nmin indicators, and ranged from 159 to 250 kg N ha(-1). The proportion of variability (R2) and the standard error of the estimate (SE) varied among textural groups and N min indicators. The R2 ranged from 0.53 to 0.91 and the SE from 0.13 to 1.62. Corn grain N uptake was significantly affected by N fertilizer and the pattern of response differed with soil texture. For the 50 kg N ha(-1) rate, the apparent N min potential (ANM) was significantly larger in the clay loam (122 kg ha(-1)) than in the fine sandy loam (80 kg ha(-1)) or clay (64 kg ha(-1)) soils. The fall soil residual N was not affected by N fertlizer inputs. Textural classes can be used to predict N max. The N min indicators may also assist the variable rate N fertilizer inputs for corn production.  相似文献   

8.
A field experiment with groundnut as test crop was conducted to evaluate the manurial potential of three distillery effluents: raw spent wash (RSW), biomethanated spent wash (BSW) and lagoon sludge (LS) vis-à-vis recommended fertilizers (NPK + farm yard manure (FYM)) and a control (no fertilizer or distillery effluent). It was found that all the three distillery effluents increased total chlorophyll content, crop growth rate (CGR), total dry matter, nutrient uptake (N, P and K) and finally seed yield compared to the control but inhibited nodulation and decreased nitrogen fixation. Among the three distillery effluents, BSW produced the highest seed yield (619 kg ha(-1)) twice that of control (3.10 kg ha(-1)), followed by RSW (557 kg ha(-1)) and LS (472 kg ha(-1)). However, the distillery effluents did not influence protein and oil contents. It was concluded that these distillery effluents because of their high manurial potential could supply nutrients, particularly potassium, nitrogen and sulphur, to the crops and thus reduce the fertilizer requirement of crops. Nevertheless, the crop performance and yield with three distillery effluents were overall less than that produced by recommended NPK + FYM probably on account of failure of the effluents to supply balanced nutrition to the plants for achieving their potential growth capacity.  相似文献   

9.
Three bacterial strains capable of degrading atrazine were isolated from Manfredi soils (Argentine) using enrichment culture techniques. These soils were used to grow corn and were treated with atrazine for weed control during 3 years. The strains were nonmotile Gram-positive bacilli which formed cleared zones on atrazine solid medium, and the 16S rDNA sequences indicated that they were Arthrobacter sp. strains. The atrazine-degrading activity of the isolates was characterized by the ability to grow with atrazine as the sole nitrogen source, the concomitant herbicide disappearance, and the chloride release. The atrazine-degrader strain Pseudomonas sp. ADP was used for comparative purposes. According to the results, all of the isolates used atrazine as sole source of nitrogen, and sucrose and sodium citrate as the carbon sources for growth. HPLC analyses confirmed herbicide clearance. PCR analysis revealed the presence of the atrazine catabolic genes trzN, atzB, and atzC. The results of this work lead to a better understanding of microbial degradation activity in order to consider the potential application of the isolated strains in bioremediation of atrazine-polluted agricultural soils in Argentina.  相似文献   

10.
An understanding of the dynamics of soil organic carbon (SOC) as affected by farming practices is imperative for maintaining soil productivity and mitigating global warming. Results of a long-term (32 years) experiment in the Indian Himalayas under rainfed soybean (Glycine max L.)- wheat (Triticum aestivum L.) rotation was analyzed to determine the effects of mineral fertilizer and farmyard manure (FYM) application at 10 Mg?ha-1 on SOC stocks and depth distribution of the labile and recalcitrant pools of SOC. Results indicate all treatments increased SOC contents over the control. The annual application of NPK significantly (P?<?0.05) enhanced total SOC, oxidizable soil organic C and its fractions over the control plots. The increase in these SOC fractions was greater with the NPK + FYM treatment. Nearly 16% (mean of all treatments) of the estimated added C was stabilized into SOC both in the labile and recalcitrant pools, preferentially in the 0?C30 cm soil layer. However, the labile:recalcitrant SOC ratios of applied C stabilized was largest in the 15?C30 cm soil layer. About 62% of total SOC was present in the labile pool. Plots under the N + FYM and NPK + FYM treatments contained a larger proportion of total SOC in the recalcitrant pool than the plots with mineral or no fertilizer, indicating that FYM application promoted SOC stabilization.  相似文献   

11.

Background and aims

Many plant growth-promoting endophytes (PGPE) possessing 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity can reduce the level of stress ethylene and assist their host plants cope with various biotic and abiotic stresses. However, information about the endophytic bacteria colonizing in the coastal halophytes is still very scarce. This study aims at isolating efficient ACC deaminase-producing plant growth-promoting (PGP) bacterial strains from the inner tissues of a traditional Chinese folk medicine Limonium sinense (Girard) Kuntze, a halophyte which has high economic and medicinal values grown in the coastal saline soils. Their PGP activity and effects on host seed germination and seedling growth under salinity stress were also evaluated.

Methods

A total of 126 isolates were obtained from the surface sterilized roots, stems and leaves of L. sinense (Girard) Kuntze. They were initially selected for their ability to produce ACC deaminase as well as other PGP properties such as production of indole-3-acetic acid (IAA), N2-fixation, and phosphate-solubilizing activities and subsequently identified by the 16S rRNA gene sequencing. For selected strains, seed germination, seedling growth, and flavonoids production in axenically growth L. sinense (Girard) Kuntze seedlings at different NaCl concentrations (0–500 mM) were quantified.

Results

Thirteen isolates possessing ACC deaminase activity were obtained. The 16S rRNA gene sequencing analysis showed them to belong to eight genera: Bacillus, Pseudomonas, Klebsiella, Serratia, Arthrobacter, Streptomyces, Isoptericola, and Microbacterium. Inoculation with four of the selected ACC deaminase-producing strains not only stimulated the growth of the host plant but also influenced the flavonoids accumulation. All four strains could colonize and can be re-isolated from the host plant interior tissues.

Conclusions

These results demonstrate that ACC deaminase-producing habitat-adapted symbiotic bacteria isolated from halophyte could enhance plant growth under saline stress conditions and the PGPE strains could be appropriate as bioinoculants to enhance soil fertility and protect the plants against salt stress.  相似文献   

12.
The use of Rhizobium inoculant for groundnut is a common practice in India. Also, co-inoculation of Rhizobium with other plant growth-promoting bacteria received considerable attention in legume growth promotion. Hence, in the present study we investigated effects of co-inoculating the sulfur (S)-oxidizing bacterial strains with Rhizobium, a strain that had no S-oxidizing potential in groundnut. Chemolithotrophic S-oxidizing bacterial isolates from different sources by enrichment isolation technique included three autotrophic (LCH, SWA5 and SWA4) and one heterotrophic (SGA6) strains. All the four isolates decreased the pH of the growth medium through oxidation of elemental S to sulfuric acid. Characterization revealed that these isolates tentatively placed into the genus Thiobacillus. Clay-based pellet formulation (2.5 x 10(7) cf ug(-1) pellet) of the Thiobacillus strains were developed and their efficiency to promote plant growth was tested in groundnut under pot culture and field conditions with S-deficit soil. Experiments in pot culture yielded promising results on groundnut increasing the plant biomass, nodule number and dry weight, and pod yield. Co-inoculation of Thiobacillus sp. strain LCH (applied at 60 kg ha(-1)) with Rhizobium under field condition recorded significantly higher nodule number, nodule dry weight and plant biomass 136.9 plant(-1), 740.0mg plant(-1) and 15.0 g plant(-1), respectively, on 80 days after sowing and enhanced the pod yield by 18%. Also inoculation of S-oxidizing bacteria increased the soil available S from 7.4 to 8.43 kg ha(-1). These results suggest that inoculation of S-oxidizing bacteria along with rhizobia results in synergistic interactions promoting the yield and oil content of groundnut, in S-deficit soils.  相似文献   

13.
溶磷真菌的筛选及耐盐特性分析   总被引:1,自引:0,他引:1  
【背景】土壤盐渍化已成为影响土壤质量和作物产量的重要因素之一,利用微生物改良盐渍化土壤是既经济又环保的方法。【目的】从不同土壤样品和生物肥料中筛选溶磷能力较强的真菌并讨论其耐盐能力,为盐渍化土壤改良提供菌种资源。【方法】采用平板培养法筛选有一定溶磷能力的真菌,经ITS序列分析初步确定菌株的分类地位。以溶磷能力为考察指标,以NaCl梯度和磷酸钙梯度为考察因素,分析不同菌株利用无机磷源的能力,以及溶磷能力与pH的关系。【结果】共筛选得到16株具有较强溶磷能力的真菌,其中4株真菌对水稻发芽有显著的促进作用,它们是1株长枝木霉(MF-1)和3株踝节菌属菌株(SD-2、XJ-7和HLJ-3)。菌株SD-2和XJ-7生长的耐盐能力显著好于菌株MF-1和HLJ-3。当NaCl浓度为5%时,菌株XJ-7的溶磷能力最好,溶磷率可达9.50%;当NaCl浓度为1%时,菌株HLJ-3的溶磷能力较好,溶磷率为6.93%;当NaCl浓度为0时,菌株SD-2和MF-1的溶磷能力较强,溶磷率分别为9.07%和3.73%。进一步研究发现踝节菌属真菌的溶磷能力与菌液pH呈显著负相关关系。【结论】筛选获得的4株真菌其溶磷能力在不同盐环境中有显著差异,为今后土壤改良和生物肥料中菌种的选择提供理论依据和试验基础。  相似文献   

14.
The study was carried out in a long-term fertilization field experiment of the Experimental Station of University of Pannonia, Department of Crop Science and Soil Science in 2006. The Long-term fertilization experiment was set up in 1983. In the experiment, the success of the weeds ability to grow under the influence of NPK, NPK + FYM* and NPK + straw treatments was compared, and the effect of increasing Nitrogen dosing on weediness was studied. The bifactorial test was arranged in split plot design with three replications. Treatment A: nutrient: NPK, NPK + 35 t/ha FYM* and NPK + straw manure. Treatment B: N kg/ha(-1) N0-N4 (0, 70, 140, 210, 280), and 100 kg P2O5 ha(-1) & 100 kg K20. The weed survey was made on 2nd of May 2006. There were spraying no herbicide until the survey. For the weed survey the Balázs-Ujvárosi coenological method was applied. Altogether, we have found 23 weed species in the trial. In the NPK treatment there were 20 species, in the treatment NPK+organic manure there were 17 species and in the NPK+ stalk rest treatment there were 16 weed species. The most dominant of the weeds on the NPK and NPK+straw manure treatments was Veronica hederifolia while on the fertilizer + FYM, the A. theophrasti was most dominant. The average weed covering value of the treatment NPK + FYM was 1.36 times higher (10.87%) than that of treatment NPK only (7.97%) and 3.65 times higher than on the NPK + straw manure treatment.  相似文献   

15.
Fifteen bacterial strains capable of utilizing naphthalene, phenanthrene, and biphenyl as the sole sources of carbon and energy were isolated from soils and bottom sediments contaminated with waste products generated by chemical and salt producing plants. Based on cultural, morphological, and chemotaxonomic characteristics, ten of these strains were identified as belonging to the genera Rhodococcus, Arthrobacter, Bacillus, and Pseudomonas. All ten strains were found to be halotolerant bacteria capable of growing in nutrient-rich media at NaCl concentrations of 1-1.5 M. With naphthalene as the sole source of carbon and energy, the strains could grow in a mineral medium with 1 M NaCl. Apart from being able to grow on naphthalene, six of the ten strains were able to grow on phenanthrene; three strains, on biphenyl; three strains, on octane; and one strain, on phenol. All of the strains were plasmid-bearing. The plasmids of the Pseudomonas sp. strains SN11, SN101, and G51 are conjugative, contain genes responsible for the degradation of naphthalene and salicylate, and are characterized by the same restriction fragment maps. The transconjugants that gained the plasmid from strain SN11 acquired the ability to grow at elevated NaCl concentrations. Microbial associations isolated from the same samples were able to grow at a NaCl concentration of 2.5 M.  相似文献   

16.
In a combined approach of phenotypic and genotypic characterization, 28 indigenous rhizobial isolates obtained from different chickpea growing regions in peninsular and northern India were analyzed for diversity. The field isolates were compared to two reference strains TAL620 and UPM-Ca142 representing M. ciceri and M. mediterraneum respectively. Phenotypic markers such as resistance to antibiotics, tolerance to salinity, temperature, pH, phosphate solubilization ability, growth rate and also symbiotic efficiency showed considerable diversity among rhizobial isolates. Their phenotypic patterns showed adaptations of rhizobial isolates to abiotic stresses such as heat and salinity. Two salt tolerant strains (1.5% NaCl by T1 and T4) with relatively high symbiotic efficiency and two P-solubilising strains (66.7 and 71 microg/ml by T2 and T5) were identified as potential bioinoculants. Molecular profiling by 16S ribosomal DNA Restriction Fragment Length Polymorphism (RFLP) revealed three clusters at 67% similarity level. Further, the isolates were differentiated at intraspecific level by 16S rRNA gene phylogeny. Results assigned all the chickpea rhizobial field isolates to belong to three different species of Mesorhizobium genus. 46% of the isolates grouped with Mesorhizobium loti and the rest were identified as M. ciceri and M. mediterraneum, the two species which have been formerly described as specific chickpea symbionts. This is the first report on characterization of chickpea nodulating rhizobia covering soils of both northern and peninsular India. The collection of isolates, diverse in terms of species and symbiotic effectiveness holds a vast pool of genetic material which can be effectively used to yield superior inoculant strains.  相似文献   

17.
Four bacterial strains were isolated from soils at nickel-contaminated sites based on their ability to utilize 1-aminocyclopropane-1-carboxylate (ACC) as a sole source of nitrogen. The four isolates were all identified as Pseudomonas putida Biovar B, and subsequent testing revealed that they all exhibited traits previously associated with plant growth promotion (i.e., indoleacetic acid and siderophore production and ACC deaminase activity). These four strains were also tolerant of nickel concentrations of up to 13.2 mM in the culture medium. The strain, HS-2, selected for further characterization, was used in pot experiments to inoculate both nontransformed and transgenic canola plants (expressing a bacterial ACC deaminase gene in its roots). Plants inoculated with the HS-2 strain produced an increase in plant biomass as well as in nickel (Ni) uptake by shoots and roots. The results suggest that this strain is a potential candidate to be used as an inoculant in both phytoremediation protocols and in plant growth promotion.  相似文献   

18.
Diversity of the Bacillus thuringiensis (Bt) in the rice field soils of different ecologies viz. the island (Port Blair), the Himalayan (Srinagar), brackish water (Mahe) and coastal mesophilic (Mangalore) habitats was analyzed by phenotypic characterization of 5, 66, 14 and 54 Bt isolates, respectively. The Bt isolates produced either monotypic (bipyramidal or spherical) or heterotypic (polymorphic-bipyramidal or bipyramidal-rhomboidal) crystals. The organisms were generally resistant to the penicillin group of antibiotics, tolerated 5–12% NaCl and 0.5M Na-acetate. The Bt isolates contained 1–5 plasmids of 0.89–58.61 kbp sizes. The plasmid profiles had no correlation with crystal morphology or salt tolerance of different bacteria. Each soil was inhabited by different types of Bt. Two Bt strains of Mangalore and one strain each of the other places were phenotypically similar. One Bt strain each of Port Blair and Srinagar was different from all other strains.  相似文献   

19.
In this study, we tried to isolate legionellae from nine Legionella DNA-positive soil samples collected from four different sites contaminated with industrial wastes in Japan. Using culture methods with or without Acanthamoeba culbertsoni, a total of 22 isolates of legionellae were obtained from five of the nine samples. Identification of species and/or serogroups (SGs), performed by DNA-DNA hybridization and agglutination tests, revealed that the 22 isolates consisted of ten isolates of Legionella pneumophila including five SGs, five Legionella feeleii, and one each of Legionella dumoffii, Legionella longbeachae, and Legionella jamestownensis. The species of the remaining four isolates (strains OA1-1, -2, -3, and -4) could not be determined, suggesting that these isolates may belong to new species. The 16S rDNA sequences (1476-1488bp) of the isolates had similarities of less than 95.0% compared to other Legionella species. A phylogenetic tree created by analysis of the 16S rRNA (1270bp) genes demonstrated that the isolates formed distinct clusters within the genus Legionella. Quantitative DNA-DNA hybridization tests on the OA1 strains indicated that OA1-1 should be categorized as a new taxon, whereas OA1-2, -3, and -4 were also genetically independent in another taxon. Based on the evaluated phenotypic and phylogenetic characteristics, it is proposed that one of these isolates from the soils, OA1-1, be classified as a novel species, Legionella impletisoli sp. nov.; the type strain is strain OA1-1(T) (=JCM 13919(T)=DSMZ 18493(T)). The remaining three isolates belong to another novel Legionella species, Legionella yabuuchiae sp. nov.; the type strain is strain OA1-2(T) (=JCM 14148(T)=DSMZ 18492(T)). This is the first report on the isolation of legionellae from soils contaminated with industrial wastes.  相似文献   

20.
Restoration of soil organic carbon (SOC) in arable lands represents potential sink for atmospheric CO2. The strategies for restoration of SOC include the appropriate land use management, cropping sequence, fertilizer and organic manures application. To achieve this goal, the dynamics of SOC and nitrogen (N) in soils needs to be better understood for which the long-term experiments are an important tool. A study was thus conducted to determine SOC and nitrogen dynamics in a long-term experiment in relation to inorganic, integrated and organic fertilizer application in rice-cowpea system on a sandy loam soil (Typic Rhodualf). The fertilizer treatments during rice included (i) 100% N (@ 100 kg N ha?1), (ii) 100% NP (100 kg N and 50 kg P2O5 ha?1), (iii) 100% NPK (100 kg N, 50 kg P2O5 and 50 kg K2O ha?1) as inorganic fertilizers, (iv) 50% NPK + 50% farm yard manure (FYM) (@ 5 t ha?1) and (v) FYM alone @ 10 t ha?1 compared with (vi) control treatment i.e. without any fertilization. The N alone or N and P did not have any significant effect on soil carbon and nitrogen. The light fraction carbon was 53% higher in NPK + FYM plots and 56% higher in FYM plots than in control plots, in comparison to 30% increase with inorganic fertilizers alone. The microbial biomass carbon and water-soluble carbon were relatively higher both in FYM or NPK + FYM plots. The clay fraction had highest concentration of C and N followed by silt, fine sand and coarse sand fractions in both surface (0–15 cm) and subsurface soil layers (15–30 cm). The C:N ratio was lowest in the clay fraction and increased with increase in particle size. The C and N enrichment ratio was highest for the clay fraction followed by silt and both the sand fractions. Relative decrease in enrichment ratio of clay in treatments receiving NPK and or FYM indicates comparatively greater accumulation of C and N in soil fractions other than clay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号