首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 294 毫秒
1.
A design method of a micron-focusing plasmonic lens is proposed, which consists of a nanoaperture surrounded by concentric annular grooves with fixed width and depth. The phase modulation of the radiation lights decoupled from surface plasmon polariton waves by the annular grooves is realized by altering the radii of the grooves. Based on the principle of the constructive interference, a design formula of a micron-focusing plasmonic lens is deduced. The transmitted fields through the designed plasmonic lenses are numerically simulated with finite-difference time-domain method, and the results show that a circular focusing spot is generated where the focal length can be controlled in several micrometers, which agree with our theoretical analysis.  相似文献   

2.
In this paper, we study the nanoscale-focusing effect in the far field for a spiral plasmonic lens with a concentric annular groove by using finite-difference time domain simulation. The simulation result demonstrates that a left-hand spiral plasmonic lens can concentrate an incident right-hand circular polarization light into a focal spot at the exit surface. And this spot can be focused into far field due to constructive interference of the scattered light by the annular groove. The focal length and the focal depth can be adjusted by changing the groove radius and number of grooves within a certain range. These properties make it possible to probe the signal of spiral plasmonic lens in far field by using conventional optical devices.  相似文献   

3.
In this paper, we propose a new far-field nanofocusing lens with elongated depth of focus (DOF) under near-infrared (NIR) wavelength. The surface plasmons can be excited by using the hybrid metal–insulator–metal (MIM) subwavelength structure under the NIR wavelength. The constructive interference of surface plasmons launched by the subwavelength MIM structure can form a nanoscale focus that is modulated by the novel metal grating from the near field to the far field. The numerical simulations demonstrated that a nanoscale focal spot (in plane focal area 0.177λ 2) with elongated DOF (3.358λ) and long focal length (5.084λ) can be realized with reasonably designing parameters of the lens. By controlling the positions of the inner radii of each slit ring and the grating width, the focal length, focal spot, and DOF can be tuned easily. This design method, which can obtain the nanoscale focal spot and micron DOF in far field under NIR illumination, paved the road for utilizing the NIR plasmonic lens in superresolution optical microscopic imaging, optical trapping, biosensing, and complex wavefront/beam shaper.  相似文献   

4.
An Integrated Multistage Nanofocusing System   总被引:1,自引:0,他引:1  
We demonstrate an integrated multistage nanofocusing system which combines a conventional objective, a surface plasmonic lens, and a center-positioned rounded-tip cone nanoparticle. The surface plasmonic lens, fabricated on the cover glass which has been mounted on the biological microscopic objective, is composed of several concentric annular slits for exciting propagating surface plasmonic wave. The rounded-tip cone nanoparticle is for further generating non-propagating localized surface plasmonic wave. It is revealed that the enhancement of the nanoscale optical field can be improved by carefully choosing the appropriate numerical aperture of the objective to match the specific nanostructure of the surface plasmonic lens and choosing the relatively big cone angle of the nanoparticle. The investigation shows that a highly confined electric field as small as 20 nm and an enhancement factor of 5 orders of magnitude can be achieved through this multistage nanofocusing system when the system is illuminated with a uniform radially polarized beam.  相似文献   

5.
Cheng  Lin  Cao  Pengfei  Li  Yuee  Kong  Weijie  Zhao  Xining  Zhang  Xiaoping 《Plasmonics (Norwell, Mass.)》2012,7(1):175-184
We design a new nanofocusing lens for far-field practical applications. The constructively interference of cylindrical surface plasmon launched by the subwavelength metallic structure can form a subdiffraction-limited focus, which is modulated by the dielectric grating from the near field to the far field. The principle of designing such a far-field nanofocusing lens is elucidated in details. The numerical simulations demonstrated that nanoscale focal spot (0.12λ 2) can be realized with 3.6λ in depth of focus and 4.5λ in focal length by reasonably designing parameters of the grating. The focusing efficiency can be 7.335, which is much higher than that of plasmonic microzone plate-like lenses. A blocking chip can enhance the focusing efficiency further as the reflected waves at the entrance would be recollected at the focus. By controlling the number of the grooves in the grating, the focal length can be tuned easily. This design method paved the road for utilizing the plasmonic lens in high-density optical storage, nanolithography, superresolution optical microscopic imaging, optical measurement, and sensing.  相似文献   

6.
A multiple-wavelength focusing and demultiplexing plasmonic lens based on asymmetric nanoslit arrays is designed. The nanoslit arrays are perforated in a gold film and act as metal–insulator–metal plasmonic waveguides. By manipulating the widths of the slit arrays, the plasmonic lens can concentrate two incident plane wave beams to two separated focal points corresponding to their wavelengths. The full wave simulation is performed to verify the designed lens. This work provides a way to design more compact and integrated wavelength-division multiplexing plasmonic devices for nanophotonic communication and spectral imaging.  相似文献   

7.
We present theoretical studies of three regions for plasmonic focusing, which are surface plasmon-dominating, Fresnel, and Fraunhoffer regions. The boundaries of the three regions are defined and the physical behaviors of plasmonic lenses in terms of focal length and focus size in these regions are investigated. A plasmonic lens that renders a subdiffraction-limit focus in the Fresnel region is presented and the lens performance with respect to the design parameters is studied by using finite-difference time-domain simulations. This work can serve as a basis for understanding plasmonic-focusing phenomenon and designing plasmonic lenses for various applications.  相似文献   

8.
A plasmonic lens with variant periods was investigated for optical behavior at near-field by means of numerical computational method. To study influence of incident light on different polarization modes, we considered linear polarization, circular polarization, elliptical polarization, radial polarization (RP), and azimuthally polarization in our computational analyses. A finite difference and time domain algorithm is employed in the numerical study. Our computational numerical calculation results demonstrate that focusing performance for the plasmonic lens illuminated under radial polarization is best in comparison to that of the illumination with the other four polarization states. The plasmonic lens with RP illumination can realize superfocusing with ultra-long depth of focus. It is possible to be used as an optical probe or a type of plasmonic lens for imaging with high resolution in the near future.  相似文献   

9.
A compact plasmonic lens is proposed in this paper. This plasmonic lens consists of rectangular holes etched on the silver film and arranged on one straight line and possesses the characteristics of short focus length, ultrathin thickness, and strong focus ability. The theoretical design for the plasmonic lens abides by the constructive interference theorem, and the surface plasmon polaritons excited by the holes with linearly polarized light illumination focuses effectively. The plasmonic lenses with single and double focus spots are provided, and the simulation experiment gives the powerful verification. The distinct structure feature and the excellent focusing characteristic of this plasmonic lens are benefit for its applications in optical integration.  相似文献   

10.
A 1D plasmonic zone plate lens (PZPL) consisting of nano-slits within a metal film introduces a phase delay distribution across the planar device surface by a modulation of the slit widths and positions to achieve light focusing. Using the finite-difference time-domain method, the number of zones is found to be a crucial factor for a well-controlled focal length, i.e. at least three zones are necessary for a PZPL exhibiting a focal length in agreement with the design. This conclusion is confirmed by confocal scanning optical microscopy on PZPLs patterned in an aluminium film. In addition, subwavelength light focusing is demonstrated both theoretically and experimentally in a PZPL. A larger PZPL, i.e. more zones, shows a higher resolution. A full full-width half-maximum of 0.37λ in the focal plane is shown theoretically in a PZPL with seven zones. A comparison between the PZPL and the plasmonic Fresnel zone plate shows that PZPLs have a higher contrast at the focus.  相似文献   

11.
An elliptical nano-pinhole structure-based plasmonic lens was designed and investigated experimentally by means of focused ion beam nanofabrication, atomic force microscope imaging, and scanning near-field optical microscope (NSOM). Two scan modes, tip scan and sample scan, were employed, respectively, in our NSOM measurements. Both the scan modes have their characteristics while probing the plasmonic lenses. Our experimental results demonstrated that the lens can realize subwavelength focusing with elongated depth of focus. This type of lens can be used in micro-systems such as micro-opto-electrical–mechanical systems for biosensing, subwavelength imaging, and data storage.  相似文献   

12.
Conventionally, plasmonic lenses introduce a phase delay distribution across their surfaces by modulating the dimensions of nanostructures within a metal film. However, there is very limited modulation of the phase delay due to the small dependence of the mode propagation constant on the structure dimensions. In this paper, a novel design of plasmonic zone plate lenses (PZPL) with both slit width and refractive index modulation is proposed to enable integrating more slits in a fixed lens aperture with the extended phase delay range and, therefore, greatly enhance the performance of the devices. More than three-time enhancement of the light intensity at the focus is achieved compared to the structure with only slit width modulation. Like a conventional immersion system, a PZPL embedded in a dielectric is found to have a further improved focusing performance, where light is focused down to a 0.44λ spot using a PZPL with an aperture of 12λ and a focal length of 6λ. Dispersive light-focusing behaviour is also analysed and the modulation of the focal length by colour has a potential application in stacked image sensors and multi-dimensional optical data storage.  相似文献   

13.
A polarization-controlled tunable plasmonic lens which can generate different multi-focal combinations with exciting sources of left and right circular polarizations is proposed in this paper. Both position and intensity of each focal point can be adjusted by modulating the structure of the plasmonic lens. It is believed that the polarization-controlled tunable plasmonic multi-focal lens can be potentially used for optical switches and multi-channel couplers in future logic photonic and plasmonic systems.  相似文献   

14.
We design and fabricate a nonplanar two-stage surface plasmonic lens composed of concentric circular slits for exciting propagating surface plasmonic wave and a center-positioned cone-like nanoparticle for generating localized surface plasmonic waves. The numerical investigation based on the finite difference in time domain method is performed. It is found that, when a radially polarized beam illumination is applied, a highly confined electric field with full width half maximum of as small as 6 nm and the transmission enhancement factor of six orders higher than the incident beam is achievable. The optimization design is conducted through comparison of different conic angles and different materials of the cone-like nanoparticles.  相似文献   

15.

This paper reports the excitation of surface plasmon polaritons (SPPs) and associated plasmonic band gap (PBG) while using TM plane wave interacting with 1D metallic grating on higher refractive index GaP substrate. A simple method is introduced to estimate the PBG which is crucial for many plasmonic devices. The PBG is estimated by measuring the transmission spectra obtained through the plasmonic grating structures when slit width is varied while periodicity and the thickness of the gold (Au) film remained fixed. The PBG is observed for the grating devices whose slit width is less than one third of the periodicity which is caused by the presence of a higher plasmonic mode. The PBG is absent for the grating device whose slit width is slightly less than half and greater than one third of the periodicity. Such grating devices support only a fundamental plasmonic mode because the profile/shape of the slit in the grating device is more like a sinusoidal nature. Furthermore, such grating offers intermediate scattering to the incident light and the SPP as well which in turn couple more incident energy to the SPPs. Far-field modelling results also support the results obtained through experiment.

  相似文献   

16.
In this paper, we investigate the focusing properties of a plasmonic lens with multiple-turn spiral nano-structures, and analyze its field enhancement effect based on the phase matching theory and finite-difference time-domain simulation. The simulation result demonstrates that a left-hand spiral plasmonic lens can concentrate an incident right-hand circular polarization light into a focal spot with a high focal depth. The intensity of the focal spot could be controlled by altering the number of turns, the radius and the width of the spiral slot. And the focal spot is smaller and has a higher intensity compared to the incident linearly polarized light. This design can also eliminate the requirement of centering the incident beam to the plasmonic lens, making it possible to be used in plasmonic lens array, optical data storage, detection, and other applications.  相似文献   

17.
A novel design method of focusing device with a desired focal length is proposed, which consists of a nanometal slit surrounded with the grooves with fixed width and depth. By numerical calculation and analytic derivation, a relation between the phases of the light scattering from slit and grooves and the groove positions is revealed. Under the linear approximation, a design formula of focusing device is deduced, from which the position parameters of the grooves can be easily obtained to modulate the phase of the scattering light. The transmitted field distribution through the illustrative structures designed according to the proposed method is simulated with finite-difference time-domain (FDTD) method. The results show a good agreement with the theoretical analysis, and that the focal length can be controlled in several micrometers distance away from the metal exit surface, which verifies the feasibility of the method to deign focus-controlled optical elements in wavelength scale in integrated optics.  相似文献   

18.

Although spiral plasmonic lens has been proposed as circular polarization analyzer, there is no such plasmonic nanostructure available for linear polarization. In the current work, we have designed nano-corral slits (NCS) plasmonic lens, which focuses the x- and y-polarized light into spatially distinguished plasmonic fields. We have calculated analytically and numerically the electric field intensity and phase of the emission from nano-corral slits plasmonic lens with different pitch lengths under various polarizations of the illumination. It has been shown that one can control the wave front of the output beam of these plasmonic lenses by manipulating the illumination of both circular and linear polarization. Our theoretical study in correlation with FDTD simulation has shown that NCS plasmonic lens with pitch length equal to λspp produces scalar vortex beam having optical complex fields with helical wave front and optical singularity at the center under circular polarization of light. When NCS lens (pitch = λspp) is illuminated with linearly polarized light, it exhibits binary distribution of phase with same electric field intensity around the center. However, with pitch length of 0.5λspp, NCS shows linear dichroism under linearly polarized illumination unlike spiral plasmonic lens (SPL) eliminating the use of circularly polarized light. Optical complex fields produced by these NCS plasmonic lenses may find applications for faster quantum computing, data storage, and telecommunications.

  相似文献   

19.
Three types of indirect phase tuning-based plasmonic structures with subwavelength circular grooves/slits and/or central apertures corrugated on Au film supported by glass substrate: depth modulation, width modulation, and hybrid depth-width modulation, were put forth in this paper. They were investigated experimentally by means of nanofabrication and near-filed scanning optical microscope characterization. The plasmonic structures were fabricated using the technique of focused ion beam direct milling. Our experimental results demonstrated that all of the phase tuning-based structures have focusing functions. Both the width and depth modulation-based structures can realize beam focusing and produce an elongated depth of focus. Moreover, after comparison among these three structures, we found that the width modulation-based structure has the best focusing performance.  相似文献   

20.
Tuning effect of different polarization states was presented in this paper. It can be realized by a plasmonic lens constructed with elliptical pinholes ranging from submicron to nanoscales distributed in variant period along radial direction. Propagation properties of the lens illuminated under four different polarization states: linear, elliptical, radial, and cylindrical vector beam, were calculated and analyzed combining with finite-difference time-domain algorithm. Different focusing performances of the lens were illustrated while the polarized light passes through the pinholes. Our calculation results demonstrate that polarization effect of the elliptical pinholes-based plasmonic lens can generate high transmission intensity and sharp focusing for our proposed specific structures. Beam focal region, position, and transmission intensity distribution can be tailored by the four polarization states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号