首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intimins are members of a family of bacterial adhesins from pathogenic Escherichia coli which specifically interact with diverse eukaryotic cell surface receptors. The EaeA intimin from enterohemorrhagic E. coli O157:H7 contains an N-terminal transporter domain, which resides in the bacterial outer membrane and promotes the translocation of four C-terminally attached passenger domains across the bacterial cell envelope. We investigated whether truncated EaeA intimin lacking two carboxy-terminal domains could be used as a translocator for heterologous passenger proteins. We found that a variant of the trypsin inhibitor Ecballium elaterium trypsin inhibitor II (EETI-II), interleukin 4, and the Bence-Jones protein REI(v) were displayed on the surface of E. coli K-12 via fusion to truncated intimin. Fusion protein net accumulation in the outer membrane could be regulated over a broad range by varying the cellular amount of suppressor tRNA that is necessary for translational readthrough at an amber codon residing within the truncated eaeA gene. Intimin-mediated adhesion of the bacterial cells to eukaryotic target cells could be mimicked by surface display of a short fibrinogen receptor binding peptide containing an arginine-glycine-aspartic acid sequence motif, which promoted binding of E. coli K-12 to human platelets. Cells displaying a particular epitope sequence fused to truncated intimin could be enriched 200,000-fold by immunofluorescence staining and fluorescence-activated cell sorting in three sorting rounds. These results demonstrate that truncated intimin can be used as an anchor protein that mediates the translocation of various passenger proteins through the cytoplasmic and outer membranes of E. coli and their exposure on the cell surface. Intimin display may prove a useful tool for future protein translocation studies with interesting biological and biotechnological ramifications.  相似文献   

2.
Na+, K+-ATPase beta2 subunit (NKA1b2) is not only a regulator of Na+, K+-ATPase, but also functions in the interaction between neuron and glia cells as a Ca2+-dependent adhesion molecule. To further study the function of NKA1b2, the anti-NKA1b2 polyclonal antibody was prepared to recognize the outer-membrane carboxyl portion segment of NKA1b2. The coding region for amino acids 190-290 at the carboxyl portion of NKA1b2 (NKA1b2-CP) was sub-cloned into the vector pGEX-4T-2 and introduced into the Escherichia coli BL21(DE3) cell for efficient soluble expression. The amino acid sequence of expressed protein was determined using mass spectrometry following Mascot analysis. After purification, GST-NKA-beta2-CP was used to immunize the adult rabbits following standard protocols. The produced antiserum could detect the NKA1b2 protein expressed not only in the prokaryotic cells (E. coli) but also in the eukaryotic cells (COS7) transfected with NKA1b2 expression vector (pEGFP-NKA1b2). Furthermore, the antiserum was used for determining the localization of NKA1b2 in primary culture of neonatal rat neurons using immunohistochemical technique. Results demonstrated that NKA1b2 was localized both in the cytoplasm and cellular membrane. The preparation of anti-NKA-beta2-CP polyclonal antibody will facilitate further functional study on NKA1b2.  相似文献   

3.
After fusion with the N-proximal portion of the outer membrane protein LamB, three beta-adrenergic receptors, the human beta 1- and beta 2- and turkey beta 1-adrenergic receptor, were expressed in Escherichia coli with retention of their own specific pharmacological properties. Molecular characterization and localization of the three receptors in bacteria and comparison of the behaviour of each hybrid protein are reported. The bacteria were lysed and fractionated on a sucrose gradient. Saturable [125I]iodocyanopindolol binding activity was found associated mainly with the inner membrane fraction, suggesting that the receptor is correctly folded in this membrane. Binding activity was also found in the outer membrane fraction but varied according to the receptor type. Photoaffinity labeling experiments revealed that the receptors exhibit binding activity only after proteolytic removal of the LamB moiety from the fusion protein. The three hybrid proteins, detected in immunoblots by anti-peptide antibodies, were found mainly in the outer membrane fraction. Each of them exhibited different susceptibility to intrinsic bacterial proteolytic enzymes; sites of proteolytic cleavage were localized by the use of anti-peptide antibodies. The functional expression in E. coli of three beta-adrenergic receptors with similar structure but different amino acid sequences suggests that this expression system may be a general feature among similar receptors of the family of G-protein-coupled receptors. The level of expressed binding activity of a given receptor will be within the control of proteolytic degradation processes, depending on the primary sequence of the receptor. Constructions of new hybrid proteins, in combination with expression in protease mutants of E. coli, should help in controlling such processes.  相似文献   

4.
For construction of bifunctionally active membrane-bound fusion proteins, we designed plasmids encoding fusion proteins in which the carboxyl terminus of Escherichia coli proline carrier was joined to the amino terminus of E. coli beta-galactosidase directly or with a collagen linker inserted between the two. The expressions of these fusion proteins complemented deficiencies in both proline transport and beta-galactosidase activity in E. coli cells. The fusion proteins were stable and mostly localized in the cytoplasmic membrane. The proline transport activities of the fusion proteins were kinetically similar to that of the wild type proline carrier. The beta-galactosidase moiety of the collagen-linked fusion protein was liberated from membrane vesicles by collagenase treatment. The Km value of released beta-galactosidase for o-nitrophenyl beta-D-galactopyranoside hydrolysis was similar to that of membrane-bound beta-galactosidase in the fusion protein. These results indicated that the fusion proteins are bifunctionally active and exhibit normal proline transport and beta-galactosidase activities. The crypticity of the beta-galactosidase activity associated with the fusion proteins indicated that the carboxyl terminus of the proline carrier was located on the cytoplasmic side of the membrane.  相似文献   

5.
β-lactamase as a probe of membrane protein assembly and protein export   总被引:6,自引:6,他引:0  
The enzyme TEM beta-lactamase constitutes a versatile gene-fusion marker for studies on membrane proteins and protein export in bacteria. The mature form of this normally periplasmic enzyme displays readily detectable and distinctly different phenotypes when localized to the bacterial cytoplasm versus the periplasm, and thus provides a useful alternative to alkaline phosphatase for probing the topology of cytoplasmic membrane proteins. Cells producing translocated forms of beta-lactamase can be directly selected as ampicillin-resistant colonies, and consequently a beta-lactamase fusion approach can be used for positive selection for export signals, and for rapid assessment of whether any protein expressed in Escherichia coli inserts into the bacterial cytoplasmic membrane. The level of ampicillin resistance conferred on a cell by an extracytoplasmic beta-lactamase derivative depends on its level of expression, and therefore a beta-lactamase fusion approach can be used to directly select for increased yields of any periplasmic or membrane-bound gene products expressed in E. coli.  相似文献   

6.
YddG is an inner membrane protein (IMP) that exports aromatic amino acids in Escherichia coli. Topology models of YddG produced by sequence-based analysis in silico have predicted the presence of 9 or 10 potential transmembrane segments. To experimentally analyze the membrane topology of YddG, we used randomly created fusions to β-lactamase (BlaM) as a reporter. The selection of such fusions under 50 μg/ml of ampicillin had to fit with the periplasmic location of the BlaM domain. Five periplasmic loops of YddG predicted by the 10-transmembrane (TM) helices model were identified via the characterization of 12 unique in-frame fusions distributed along the yddG coding region. To confirm the 10-TM helices model further, cytoplasmic regions of YddG were identified with the help of ZsGreen fluorescent protein as a reporter. The presence of four cytoplasmic regions and the cytoplasmic localization of the C-terminus were revealed. Therefore, a 10-TM helices topology with cytoplasmic locations of the N- and C-termini is supported. The present data confirm the 'positive-inside rule' for IMPs and the early results of other workers regarding the cytoplasmic location of the C-terminus of YddG. The pole-specific localization of YddG-ZsGreen in E. coli cells was detected by fluorescence microscopy.  相似文献   

7.
Abstract: As a tool for determining the topology of the small, 91-amino acid ΦX174 lysis protein E within the envelope complex of Escherichia coli , a lysis active fusion of protein E with streptavidin (E-FXa-StrpA) was used. The E-FXa-StrpA fusion protein was visualised using immune electron microscopy with gold-conjugated anti-streptavidin antibodies within the envelope complex in different orientations. At the distinct areas of lysis characteristic for protein E, the C-terminal end of the fusion protein was detected at the surface of the outer membrane, whereas at other areas the C-terminal portion of the protein was located at the cytoplasmic side of the inner membrane. These results suggest that a conformational change of protein E is necessary to induce the lysis process, an assumption supported by proteinase K protection studies. The immune electron microscopic data and the proteinase K accessibility studies of the E-FXa-StrA fusion protein were used for the working model of the E-mediated lysis divided into three phases: phase 1 is characterised by integration of protein E into the inner membrane without a cytoplasmic status in a conformation with its C-terminal part facing the cytoplasmic side; phase 2 is characterised by a conformational change of the protein transferring the C-terminus across the inner membrane; phase 3 is characterised by a fusion of the inner and outer membranes and is associated with a transfer of the C-terminal domain of protein E towards the surface of the outer membrane of E. coli.  相似文献   

8.
A monospecific antibody recognizing two membrane proteins in Acholeplasma laidlawii identified a plasmid clone from a genomic library. The nucleotide sequence of the 4.6-kbp insert contained four sequential genes coding for proteins of 39 kDa (E1 alpha, N terminus not cloned), 36 kDa (E1 beta), 57 kDa (E2), and 36 kDa (E3; C terminus not cloned). The N termini of the cloned E2, E1 beta, and native A. laidlawii E2 proteins were verified by amino acid sequencing. Computer-aided searches showed that the translated DNA sequences were homologous to the four subenzymes of the pyruvate dehydrogenase complexes from gram-positive bacteria and humans. The plasmid-encoded 57-kDa (E2) protein was recognized by antibodies against the E2 subenzymes of the pyruvate and oxoglutarate dehydrogenase complexes from Bacillus subtilis. A substantial fraction of the E2 protein as well as part of the pyruvate dehydrogenase enzymatic activity was associated with the cytoplasmic membrane in A. laidlawii. In vivo complementation with three different Escherichia coli pyruvate dehydrogenase-defective mutants showed that the four plasmid-encoded proteins were able to restore pyruvate dehydrogenase enzyme activity in E. coli. Since A. laidlawii lacks oxoglutarate dehydrogenase and most likely branched-chain dehydrogenase enzyme complex activities, these results strongly suggest that the sequenced genes code for the pyruvate dehydrogenase complex.  相似文献   

9.
We have investigated both structural and functional assembly of the F0 portion of the Escherichia coli proton-translocating ATPase in vivo. Fractionation of E. coli minicells containing plasmids which code for parts of the unc operon shows that each of the F0 peptides a, b, and c insert into the cytoplasmic membrane independent of each other and without the polypeptides which form the F1 portion of the complex alpha, beta, gamma, delta, and epsilon. Assays of membrane energization indicate that, while formation of a functional proton channel requires the presence of all three F0 polypeptides a, b and c, they are not sufficient. Synthesis of both the alpha and beta subunits of the F1 are required for formation of a functional proton channel.  相似文献   

10.
Insertion of the enteropathogenic Escherichia coli Tir protein into the plasma membrane of intestinal epithelial cells is a crucial event in infection because it provides a receptor for intimate bacterial adherence. This interaction with the bacterial outer membrane protein intimin is also essential in generating a number of signaling activities associated with virulence. Tir can be modified at various sites by phosphorylation and functionally interacts with multiple host proteins. To investigate the mechanism of membrane insertion and to establish a model system in which the multiple interactions/functions of Tir can be uncoupled and independently characterized, we used intrinsic tryptophan fluorescence, surface plasmon resonance, and protease digestion assays to show that Tir can insert directly into phospholipid vesicles in a composition-dependent manner to generate the topology reported in vivo. This is the first time that Tir has been shown to insert into membranes in a simple model system in the absence of chemical modification or other factors. These data are consistent with the protein interacting with lipids through two sites. The major site is localized to the transmembrane/intimin-binding domain region and includes Trp235, which is shown to be an effective reporter of interaction. The minor site is located within the C-terminal domain. Together, these data support a model in which Tir is released into the cytoplasm by the type III translocon and then independently inserts into the plasma membrane from a cytoplasmic location. A thorough understanding of this mechanism will be crucial to understand the subtleties of enteropathogenic E. coli pathogenesis.  相似文献   

11.
Expression plasmids carrying the coding sequence of mature human interleukin 1 beta (IL 1 beta) linked either to a Met start codon, or fused to different efficient Escherichia coli secretion signal sequences, have been constructed. In the latter case, we used signal peptides derived either from an outer membrane protein (OmpA) or from a periplasmic protein (PhoA). The synthesis of IL1 beta from these fusions was investigated in an otherwise strictly isogenic context using identical conditions of derepression and culture media. The Met-IL1 beta fusion produced a soluble cytoplasmic protein which could be released from the cells by osmotic shock whereas the OmpA and PhoA fusions were always insoluble. The extent of sOmpA-IL1 beta maturation was found to vary from 50 to 100%, mainly depending on the medium used, whereas no significant maturation of the signal peptide could be detected in the case of the sPhoA-IL1 beta fusion. Immuno-electron microscopy revealed that the sOmpA-IL1 beta fusion was targeted to the inner membrane, whereas the sPhoA-IL1 beta fusion remained within the cytoplasm and thus did not appear to enter the secretion pathway. Amplifying the E. coli signal peptidase lep gene on a multicopy plasmid did not improve signal peptide removal from sOmpA-IL1 beta. Moreover, these E. coli secretion vectors allowed us to produce, in high levels, IL1 beta fragments which otherwise could not be stably accumulated within the cytoplasmic compartment.  相似文献   

12.
Strategies for the expression of precursors of eukaryotic secreted proteins as part of fused proteins in Escherichia coli have been explored. A fusion protein with beta-galactosidase at the N-terminal end and honeybee prepromelittin at the C-terminal end (beta-gal-pM) was expressed in low amounts as a cleaved polypeptide, from which the promelittin portion had been removed. Inclusion in the induction culture of 10 mM MgCl2 or 8.3% (v/v) ethanol, inhibitors of signal peptidase, gave rise to the full-length beta-gal-pM fusion protein. The results suggest that a soluble recombinant fusion protein with a signal peptide in an internal location 660 residues from the N-terminus is recognized by the E. coli translocation apparatus in the inner membrane and by leader peptidase. High-level production (about 45% of total cellular proteins) of prepromelittin was achieved when it was part of a fusion protein at the C-terminus of a truncated insoluble polypeptide from bacteriophage gene 10. This fusion protein separated into inclusion bodies in an aggregated form. In contrast, attempts to express prepromelittin by itself or at the N-terminal end of a fusion with mouse dihydrofolate reductase (pM-DHFR) proved unsuccessful.  相似文献   

13.
The hydrophobic human beta 2 adrenergic receptor was produced in fusion to the hydrophilic maltose-binding protein (MalE) in Escherichia coli. Photoaffinity labeling with the adrenergic ligand [125I]cyanopindolole-diazirine indicated that the majority of the protein was proteolyzed in the intergenic region between the fusion partners after production in E. coli. The simple and fast genetics of the bacterium enabled us to engineer a linker with an increased proteolytic stability. The fusion protein produced in E. coli was fully functional with respect to binding of adrenergic ligands and coupling to stimulatory GTP-binding protein. The production level with 3 pmol receptor fusion protein per mg membrane protein in a crude membrane preparation was significantly higher than those reported for other beta 2 adrenergic receptor constructs in E. coli. After solubilization with dodecanoyl sucrose, the fusion protein was purified to near homogeneity by affinity chromatography on immobilized Ni2+ ions (binding to a C-terminal His6-tag) and on crosslinked amylose (binding to the MalE). In order to achieve higher production levels, the fusion protein preceded by an insect signal peptide was produced in baculovirus-infected insect cells. As expected, the production level with about 17 pmol receptor per mg membrane protein was higher in the insect cells than in E. coli. The receptor fusion protein produced in the insect cells bound adrenergic ligands and activated heterotrimeric GTP-binding proteins with biochemical properties comparable to that of the unfused receptor.  相似文献   

14.
LamB of Escherichia coli K12, also called maltoporin, is an outer membrane protein, which specifically facilitates the diffusion of maltose and maltodextrin through the bacterial outer membrane. Each monomer is composed of an 18-stranded antiparallel beta-barrel. In the present work, on the basis of the known X-ray structure of LamB, the effects of modifications of the beta-barrel domain of maltoporin were studied in vivo and in vitro. We show that: (i) the substitution of the pair of strands beta13-beta14 of the E. coli maltoporin with the corresponding pair of strands from the functionally related maltoporin of Salmonella typhimurium yielded a protein active in vivo and in vitro; and (ii) the removal of one pair of beta-strands (deletion beta13-beta14) from the E. coli maltoporin, or its replacement by a pair of strands from the general porin OmpF of E. coli, leads to recombinant proteins that lost in vivo maltoporin activities but still kept channel formation and carbohydrate binding in vitro. We also inserted into deletion beta13-beta14 the portion of the E. coli LamB protein comprising strands beta13 to beta16. This resulted in a protein expected to have 20 beta-strands and which completely lost all LamB-specific activities in vivo and in vitro.  相似文献   

15.
A A Gatenby  S J Rothstein 《Gene》1986,41(2-3):241-247
The maize chloroplast gene for the beta subunit (atpB) of the chloroplast CF1 component of ATPase from maize, when fused to either the lacZ or ral genes in the vectors pMC1403 or pHUB4, is expressed in Escherichia coli as a fusion protein with beta-galactosidase or with bacteriophage lambda Ral sequences. Some of the fusion proteins are converted to a membrane-bound form, as determined by differential and sucrose-gradient centrifugation. The specificity of membrane binding has been examined using E. coli unc mutants that are defective in binding of the F1 ATPase component to the F0 receptor site on the membrane, and by the use of two different length maize atpB::lacZ gene fusions. We show that the first 365 N-terminal amino acids (aa) of the maize beta subunit are involved in binding to the E. coli inner membrane, and that this binding is probably mediated by the bacterial F0 receptor.  相似文献   

16.
Heme molecules play important roles in electron transfer by redox proteins such as cytochromes. In addition, a structural role for heme in protein folding and the assembly of enzymes has been suggested. Previous results obtained using Escherichia coli hemA mutants, which are unable to synthesize 5-aminolevulinic acid, a precursor of porphyrins and hemes, have demonstrated a requirement for heme biosynthesis in the assembly of a functional succinate-ubiquinone reductase (SQR or complex II), which is a component of the aerobic respiratory chain. In the present study, in order to investigate the role of the heme in the assembly of E. coli SQR, we used a hemH (encodes ferrochelatase) mutant that lacks the ability to insert iron into the porphyrin ring. The hemH mutant failed to insert functional SQR into the cytoplasmic membrane, and the catalytic portion of SQR [the flavoprotein subunit (Fp) and the iron-sulfur protein subunit (Ip)] was localized in the cytoplasm of the cell. It is of interest to note that protoporphyrin IX accumulated in the mutant cells and inactivated the cytoplasmic succinate dehydrogenase (SDH) activity associated with the catalytic Fp-Ip complex. In contrast, SQR was assembled into the membrane of a heme-permeable hemH double mutant when hemin was present in the culture. Only a low level of SQR activity was found in the membrane when hemin was replaced by non-iron metalloporphyrins: Mn-, Co-, Ni-, Zn- and Cu-protoporphyrin IX, or protoporphyrin IX These results indicate that heme iron is indispensable for the functional assembly of SQR in the cytoplasmic membrane of E. coli, and provide a new insight into the biological role of heme in the molecular assembly of the multi-subunit enzyme complex.  相似文献   

17.
The coding region for the mature form of TEM beta-lactamase was fused to random positions within the coding region of the penicillin-binding protein 1B (PBP 1B) gene and the nucleotide sequences across the fusion junctions of 100 in-frame fusions were determined. All fusion proteins that contained at least the NH2-terminal 94 residues of PBP 1B provided individual cells of E. coli with substantial levels of ampicillin resistance, suggesting that the beta-lactamase moiety had been translocated to the periplasm. Fusion proteins that contained less than or equal to 63 residues of PBP 1B possessed beta-lactamase activity, but could not protect single cells of E. coli from ampicillin, indicating that the beta-lactamase moiety of these fusion proteins remained in the cytoplasm. The beta-lactamase fusion approach suggested a model for the organization of PBP 1B in which the protein is embedded in the cytoplasmic membrane by a single hydrophobic transmembrane segment (residues 64-87), with a short NH2-terminal domain (residues 1-63), and the remainder of the polypeptide (residues 88-844) exposed on the periplasmic side of the cytoplasmic membrane. The proposed model for the organization of PBP 1B was supported by experiments which showed that the protein was completely digested by proteinase K added from the periplasmic side of the cytoplasmic membrane but was only slightly reduced in size by protease attack from the cytoplasmic side of the membrane.  相似文献   

18.
T Klauser  J Pohlner    T F Meyer 《The EMBO journal》1992,11(6):2327-2335
The C-terminal domain (Iga beta) of the Neisseria IgA protease precursor is involved in the transport of covalently attached proteins across the outer membrane of Gram-negative bacteria. We investigated outer membrane transport in Escherichia coli using fusion proteins consisting of an N-terminal signal sequence for inner membrane transport, the Vibrio cholerae toxin B subunit (CtxB) as a passenger and Iga beta. The process probably involves two distinct steps: (i) integration of Iga beta into the outer membrane and (ii) translocation of the passenger across the membrane. The outer membrane integrated part of Iga beta is the C-terminal 30 kDa core, which serves as a translocator for both the passenger and the linking region situated between the passenger and Iga beta core. The completeness of the translocation is demonstrated by the extracellular release of the passenger protein owing to the action of the E. coli outer membrane OmpT protease. Translocation of the CtxB moiety occurs efficiently under conditions preventing intramolecular disulphide bond formation. In contrast, if disulphide bond formation in the periplasm proceeds, then translocation halts after the export of the linking region. In this situation transmembrane intermediates are generated which give rise to characteristic fragments resulting from rapid proteolytic degradation of the periplasmically trapped portion. Based on the identification of translocation intermediates we propose that the polypeptide chain of the passenger passes in a linear fashion across the bacterial outer membrane.  相似文献   

19.
Eubacteria and eukaryotic cellular organelles have membrane-bound ATP-dependent proteases, which degrade misassembled membrane protein complexes and play a vital role in membrane quality control. The bacterial protease FtsH also degrades an interesting subset of cytoplasmic regulatory proteins, including sigma(32), LpxC, and lambda CII. The crystal structure of the ATPase module of FtsH has been solved, revealing an alpha/beta nucleotide binding domain connected to a four-helix bundle, similar to the AAA modules of proteins involved in DNA replication and membrane fusion. A sulfate anion in the ATP binding pocket mimics the beta-phosphate group of an adenine nucleotide. A hexamer form of FtsH has been modeled, providing insights into possible modes of nucleotide binding and intersubunit catalysis.  相似文献   

20.
A plasmid, pWEH1, was constructed containing a fusion of the DNA encoding the signal sequence of the Escherichia coli outer-membrane protein A to the 5'-end of a glyceraldehyde-3-phosphate dehydrogenase cDNA from Ricinus communis. When expressed in E. coli, the fusion protein was secreted by the normal membrane-potential-dependent pathway. Processing by signal peptidase was inhibited by low concentrations of phenethyl alcohol. Quantitative cell fractionation was used to show that the mature plant protein was associated with the bacterial outer membrane. The protein could not be released from the membrane by washing with alkaline sodium carbonate. Radioactivity from [U-14C]-palmitate was incorporated into the heterologous protein. These results suggest that the sequence of this normally cytoplasmic enzyme contains a cryptic lipid-modification site, and the combination of a signal sequence plus a lipid-modification sequence results in specific targeting to the bacterial outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号