首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop a statistical method to estimate the total number of command elements devoted to abdominal positioning behavior in crayfish. We assumed that all command elements can be identified, that each identified cell is equivalent to a tagged individual in a population, and that the cells were sampled randomly. Samples of 29, 30, 20, and 35 cells from abdominal ganglia A3, A4, A5, and A6, respectively, were taken from our catalog. We characterized each cell using several morphological and physiological criteria, determined how many times each identified cell was present in the sample, and estimated the total number of command elements using both a maximum likelihood method and a modification of the Lincoln index. The larger the proportion of identified cells seen only once in the sample, the more identified cells there were that were unrepresented in the sample. We estimate there are approximately 34, 60, 86, and 98 command elements in ganglia A3, A4, A5, and A6, respectively. Using a slightly different data set we show that the motor output of unipolar cells is more often stronger in the direction of the cell's axonal projection. In bipolar command elements, the output strength was uncorrelated with the relative sizes of the two projecting axons. No two cells in our sample were completely identical, and this morphological variability sometimes made it difficult to determine whether or not two cells obtained from different individuals were the same identified cell. We discuss why caution should be exercised in studies requiring precision in cell identification.  相似文献   

2.
The multisegmented abdomen of crayfish and lobster assumes a variety of postures as components of different behavioral acts. Experimentally these postures can be maintained by activating any of a number of premotor positioning interneurons. The pathways by which the motor output in two or more segments is coordinated were here investigated for a small group of identified postural interneurons whose somata lie in the 2nd abdominal ganglion (A2). Stimulation of all postural interneurons examined evokes a motor output in other abdominal ganglia through which the axon of the neuron passes as well as in the ganglion of origin (ganglion containing the neuron's cell body). The spread of motor excitation away from the originating ganglion occurs via two general pathways. In the first pathway connections to postural motoneurons are made directly by processes of the postural interneuron which pass into ganglia distal to the originating ganglion. Examples of this are shown for two flexion producing interneurons (FPIs) 201 and 301. Each of these FPIs makes monosynaptic connections with motoneurons in A2 and with a homologous set of motoneurons in A3. All postural interneurons fired a set of corollary discharge interneurons (CDIs) whose activities were recorded from the abdominal connectives. Two FPIs, 202 and 301, and a third interneuron, 503, produced motor outputs in ganglia to which they did not project. The motor specificity established in A2 by stimulation of FPIs 202 and 301 (whose axons pass caudally) was preserved in more rostral ganglia, such as A1. Therefore, different sets of CDIs can be specifically recruited to spread the same motor program that is initiated in the originating ganglion to ganglia that do not receive projections from the stimulated postural interneuron. CDIs, in addition, have the capacity to elicit motor programs in distal ganglia that are markedly different from that expressed in the ganglion of origin. For example, although 503 produced an inhibitory output in the abdominal ganglia that it innervated (A1 and A2), a flexion response was generated by it in more caudal ganglia. The caudal flexion response was mediated in part through a monosynaptic activation of FPI 201 and through other unidentified CDIs. Thus, the interneuronal circuitry for postural control is composed of numerous components, some of which have regional control over different portions of the abdominal nerve cord. Depending upon the required movement, select components are coactivated, either serially or in parallel, to effect a variety of spatially distinct positions.  相似文献   

3.
Summary In crayfish,Pacifastacus leniusculus, abdominal ganglia that can generate the motor pattern normally associated with swimmeret beating continue to do so when the number of connected ganglia is reduced from six to two. The period and phase of the rhythm produced by these shortened chains of ganglia are the same as those produced by the full abdominal nerve cord. These results demonstrate that interactions between any two neighboring ganglia suffice to establish the metachronal phase-lag characteristic of the swimmeret rhythm.Several kinds of interganglionic interneurons that are part of the swimmeret system originate in each abdominal ganglion. These premotor interneurons receive synaptic input in the ganglion of origin and project to other ganglia. Axons from interganglionic neurons also terminate in each ganglion, and some of these terminals receive PSPs from the swimmeret pattern generators in the ganglion where they terminate. Currents injected into these interneurons and axon terminals can reset the swimmeret rhythm. These results demonstrate that premotor interganglionic interneurons exist that have the properties required to coordinate adjacent ganglia. The structures and physiological properties of these interneurons are described and discussed in the context of Stein's model of intersegmental coordination in the swimmeret system.  相似文献   

4.
Using intracellular recording and dye-filling techniques, a survey of postural interneurons was undertaken by impaling their somata in the 2nd abdominal ganglion of lobster. During the course of study approximately fourty different intersegmental interneurons in this ganglion were sampled. Of these, 8 evoked unique, patterned responses in the postural (superficial) motoneurons; each could be identified morphologically. Five of the 8 interneurons had caudally directed axons; 4 of these projected beyond the 4th abdominal ganglion. The remainder projected rostrally, beyond the 1st abdominal ganglion. The postural interneurons were classified according to the motor program they elicited. Five were flexion producing interneurons (FPIs), one was extension producing (EPI), and two generated only inhibitory motor outputs. All motor responses were bilateral and occurred in several segments, including A2. Two neurons, FPIs 201 and 301, produced the full motor reciprocity that typically is observed when flexion command fibers are stimulated. However, three of the FPIs and the single EPI did not express complete reciprocity in synergistic and antagonistic motoneurons. The results indicate that some interneurons displaying all of the properties of command neurons are located entirely within the abdominal nervous system. The overall organization of posture-evoking interneurons appears to be similar to that found in crayfish, suggesting an even more fundamental homology in the neuronal connectivities of these two species than has been established previously.  相似文献   

5.
As part of its repertoire of defensive behaviors, the crayfish, Procambarus clarkii, may respond to mildly threatening tactile or visual stimuli from the front of its body by walking backwards. During this behavior, the abdomen undergoes complex cyclical movements involving flexion and extension of the postural musculature which cause the tail to alternately contact and withdraw from the substrate. Intracellular neuropil recordings and dye injections were used to search for the interneurons responsible for initiating this postural motor pattern in the crayfish abdomen. Several diverse morphological types of interganglionic pattern-initiating (PI) interneurons were found. Each interneuron, when driven intracellularly, was capable of eliciting the same motor program, in its entirety, throughout the abdominal nerve cord. During pattern generation, PI interneurons exhibited a burst of spikes preceding the motor output. Silencing single PI interneurons with hyperpolarizing current during pattern generation failed to affect the motor program, indicating a redundancy of pattern-initiating function. The observations of extensive dye-coupling with other parallel axons, consistent dye-coupling with other identified cells in the pattern-initiating system, and the presence of multiple spike amplitudes in the bursts suggested electrotonic coupling among the PI interneurons. An additional group of interganglionic interneurons, the partial pattern-initiating (PPI) interneurons, were found to comprise a significant subset of the pattern-initiating system. As with the PI cells, the PPI interneurons exhibited a complex burst of spikes just preceding the patterned motor program. However, the PPI interneurons were only capable of eliciting an incomplete, though recognizable, postural motor pattern. Silencing any PPI interneuron during pattern generation caused a deficit in the motor pattern, indicating either an absence or lesser degree of functional redundancy within the PPI interneuron population compared to that occurring within the PI interneuron group. We conclude that a large number of PI interneurons are presynaptic to a relatively small group of PPI interneurons which, in turn, conduct pattern-initiating signals to the ganglionic oscillators. Our results indicate that pattern-initiation is accomplished through a command system involving multiple command elements organized in a coordinated interganglionic network.  相似文献   

6.
Summary Premotor interneurons involved in the abdominal positioning behaviors of the crayfish,Procambarus clarkii, were studied intracellularly, along with motoneuron activity, in semi-intact preparations during episodes of fictive behavior. Each impaled cell was tested by injecting depolarizing current and examining the motor output. If a response was evoked then the cell was classified as a flexion-producing interneuron (FPI), extension-producing interneuron (EPI) or mixed output interneuron (MOI). A platform drop/rise procedure was then used to elicit abdominal extension-like and flexion-like responses. Interneurons that were active during positioning behavior were silenced by hyperpolarization to determine their contribution in generating the underlying motor program. The data were used to assess the degree of participation of these interneurons in abdominal positioning behavior. Fewer than half of the FPIs, EPIs and MOIs became active during the behavioral episodes. Strength of response to depolarizing current was not correlated with the probability that a cell would fire during behavior. Hyperpolarization tests showed that typical FPIs, EPIs and MOIs were only responsible for a small part of the overall motor output. Also, interneurons, regardless of their FPI or EPI classification, were often observed to fire during both flexion-like and extension-like behaviors.Responses of FPIs, EPIs and MOIs to repeated platform movements suggest that these cells may fire according to a probability distribution depending on: (1) strength of the stimulus; (2) location of the stimulus; (3) location of the interneuron. Most identified cells could not readily be assigned to a specific behavior except for the T cell type, which seems intimately involved in most flexion behaviors.The results of this study support the hypothesis that there are few if any command neurons, as defined by Kupfermann and Weiss (1978), in the crayfish abdominal positioning system. Abdominal positioning behavior, therefore, is probably under the control of a large network of cells each contributing a small part to the overall motor output.Abbreviations FPI flexion-producing interneuron - EPI extension-producing interneuron - MOI mixed output interneuron - SFMN superficial flexor motoneuron - SEMN superficial extensor motoneuron  相似文献   

7.
In many decapod crustaceans, escape tailflips are triggered by lateral giant (LG) and medial giant (MG) interneurons, which connect to motor giant (MoG) abdominal flexor neurons. Several decapods have lost some or all of these giant neurons, however. Because escape-related giant neurons have not been documented in palinurans, I examined tailflipping and abdominal nerve cords for giant neurons in two scyllarid lobster species, Ibacus peronii and Ibacus alticrenatus. Unlike decapods with giant neurons, Ibacus do not tailflip in response to sudden taps. Ibacus can perform non-giant tailflipping: the frequency of tailflips during swimming is adjusted by altering the gap between each individual tailflip. Abdominal nerve cord sections show no LG or MG interneurons. Backfilling nerve 3 of abdominal ganglia revealed no MoG neurons, and the fast flexor motor neuron population is otherwise identical to that described for crayfish. The loss of giant neurons in Ibacus represents an independent deletion of these cells compared to other reptantian decapods known to have lost these giant neurons. This loss is correlated with the normal posture in scyllarids, in which the last two abdominal segments are flexed, and an alternative defensive strategy, concealment by digging into sand.  相似文献   

8.
Summary Using chronically implanted suction electrodes (Fig. 2), records were obtained from the tonic abdominal flexor motor neurons of crayfish while they were undergoing various self-generated movements (Fig. 3). The main behavior examined in this study was one of abdominal extension (Fig. 1), a response which could be evoked repeatedly. Other stereotyped movements were also observed. Each class of behavior we examined has been evoked previously in dissected preparations by stimulating command interneurons, allowing comparison of selfgenerated and electrically evoked motor patterns.During abdominal extension, the flexor inhibitor neuron was observed to fire in a characteristic way (Fig. 4 left, Fig. 5) that was not materially altered even if the associated movements were prevented by rigid restraint (Fig. 4 right). These self-generated motor programs resembled those obtained from command fiber stimulation, both in detail and reproducibility, suggesting that the normal means of executing such stereotyped behavior in these animals is via selected command interneurons.Central reciprocity between the tonic flexor motor neurons and the flexor inhibitor was observed routinely in self-generated programs (Figs. 3, 6, 7), as was seen in dissected animals under command fiber control. The incidence of failure of reciprocity, however, appears to be more common in natural programs than in those evoked by direct stimulation of command interneurons.This work was supported by NIH Grant NS-05423-07 (JLL). Support for one of us (A. C. E.) was obtained in part from NIH Training Grant 2T01 GM-00836-08. We gratefully acknowledge the technical assistance of Mr. Gregg Holmes, and note also the interest and valuable discussions offered by Dr. Lon Wilkens, Mr. George Wolfe and Mr. Terry Page.  相似文献   

9.
In the escape behavior of the cockroach, all six legs begin to make directed movements nearly simultaneously. The sensory stimulus that evokes these leg movements is a wind puff. Posterior wind receptors excite giant interneurons that carry a multi-cellular code for stimulus direction — and thus for turn direction-to the three thoracic ganglia, which innervate the three pairs of legs. We have attemptd to discriminate among various possible ways that the directional information in the giant interneurons could be distributed to each leg's motor circuit. Do the giant interneurons, for instance, inform separately each thoracic ganglion of wind direction? Or is there one readout system that conveys this information to all three ganglia, and if so, might the identified thoracic interneurons, which are postsynaptic to the giant interneurons, subserve this function? We made mid-sagittal lesions in one or two thoracic ganglia, thus severing the initial segments of all the known thoracic interneurons in these ganglia, and thus causing their projection axons to the other thoracic ganglia to degenerate. This lesion did not sever the giant interneurons, however (Fig. 5). Following such lesions, the legs innervated by the intact thoracic ganglia made normally directed leg movements (Figs. 4, 6, 7). Thus, the projection axons of the thoracic interneurons are not necessary for normal leg movements. Rather, the giant interneurons appear to specify to each thoracic ganglion in which direction to move the pair of legs it innervates.  相似文献   

10.
1. The escape behavior of the cockroach, Periplaneta americana, is known to be modulated under various behavioral conditions (Camhi and Volman 1978; Camhi and Nolen 1981; Camhi 1988). Some of these modulatory effects occur in the last abdominal ganglion (Daley and Delcomyn 1981a, b; Libersat et al. 1989) and others in the thoracic ganglia (Camhi 1988). Neuromodulator substances are known to underlie behavioral modulation in various animals. Therefore, we have sought to determine whether topical application of putative neuromodulators of the escape circuit enhance or depress this circuit, and whether these effects differ in the last abdominal vs. the thoracic ganglia. 2. Topical application of the biogenic amines serotonin and dopamine to the metathoracic ganglion modulates the escape circuitry within this ganglion; serotonin decreases and dopamine enhances the response of leg motoneurons to activation of interneurons in the abdominal nerve cord by electrical or wind stimulation. 3. The neuropil of the thoracic ganglia contains many catecholamine-histofluorescent processes bearing varicosities, providing a possible anatomical substrate for dopamine release sites. 4. Topical application of octopamine to the terminal abdominal ganglion enhances the response of abdominal interneurons to wind stimulation of the cerci. In contrast, serotonin and dopamine have no effect at this site. 5. It is proposed that release of these biogenic amines may contribute to the known modulation of the cockroach escape response.  相似文献   

11.
1. In the crayfish (Procambarus clarkii) abdomen, the superficial flexor and extensor muscles and the motoneurons that innervate them are employed during two completely different modes of behavior: (1) tonic postural adjustments and (2) cyclic movements associated with backwards terrestrial walking. We have tested the possibility that these two behavioral subsystems share at least some of the same tonic premotor interneurons. 2. Of the 108 tonic flexion- and extension-producing interneurons monitored during cyclic pattern generation, only 25 were recruited while 36 were inhibited. None of the recruited interneurons made a measurable contribution to the cyclic motor output. Similarly, none of the 20 inhibitory interneurons of the tonic subsystem recorded in this study was found to play a role in shaping the cyclic motor pattern. 3. Simultaneous activation of single tonic postural interneurons with the cyclic motor pattern revealed that the two behavioral subsystems interact in complex ways. Some tonic interneurons produced motor outputs that overrode the cyclic motor outputs while the motor outputs of other tonic interneurons were completely overwhelmed by the cyclic motor program. Still other tonic interneurons generated motor outputs that predominated over cyclic patterned outputs in some ganglia but were masked by the cyclic motor pattern in other ganglia. 4. Although weak interactions between the two subsystems occur at the premotor level, they have little effect on the normal generation of the cyclic pattern. Stronger interactions apparently occur at the level of the motoneurons and these interactions presumably may form the basis of switching from one behavior to the other. We conclude, therefore, that each behavioral subsystem relies upon its own unique set of premotor interneurons. Finally, those interneurons contributing to the cyclic motor pattern have not yet been identified.  相似文献   

12.
In crayfish stimulation of abdominal positioning interneurons (APIs) recruits other interneurons producing various abdominal movements. We investigated whether: (1) the same API from different preparations activated a similar number or group of interneurons, (2) different APIs activated different groups, and (3) repeated stimulation of an API consistently affected a similar set of interneurons. To quantify the similarities and differences of the recruited interneuronal groups we compared the number of interneurons affected, their firing frequencies, and motor outputs. Three types of APIs (Curly Q, L and T) were identified and each type was stimulated in three preparations. Our results showed that for the Curly Q and L cells, each cell type activated interneuronal groups that were statistically similar in number and firing frequency. The T cell activated interneuronal groups that were more variable. Some APIs generally provided a repeatable motor output; all did not. The interneuronal groups activated by the Curly Q, L and T cells were very different from each other. Repeated stimulation of one Curly Q cell affected similar although not identical sets of interneurons. These data suggest that repeated motor outputs could be produced by a similar but not identical group of cells. Accepted: 29 September 1997  相似文献   

13.
Neuropeptides expressed in the command neurons for withdrawal behavior were originally detected in the the central nervous system (CNS) of the terrestrial snail Helix (command neurons peptides, CNP). The family of CNP-like neuropeptides bears a C-terminal signature sequence Tyr-Pro-Arg-X. Using antisera against two of them, we have studied the CNS of various invertebrates belonging to the phyla of mollusks, annelids and insects. The immunoreactive neurons were detected in all studied species. Stained neurons were either interneurons projecting along the CNS ganglia chain, or sensory neurons, or neurohormonal cells. Beyond common morphological features, the immunoreactive cells had another similarity: the level of CNP expression depended on the functional state of the animal. Thus, the homologous neuropeptides in evolutionary distant invertebrate species possess some common morphological and functional features.  相似文献   

14.
Summary Pairs of neurons that produce or influence motor outputs in the abdominal positioning system of the crayfish (Procambarus clarkii) were impaled in isolated nerve cords with Lucifer Yellow-filled microelectrodes to determine their morphologies and the nature and extent of the synaptic interactions between them. Although the motor programs for positional adjustments can be produced by directly stimulating single interneurons, we found extensive interactions between these neurons, often involving the recruitment of one interneuron by another. The data indicate that the positioning interneurons do not operate as labelled lines, each independently producing a discrete position. Pairs of interneurons, each producing similar motor outputs when activated, were often found to be connected by unidirectional excitatory synapses. In contrast, central inhibition was commonly found between pairs of interneurons that produced antagonistic motor effects. Finally, the unidirectional interactions between positioning interneurons revealed a hierarchy of at least two tiers in this system. Based on these observations, we suggest that abdominal positioning in crustaceans is produced by constellations of interacting interneurons.Abbreviations FPI flexion-producing interneuron - EPI extension-producing interneuron - LI local interneuron - SFMN slow flexor motoneuron - SEMN slow extensor motoneuron  相似文献   

15.
The escape system of the American cockroach is both fast and directional. In response to wind stimulation both of these characteristics are largely due to the properties of the ventral giant interneurons (vGIs), which conduct sensory information from the cerci on the rear of the animal to type A thoracic interneurons (TIAs) in the thoracic ganglia. The cockroach also escapes from tactile stimuli, and although vGIs are not involved in tactile-mediated escapes, the same thoracic interneurons process tactile sensory information. The response of TIAs to tactile information is typically biphasic. A rapid initial depolarization is followed by a longer latency depolarization that encodes most if not all of the directional information in the tactile stimulus. We report here that the biphasic response of TIAs to tactile stimulation is caused by two separate conducting pathways from the point of stimulation to the thoracic ganglia. Phase 1 is generated by mechanical conduction along the animal's body cuticle or other physical structures. It cannot be eliminated by complete lesion of the nerve cord, and it is not evoked in response to electrical stimulation of abdominal nerves that contain the axons of sensory receptors in abdominal segments. However, it can be eliminated by lesioning the abdominal nerve cord and nerve 7 of the metathoracic ganglion together, suggesting that the relevant sensory structures send axons in nerve 7 and abdominal nerves of anterior abdominal ganglia. Phase 2 of the TIAs tactile response is generated by a typical neural pathway that includes mechanoreceptors in each abdominal segment, which project to interneurons with axons in either abdominal connective. Those interneurons with inputs from receptors that are ipsilateral to their axon have a greater influence on TIAs than those that receive inputs from the contralateral side. The phase 1 response has an important role in reducing initiation time for the escape response. Animals in which the phase 2 pathway has been eliminated by lesion of the abdominal nerve cord are still capable of generating a partial startle response with a typically short latency even when stimulated posterior to the lesion. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
The effect of the neurodepressing hormone (NDH) was studied on different identified motoneurons in the abdominal ganglia of the crayfish Procambarus bouvieri (Ortmann). Although differences in sensitivity were apparent, all the neurons tested responded to NDH with a reduction in spontaneous firing rate, which lasted as long as NDH was present, and, depending on the concentration and time of action of the hormone, for even longer periods. NDH activity was determined in the various parts of the central nervous system of the crayfish, being highest in the eyestalk, gradually diminishing away from the eyestalk, with a cephalo-caudal gradient, being lowest in the abdominal ganglia. High levels of NDH activity were detected in the blood. After eyestalk ablation, NDH concentration steadily diminishes in the blood and central nervous system, until virtually disappearing after 4 days; from day 5 onwards, the activity is recovered up to its original levels. NDH synthesis takes place with a time constant of approximately 3 hr in cultured isolated segments of central nervous system, being highest in the eyestalk.  相似文献   

17.
Many macruran decapod crustaceans show sexual dimorphism of abdominal appendages adapted for use as secondary reproductive organs. Not only does the Australian crayfish, Cherax destructor, show no external, abdominal dimorphism, but both males and females have lost the pleopods of the first abdominal segment entirely. The first nerves of the abdominal ganglia of crayfish and lobsters carry the axons of the pleopod motor neurons. We used intracellular cobalt infusion into the first nerves of the first and second abdominal ganglia to reveal the motor neuron complement of these ganglia in males and females. The first nerves of the second abdominal ganglia of both males and females have approximately 37 motor neurons associated with them. The homologous nerves in the first abdominal segment, where there are no pleopods, have only 8 or 9 motor neurons associated with them. The evolutionary implications of this difference are discussed.  相似文献   

18.
1. Many interneurons in the crayfish (Procambarus clarkii) abdominal nervous system influence two behaviors, abdominal positioning and swimmeret movements. Such neurons are referred to as dual output cells. Other neurons which influence either one behavior or the other are single output cells. 2. Extensive synaptic interactions were observed between both dual and single output neurons involved in the control of abdominal positioning and swimmeret movements. Over 60% of all neuron pairs examined displayed interactions. Pairs of agonist neurons displayed excitatory interactions, while pairs of antagonists had inhibitory interactions. This pattern of interaction was observed in about 75% of interactive neuron pairs whether abdominal positioning or swimmeret outputs were considered. 3. Evidence for both serial and parallel connectivity, as well as, reciprocal or looping connections was observed. Looping connections can be found both between the abdominal positioning and swimmeret systems and within each system. 4. Most (28/34) single output neurons were not presynaptic to dual output neurons. No single output neurons were found to excite dual output neurons to spiking, although inhibitory interactions and weak excitations were observed. 5. Abdominal positioning inhibitors displayed properties consistent with a role in mediating some of the coordination between the swimmeret and abdominal positioning systems. 6. None of the dual output neurons examined influenced the swimmeret motoneurons directly.  相似文献   

19.
A group of serotonergic cells, located in the pedal ganglia ofHelix lucorum, modulates synaptic responses of neurons involved in withdrawal behavior. Extracellular or intracellular stimulation of these serotonergic cells leads to facilitation of spike responses to noxious stimuli in the putative command neurons for withdrawal behavior. Noxious tactile stimuli elicit an increase in background spiking frequency in the modulatory neurons and a corresponding increase in stimulus-evoked spike responses in withdrawal interneurons. The serotonergic neurons have processes in the neuropil of the parieto-visceral ganglia complex, consistent with their putative role in modulating the activity of giant parietal interneurons, which send processes to the same neuropil and to the pedal ganglia. The serotonergic cells respond to noxious tactile and chemical stimuli. Although the group as a whole respond to noxious stimuli applied to any part of the body, most cells respond more to ipsilateral than contralateral stimulation, and exhibit differences in receptive areas. Intracellular investigation revealed electrical coupling between serotonergic neurons which could underlie the recruitment of members of the group not responding to a given noxious stimulus.  相似文献   

20.
We have investigated the structural organization of the wind-sensitive giant interneurons in the thoracic ganglia of adult American cockroaches. These seven bilaterally paired interneurons have long been thought to play a role in directing the wind-elicited escape response of the animal. Each of the giant interneurons was labeled individually by intracellular injection of cobaltic hexamine chloride. An individual giant interneuron could be reliably identified from animal to animal based on its branching pattern in thoracic ganglia. The axons of the giant interneurons are situated on each side of the nerve cord in two recognizable subgroups. Comparisons of the axonal arbors of the dorsal and ventral subgroups showed that they project into distinct but partly overlapping regions of thoracic ganglia. Three of the giant interneurons were found to have axonal arbors that cross the longitudinal midline of thoracic and abdominal ganglia. Bilateral pairs of these giant interneurons were labeled concomitantly, and many of the individual neurites from these cells appeared to be closely apposed. All these morphological characteristics are discussed in relation to the connectivity and functional significance of the giant interneurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号