首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
《Cytotherapy》2014,16(7):965-975
Background aimsThe question of how long hematopoietic progenitor cells (HPCs) destined for clinical applications withstand long-term cryopreservation remains unanswered. To increase our basic understanding about the stability of HPC products over time, this study focused on characterizing long-term effects of cryopreservation on clinically prepared HPC products.MethodsCryovials (n = 233) frozen for an average of 6.3 ± 14.2 years (range, 0.003–14.6 years) from HPC products (n = 170) representing 75 individual patients were thawed and evaluated for total nucleated cells (TNCs), cell viability, viable CD34+ (vCD34+) cells and colony-forming cells (CFCs). TNCs were determined by use of an automated cell counter, and cell viability was measured with the use of trypan blue exclusion. Viable CD34 analysis was performed by means of flow cytometry and function by a CFC assay.ResultsSignificant losses in TNCs, cell viability, vCD34+ cells and CFC occurred on cryopreservation. However, once frozen, viable TNCs, vCD34+ cells and CFC recoveries did not significantly change over time. The only parameter demonstrating a change over time was cell viability, which decreased as the length of time that an HPC product was stored frozen increased. A significant negative correlation (correlation coefficient = −0.165) was determined between pre-freeze percent granulocyte content and post-thaw percent viability (n = 170; P = 0.032). However, a significant positive correlation was observed between percent viability at thaw and pre-freeze lymphocyte concentration.ConclusionsOnce frozen, HPC products were stable for up to 14.6 years at <−150°C. Post-thaw viability was found to correlate negatively with pre-freeze granulocyte content and positively with pre-freeze lymphocyte content.  相似文献   

2.
BACKGROUND: ALDH-bright (ALDH(br)) cell populations sorted from freshly collected umbilical cord blood (UCB) on the basis of their high aldehyde dehydrogenase (ALDH) activity are highly enriched for HPC. HPC with low ALDH activity (ALDH(dim)) are primarily short-term progenitors, whereas progenitors that initiate long-term cultures or establish long-term grafts in xenograft models are ALDH(br). We examined the multilineage hematopoietic and platelet progenitor activities of ALDH(br) cells recovered from cryopreserved UCB units typically employed in the practice of clinical transplantation. METHODS: Frozen UCB units were thawed, washed, immunomagnetically depleted of cells expressing glycophorin A and CD14, reacted for flow cytometric detection of ALDH, and sorted to yield ALDH(br) and ALDH(dim) populations. We measured surface Ag expression and viability of cells in the ALDH(br) and ALDH(dim) populations by flow cytometry and hematopoietic (CFC-H) and megakaryocytic (CFC-Mk) colony-forming cells in each population. RESULTS: ALDH(br) populations isolated from thawed UCB cells were highly enriched for CD34(+) and CD133(+) cells. Flow-sorted ALDH(br) populations were enriched 1116-fold in CFC-H, 10-fold in multilineage GEMM colonies and 2015-fold in CFC-Mk compared with the ALDH(dim) population. All progenitors giving rise to large Mk colonies were derived from ALDH(br) populations. DISCUSSION: ALDH(br) populations recovered from thawed, banked UCB with the method we describe have HPC activity and may be useful in the clinic to facilitate reconstitution of erythroid, myeloid and megakaryocytic blood elements.  相似文献   

3.
BACKGROUND: ALDH(br) cells express high aldehyde dehydrogenase (ALDH) activity and have progenitor cell activity in several contexts. We characterized human BM ALDH(br) cells to determine whether cell sorting based on ALDH activity isolates potentially useful populations for cell therapy. METHOD: We measured the expression of ALDH and cell-surface Ag by flow cytometry and compared the ability of sorted ALDH(br), and BM populations remaining after ALDH(br) cells were removed (ALDH(dim) populations), to develop into several cell lineages in culture. RESULTS: The ALDH(br) population comprised 1.2+/-0.8% (mean+/-SD, n=30) nucleated cells and was enriched in cells expressing CD34, CD117, CD105, CD127, CD133 and CD166, and in primitive CD34(+) CD38(-) and CD34(+) CD133(+) progenitors. Most of the CD34(+) and CD133(+) cells were ALDH(dim). ALDH(br) populations had 144-fold more hematopoietic colony-forming activity than ALDH(dim) cells and included all megakaryocyte progenitors. ALDH(br) populations readily established endothelial cell monolayers in cultures. Cells generating endothelial colonies in 7 days were 435-fold more frequent in ALDH(br) than ALDH(dim) populations. CFU-F were 9.5-fold more frequent in ALDH(br) than ALDH(dim) cells, and ALDH(br) cells gave rise to multipotential mesenchymal cell cultures that could be driven to develop into adipocytes, osteoblasts and chondrocytes. DISCUSSION: Hematopoietic, endothelial and mesenchymal progenitor cells can be isolated simultaneously from human BM by cell sorting based on ALDH activity. BM ALDH(br) populations may be useful in several cell therapy applications.  相似文献   

4.
Circulating hematopoietic progenitor cells (HPCs) are routinely measured by flow cytometry using CD34 expression. As an alternative, the "immature information" (IMI) channel measurement of the automated hematology analyzer Sysmex SE machines was developed. We tested the IMI channel HPC method with umbilical cord blood specimens. The IMI-HPCs were compared with CD34 counts and numbers of colony-forming units (CFUs). The IMI-HPC data were reproducible and dilution experiments yielded a log-linear relationship. The mean percentage of CD34(+) cells in 50 umbilical cords was 0.43 versus 0.11 of HPCs in the IMI channel (correlation coefficient r = 0.67). Absolute numbers yielded 96.79 x 10(6)/L CD34(+), 33.17 x 10(6)/L IMI-HPC, and 35.04 x 10(6)/L CFU-HPC. Receiver operating characteristics curves were made at various cutoff levels for CD34(+) cells to visualize sensitivity and specificity profiles. With median values of 13.56 x 10(6)/L for IMI-HPC and 20 x 10(6)/L for CD34(+) as cutoff points (the levels used in the laboratory to start stem cell pheresis), the percentage of false-negative observations was 70.4%. To exclude the influence of storage time, tests were repeated until 72 h after umbilical cord collection. Total white blood cell count decreased in most cases, whereas absolute number of IMI-HPC tended to increase in time. In conclusion, if HPC measurements in the IMI channel are used to monitor circulating stem cells during mobilization, one has to be aware of a very low correlation between these results and those of other methods such as CD34(+) analysis and colony growth. False-negative results do occur, but if events are seen in the IMI channel, this simple monitoring technique is useful to predict the presence of circulating stem cells.  相似文献   

5.
Woo KS  Goh RY  Kim SH  Kwon HC  Kim HJ  Lee YH  Han JY 《Cytotherapy》2007,9(6):555-561
BACKGROUND: The mechanism of platelet recovery after hematopoietic stem cell transplantation and the factors that influence its time-course are not fully understood. Rapid hematopoietic recovery results in a reduction of transplantation-related complications. In the present study, we questioned and analyzed whether there were important factors predicting the speed of platelet engraftment. METHODS: Thirty-seven patients with various hematologic diseases transplanted with allogeneic BM between January 2002 and December 2005 were included. We investigated the differences in mononuclear cell counts (MNC), numbers of infused CD34(+), CD34(+) CD41(+) and CD34(+) CD61(+) cells and phenotypic analysis of homing-associated cell adhesion molecules (CXCR4, CD49d and CD49e). The number of megakaryocytes formed in vitro (colony-forming unit-megakaryocytes; CFU-Mk) was also measured. RESULTS: Median days of ANC >/=0.5x10(9)/L and platelet count >/=20x10(9)/L were 14.8 and 17.3, respectively. The number of infused CD34(+) CD41(+) and CD34(+) CD61(+) cells correlated much better with the time to platelet engraftment than that of infused CD34(+)cells (P<0.05 each). Rapid platelet recovery also occurred in patients receiving both higher homing-associated cell adhesion molecule doses and CFU-Mk (P<0.05 each). DISCUSSION: Rapid platelet recovery has several advantages, including reducing the cost of supportive therapy and reducing the risk of fatal bleeding as a result of severe thrombocytopenia. Our findings suggest that phenotypic and clonogenic assessment of infused progenitor cells can identify patients in whom platelet engraftment is likely to be significantly delayed, and new strategies to overcome related problems might be employed in the very near future.  相似文献   

6.
Chitteti BR  Liu Y  Srour EF 《PloS one》2011,6(3):e17498
It is well established that in adults, long-term repopulating hematopoietic stem cells (HSC) are mitotically quiescent cells that reside in specialized bone marrow (BM) niches that maintain the dormancy of HSC. Our laboratory demonstrated that the engraftment potential of human HSC (CD34(+) cells) from BM and mobilized peripheral blood (MPB) is restricted to cells in the G0 phase of cell cycle but that in the case of umbilical cord blood (UCB) -derived CD34(+) cells, cell cycle status is not a determining factor in the ability of these cells to engraft and sustain hematopoiesis. We used this distinct in vivo behavior of CD34(+) cells from these tissues to identify genes associated with the engraftment potential of human HSC. CD34(+) cells from BM, MPB, and UCB were fractionated into G0 and G1 phases of cell cycle and subjected in parallel to microarray and proteomic analyses. A total of 484 target genes were identified to be associated with engraftment potential of HSC. System biology modeling indicated that the top four signaling pathways associated with these genes are Integrin signaling, p53 signaling, cytotoxic T lymphocyte-mediated apoptosis, and Myc mediated apoptosis signaling. Our data suggest that a continuum of functions of hematopoietic cells directly associated with cell cycle progression may play a major role in governing the engraftment potential of stem cells. While proteomic analysis identified a total of 646 proteins in analyzed samples, a very limited overlap between genomic and proteomic data was observed. These data provide a new insight into the genetic control of engraftment of human HSC from distinct tissues and suggest that mitotic quiescence may not be the requisite characteristic of engrafting stem cells, but instead may be the physiologic status conducive to the expression of genetic elements favoring engraftment.  相似文献   

7.
BACKGROUND: Prior studies have demonstrated that relatively immature hematopoietic stem cells, including CD34(+) CD38(-) and CD34(+) HLA-DR(-) subsets, correlate with short-term hematopoietic reconstruction (SHR) after transplantation. The aim of this study was to investigate whether these immature CD34(+) subsets also correlate with long-term hematopoietic reconstitution (LHR) in recipients of ABMT. METHODS: We examined stem cell grafts from 58 patients with B-cell lymphoma or CLL who underwent ABMT after myeloablative conditioning. We determined whether total mononuclear cell dose (MNC), colony-forming unit-granulocyte-monocyte (CFU-GM), CD34(+) cell dose and CD34(+) cell subsets (CD34(+) CD38(-) and CD34(+) HLA-DR(-) were associated with SHR and/or LHR. Time to neutrophil engraftment (TNE) and time to platelet engraftment (TPE) were used to measure SHR, while platelet counts at day 100 and 1 year post-ABMT were used as indicators for LHR. RESULTS AND DISCUSSION: CD34(+) cell dose and CD34(+) cell subsets were significantly associated with SHR. However, at day 100 and 1 year post-transplant only total CD34(+) cell dose was associated with LHR. The association of total CD34(+) cell dose with LHR persisted after adjusting for age, sex and disease. None of the CD34(+) cell subsets analyzed showed evidence of significant association with LHR.  相似文献   

8.
BACKGROUND: The aim of the study was to investigate whether the number of viable CD34+ cells in cryopreserved PBPC autografts is a better predictor of engraftment than the total CD34+ cell number determined before freezing. METHODS: A total of 119 patients was treated with autotransplantation for various malignant disorders during the period 1996-2002. All patients were reinfused with at least 2x10(6)/kg total CD34 cells analyzed before programmed freezing in 10% DMSO. The total CD34 cell number determined before freezing was compared with the number of viable cells determined after cryopreservation for 51 of these patients. The number of viable cells was determined by a flow cytometric analysis including triple staining with anti-CD34, anti-CD45 and the viability marker 7-actinomycin D (7-AAD). RESULTS: Simple linear regression analyses showed that both the total transplanted CD34 cell dose measured before freezing and the viable CD34 cell dose determined after cryopreservation were significantly correlated with neutrophil and platelet engraftment. In a multiple regression model the prediction of engraftment was not improved when the transplanted viable CD34 cell dose was included as a variable in addition to the total CD34 cell dose measured immediately after collection. DISCUSSION: Routine estimation of viable CD34 cells after cryopreservation of PBPC autografts is not necessary as long as the total CD34 cell dose is determined before freezing and the patients are reinfused with at least 2x10(6) cells/kg body weight.  相似文献   

9.
The mechanisms underlying the immunomodulatory functions of mesenchymal stem cells (MSC) on dendritic cells (DC) have been shown to involve soluble factors, such as IL-6 or TGF-beta, or cell-cell contact, or both depending on the report referenced. In this study, we intend to clarify these mechanisms by examining the immunosuppressive effect of human adult MSC on adult DC differentiated from CD34(+) hemopoietic progenitor cells (HPC). MSC have been shown to inhibit interstitial DC differentiation from monocytes and umbilical CD34(+) HPC. In this study, we confirm that MSC not only halt interstitial DC but also Langerhans cell differentiation from adult CD34(+) HPC, as assessed by the decreased expression of CD1a, CD14, CD86, CD80, and CD83 Ags on their cell surface. Accordingly, the functional capacity of CD34(+) HPC-derived DC (CD34-DC) to stimulate alloreactive T cells was impaired. Furthermore, we showed that 1) MSC inhibited commitment of CD34(+) HPC into immature DC, but not maturation of CD34-DC, 2) this inhibitory effect was reversible, and 3) DC generated in coculture with MSC (MSC-DC) induced the generation of alloantigen-specific regulatory T cells following secondary allostimulation. Conditioned medium from MSC cultures showed some inhibitory effect independent of IL-6, M-CSF, and TGF-beta. In comparison, direct coculture of MSC with CD34(+) HPC resulted in much stronger immunosuppressive effect and led to an activation of the Notch pathway as assessed by the overexpression of Hes1 in MSC-DC. Finally, DAPT, a gamma-secretase inhibitor that inhibits Notch signaling, was able to overcome MSC-DC defects. In conclusion, our data suggest that MSC license adult CD34(+) HPC to differentiate into regulatory DC through activation of the Notch pathway.  相似文献   

10.
BACKGROUND: The adequacy of HPC collection for BMT is typically assessed by the number of CD34 cells. However, during a series of leukapheresis procedures (LP) the CD34 value on the final HPC product may not be available for testing until late evening, sometimes resulting in additional, retrospectively unnecessary, LP in order to ensure an adequate HPC collection (>5x10(6) CD34/kg). We hypothesized that an estimate of the CD34 content of HPC products prior to 16:00 h on the day of LP would permit improved HPC collection planning. We therefore assessed the effectiveness of predicting the total amount of CD34 cells that would be collected in a given LP by either (a) the concentration of CD34 cells/microL in peripheral blood prior to LP (pre-CD34) or (b) the predicted total amount of CD34 cells to be collected based on sampling the LP product at the mid-point of each LP. We also compared the number of LP per patient and total HPC collected for the study group with data from the previous calendar year. METHODS: Allogeneic and autologous BMT donors who completed a 20-L HPC collection between September 2002 and February 2003 were eligible. CD34 cells were measured on blood drawn prior to LP and from the HPC product at the mid-point (10 L) of LP. The CD34 content of the final LP was predicted by doubling the value of total CD34 cells at the mid-run (MRp-CD34). The MRp-CD34/kg and the cumulative CD34/kg collected were made available before 16:00 h and used to determine the need for additional LP. The true CD34 content of each HPC collection was also measured from the final product the next day (CD34-FP). RESULTS: A 20-L LP was completed and data were available from 31 patients and nine allogeneic donors who underwent a total of 85 LP for diagnoses, including 11 myeloma, 10 lymphoma, seven HD, three acute leukemia and five others. The mean (range) and correlation (R2) vs. the CD34-FP were, for pre-CD34, 54 CD34/microL (0.3-232), R2=0.66 (P<0.01), and for MRp-CD34, 3.2x10(6) CD34/kg (0.04-22.48), R2=0.90 (P<0.01). The mean number of CD34/kg collected per LP in the patients/donors was 3.4x10(6) CD34/kg (0.05-18.94). The median number of CD34 cells employed for transplant in the study group vs. controls (5.7 vs. 5.6x10(6)/kg) and the time to engraftment of neutrophils (12 vs. 11 days) and platelets (12 vs. 12 days) was similar to historical controls. However, the study group had a significantly lower median number of LP (three vs. two; P<0.02) to obtain the required collection of 5x10(6) CD34 cells/kg. DISCUSSION: Both the pre-CD34 and the MRp-CD34 were significantly correlated with CD34-FP. However, the CD34-FP was more reliably predicted by MRp-CD34. Early availability of mid-run CD34 values was associated with a significant reduction in the number of LP required to collect 5x10(6) CD34 cells/kg, without reduction in the number of CD34 cells for transplant or prolongation of days to neutrophil or platelet engraftment.  相似文献   

11.
《Cytotherapy》2022,24(3):272-281
Background aimsThe use of effective methods for the cryopreservation of hematopoietic stem cells (HSCs) is vital to retain the maximum engraftment activity of cord blood units (CBUs). Current protocols entail the use of dimethyl sulfoxide (DMSO) as intracellular cryoprotective agent (CPA) and dextran and plasma proteins as extracellular CPAs, but DMSO is known to be cytotoxic, and its infusion in patients is associated with mild to moderate side effects. However, new, commercially available, DMSO-free cryopreservation solutions have been developed, but their capacity to protect HSCs remains poorly investigated.MethodsHerein the authors compared the capacity of four DMSO-free freezing media to cryopreserve cord blood (CB) HSCs: CryoProtectPureSTEM (CPP-STEM), CryoScarless (CSL), CryoNovo P24 (CN) and Pentaisomaltose (PIM). Clinical-grade DMSO/dextran solution was used as control.ResultsOf the four cryopreservation solutions tested, the best post-thaw cell viability, recovery of viable CD45+ and CD34+ cells and potency were achieved with CPP-STEM, which was equal or superior to that seen with the control DMSO. CSL provided the second best post-thaw results followed by PIM, whereas CN was associated with modest viability and potency. Further work with CPP-STEM revealed that CB CD34-enriched HSCs and progenitors cryopreserved with CPP-STEM maintained high viability and growth expansion activity. In line with this, a pilot transplantation assay confirmed that CPP-STEM-protected CB grafts supported normal short- and long-term engraftment kinetics.ConclusionsThe authors’ results suggest that new, valuable alternatives to DMSO are now available for the cryopreservation of HSCs and grafts, including CBUs.  相似文献   

12.
BACKGROUND: Hematopoietic stem cells (HSC) have traditionally been frozen using the cryoprotectant DMSO in dextran-40, saline or albumin. However, the process of freezing and thawing results in loss of HSC numbers and/or function. METHODS: This study investigated the use of CryoStor for the freezing of HSC from cord blood (CB). CB donations (n = 30) were collected under an Institutional Ethics Committee-approved protocol, volume reduced and frozen using three different methods of cryoprotection. Aliquots were frozen with either 10% DMSO in dextran-40, 10% DMSO in CryoStor or 5% DMSO in CryoStor. Prior to freezing samples were separated for nucleated cell (NC) and CD34+ counts and assessment of CD34+ viability. Aliquots were frozen and kept in vapor phase nitrogen for a minimum of 72 h. Vials were rapidly thawed at 37 degrees C and tested for NC and CD34+ counts and CD34+ viability and colony-forming unit (CFU) assay. RESULTS: Cells frozen with CryoStor in 10% DMSO had significantly improved NC (P < 0.001), CD34+ recovery, viable CD34+ (P < 0.001) and CFU numbers (P < 0.001) compared with dextran in 10% DMSO. CryoStor in 5% DMSO resulted in significantly improved NC (P < 0.001) and CFU (P < 0.001). Discussion: These results suggest that improved HSC recovery, viability and functionality can be obtained using CryoStor with 10% DMSO and that similar if not better numbers can be obtained with 5% DMSO compared with dextran-40 with 10% DMSO.  相似文献   

13.
BACKGROUND: The optimum conditions for storage and transport of freshly harvested HPC in the liquid state are uncertain. It is not specified in commonly applied standards for stem cell transplantation. We used a viable CD34 assay to determine the optimum temperature for maintaining progenitor cell viability in freshly harvested BM and PBSC. Our aim was to identify standardized conditions for storage and transport of marrow or peripheral blood products that would optimize CD34 recovery, leading to better transplant outcomes. METHODS: Samples were aseptically removed from 46 fresh HPC harvests (34 PBSC and 12 BM) and stored at refrigerated temperature (2-8 degrees C), room temperature (18-24 degrees C) and 37 degrees C for up to 72 h. Samples were analyzed for viable CD34+ cells/microL at 0, 24, 48 and 72 h. RESULTS: The mean viable CD34+ yield prior to storage was 7.7 x 10(6)/kg (range 0.7-30.3). The mean loss of viable CD34+ cells in HPC products at refrigerated temperature was 9.4%, 19.4% and 28% at 24, 48 and 72 h, respectively. In contrast, the mean loss of viable CD34+ cells at room temperature was 21.9%, 30.7% and 43.3% at 24, 48 and 72 h, respectively. No viable CD34+ cells remained after storage at 37 degrees C for 24 h. Only PBSC products and not BM showed temperature-related loss of CD34 viability. Greater loss of viable CD34+ cells was observed for allogeneic PBSC compared with autologous PBSC. DISCUSSION: These results demonstrate that the optimum temperature for maintaining the viability of CD34+ cells, during overnight storage and transport of freshly harvested HPC, is 2-8 degrees C. These findings will allow the development of standard guidelines for HPC storage and transport.  相似文献   

14.
Increasing demand for human hematopoietic stem cells (HSCs) in clinical and research applications necessitates expansion of HSCs in vitro. Before these cells can be used they must be carefully evaluated to assess their stem cell activity. Here, we expanded cord blood CD34(+) CD133(+) cells in a defined medium containing angiopoietin like 5 and insulin-like growth factor binding protein 2 and evaluated the cells for stem cell activity in NOD-SCID Il2rg(-/-) (NSG) mice by multi-lineage engraftment, long term reconstitution, limiting dilution and serial reconstitution. The phenotype of expanded cells was characterized by flow cytometry during the course of expansion and following engraftment in mice. We show that the SCID repopulating activity resides in the CD34(+) CD133(+) fraction of expanded cells and that CD34(+) CD133(+) cell number correlates with SCID repopulating activity before and after culture. The expanded cells mediate long-term hematopoiesis and serial reconstitution in NSG mice. Furthermore, they efficiently reconstitute not only neonate but also adult NSG recipients, generating human blood cell populations similar to those reported in mice reconstituted with uncultured human HSCs. These findings suggest an expansion of long term HSCs in our culture and show that expression of CD34 and CD133 serves as a marker for HSC activity in human cord blood cell cultures. The ability to expand human HSCs in vitro should facilitate clinical use of HSCs and large-scale construction of humanized mice from the same donor for research applications.  相似文献   

15.
16.
Gammaretroviral vectors require cell division for efficient transduction. Thus, extended cell culture times are necessary for efficient transduction with gammaretroviral vectors, which in turn can lead to stem cell loss and impaired engraftment. Lentiviral vectors transduce nondividing cells and are therefore able to transduce stem cells in short transduction protocols. Here, we compared the short-term engraftment of lentivirally and gammaretrovirally transduced canine allogeneic DLA-matched littermate cells. A reduced conditioning regimen of 400 cGy total body irradiation was used in preparation for clinical studies. Two dogs received a graft of gammaretrovirally transduced CD34-selected cells. CD34(+) cells were prestimulated for 30 h and then exposed twice to concentrated RD114 pseudotype vector. Three dogs received lentivirally transduced CD34-selected cells. Cells were transduced overnight with concentrated VSV-G pseudotype lentiviral vector. The animals in the lentiviral group showed a significantly faster granulocyte recovery. VNTR analysis 40-50 days after transplantation revealed higher donor chimerism for the lentiviral group compared to the retroviral group. These data suggest that short lentiviral transduction protocols may be superior to extended gammaretroviral transduction protocols with respect to engraftment potential of transduced CD34(+) hematopoietic repopulating cells.  相似文献   

17.
BACKGROUND: Umbilical cord blood (UCB) is an important source of hematopoietic stem and progenitor cells (HSC/HPC) for the reconstitution of the hematopoietic system after clinical transplantation. Cryopreservation of these cells is critical for UCB banking and transplantation as well as for research applications by providing readily available specimens. The objective of this study was to optimize cryopreservation conditions for CD34+ HSC/HPC from UCB. METHODS: Cryopreservation of CD34+ HSC/HPC from UCB after mononuclear cell (MNC) preparation was tested in a research-scale setup. Experimental variations were concentration of the cryoprotectant, the protein additive and cell concentration. In addition, protocols involving slow, serial addition and removal of DMSO were compared with standard protocols (fast addition and removal of DMSO) in order to avoid osmotic stress for the cryopreserved cells. Viability and recoveries of MNC, CD34+ cells and total colony-forming units (CFU) were calculated as read-outs. In addition, sterility testing of the collected UCB units before further processing was performed. RESULTS: The optimal conditions for cryopreservation of CD34+ HPC in MNC preparations were 10% DMSO and 2% human albumin at high cell concentrations (5 x 10(7) MNC/mL) with fast addition and removal of DMSO. After cryopreservation using a computer-controlled freezer, high viabilities (89%) and recoveries for CD34+ cells (89%) as well as for CFU (88%) were observed. Microbial contamination of the collected UCB samples was reduced to a rate of 6.4%. DISCUSSION: Optimized cryopreservation conditions were developed for UCB MNC in respect of the composition of the cryosolution. In addition, our results showed that fast addition of DMSO is essential for improved cryopreservation and post-thaw quality assessment results, whereas the speed of DMSO removal after thawing has little influence on the recoveries of CD34+ cells and CFU.  相似文献   

18.
Fei XM  Wu YJ  Chang Z  Miao KR  Tang YH  Zhou XY  Wang LX  Pan QQ  Wang CY 《Cytotherapy》2007,9(4):338-347
BACKGROUND: The major challenge for cord blood transplantation (CBT) is higher rates of delayed and failed engraftment. In an attempt to broaden the application of CBT to more candidates, ex vivo expansion of hematopoietic stem/progenitor cells in CB is a major area of investigation. The purpose of this study was to employ human BM mesenchymal stromal cells (hBM-MSC) as the feeding-layer to expand CB cells ex vivo. METHODS: In this study, hBM-MSC were isolated and characterized by morphologic, mmunophenotypic and RT-PCR analysis. The hBM-MSC at passage 3 were employed as the feeding-layer to expand CB CD34(+) cells in vivo in the presence of thrombopoietin, flt3/flk2 ligand, stem cell factor and G-CSF. The repopulating capacity of the ex vivo-expanded CB cells was also evaluated in a NOD/SCID mice transplant experiment. RESULTS: After 1 or 2 weeks of in vitro expansion, hBM-MSC supported more increasing folds of CB in total nucleated cells, CD34(+) cells and colony-forming units (CFU) compared with CB without hBM-MSC. Furthermore, although NOD/SCID mice transplanted with CB cells expanded only in the presence of cytokines showed a higher percentage of human cell engraftment in BM than those with unexpanded CB CD34(+) cells, expanded CB cells co-cultured with hBM-MSC were revealed to enhance short-term engraftment further in recipient mice. DISCUSSION: Our study suggests that hBM-MSC enhance in vitro expansion of CB CD34(+) cells and short-term engraftment of expanded CB cells in NOD/SCID mice, which may be valuable in a clinical setting.  相似文献   

19.
An experiment was conducted to investigate the freezing ability of canine epididymal spermatozoa after cool storage at 5 degrees C for 2 or 4 days. Spermatozoa were collected from the caudae epididymidis from 16 dogs. Total motility, plasma membrane integrity and acrosome integrity were evaluated immediately on harvesting, and after 2 and 4 days of storage at 5 degrees C, and at 0 and 2 h post-thaw at 37 degrees C. Sperm motility decreased significantly during cold storage, compared to freshly harvested spermatozoa (P < 0.001). Although there was no significant effect of pre-freeze storage time on post-thaw motility, there was a tendency towards decreased motility in spermatozoa that had been stored for 4 days, compared to spermatozoa that were frozen immediately after collection (P = 0.09). The number of post-thaw spermatozoa with an intact plasma membrane was decreased in spermatozoa cold-stored for 4 days (P < 0.001). There was no significant effect of pre-freeze storage time on the acrosomal status of post-thaw spermatozoa. In conclusion, canine epididymal spermatozoa were stored at 5 degrees C for up to 4 days without a clear detrimental effect on post-thaw motility and acrosome integrity, but storage may have decreased post-thaw motility. Results were, however, generally low.  相似文献   

20.
Background aimsPlerixafor was recently approved for use in combination with granulocyte–colony-stimulating factor (G-CSF) for hematopoietic progenitor cell (HPC) collection by apheresis in adults with multiple myeloma (MM) or non-Hodgkin lymphoma (NHL). However, its efficacy in pediatric patients is not well-studied; thus, we report on our institutional experience with this population. Methods. A retrospective observational analysis was performed using both stem cell-processing laboratory information as well as apheresis charts and medical records on all pediatric patients who received plerixafor as part of the mobilization regimen between December 2006 and December 2010. The primary outcome was collection yield. Secondary outcomes included the ability to undergo autologous hematopoietic stem cell transplantation (auto-HSCT) and engraftment status. Results. Eighteen HPC collections by apheresis representing seven mobilization courses were performed on five pediatric patients with poor mobilization status (three males, two females; median age 14 years). Median pre-harvest peripheral blood CD34+ cell (PB CD34+) count was 6.88/μL. A strong correlation between pre-harvest PB CD34+ count and collection yield was observed. Median total collection yield was 2.26 × 106 CD34+ cells/kg. Four patients achieved a minimum collection of 2 × 106 CD34+ cells/kg. Three patients underwent auto-HSCT with a median neutrophil and platelet engraftment of 12 and 34 days, respectively. No major adverse events with plerixafor administration or apheresis collections were reported. Conclusions. Plerixafor in combination with G-CSF is a safe and potentially helpful mobilization agent in poor mobilizers. Further studies should be done to evaluate the true efficacy of plerixafor in the pediatric population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号