首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A genome‐wide association study of 2098 progeny‐tested Nordic Holstein bulls genotyped for 36 387 SNPs on 29 autosomes was conducted to confirm and fine‐map quantitative trait loci (QTL) for mastitis traits identified earlier using linkage analysis with sparse microsatellite markers in the same population. We used linear mixed model analysis where a polygenic genetic effect was fitted as a random effect and single SNPs were successively included as fixed effects in the model. We detected 143 SNP‐by‐trait significant associations (P < 0.0001) on 20 chromosomes affecting mastitis‐related traits. Among them, 21 SNP‐by‐trait combinations exceeded the genome‐wide significant threshold. For 12 chromosomes, both the present association study and the previous linkage study detected QTL, and of these, six were in the same chromosomal locations. Strong associations of SNPs with mastitis traits were observed on bovine autosomes 6, 13, 14 and 20. Possible candidate genes for these QTL were identified. Identification of SNPs in linkage disequilibrium with QTL will enable marker‐based selection for mastitis resistance. The candidate genes identified should be further studied to detect candidate polymorphisms underlying these QTL.  相似文献   

2.
Quantitative trait loci affecting clinical mastitis were detected and fine mapped to a narrow region on bovine chromosome 6 in the Norwegian Red cattle population. The region includes the casein gene cluster and several candidate genes thought to influence clinical mastitis. The most significant results were found for SNPs within the Mucin 7 gene. This gene encodes an antimicrobial peptide and constitutes part of the first line of defence for the mucosal immune system. Detection of long haplotypes extending several Mb may indicate that artificial selection has influenced the haplotype structures in the region. A search for selection sweeps supports this observation and coincides with association results found both by single SNP and haplotype analyses. Our analyses identified haplotypes carrying quantitative trait loci alleles associated with high protein yield and simultaneously fewer incidences of clinical mastitis. The fact that such haplotypes are found in relative high frequencies in Norwegian Red may reflect the combined breeding goal that is characterized by selection for both milk production and disease resistance. The identification of these haplotypes raises the possibility of overcoming the unfavourable genetic correlation between these traits through haplotype-assisted selection.  相似文献   

3.
Quantitative trait loci (QTL) affecting clinical mastitis (CM) and somatic cell score (SCS) were mapped on bovine chromosome 11. The mapping population consisted of 14 grandsire families belonging to three Nordic red cattle breeds: Finnish Ayrshire (FA), Swedish Red and White (SRB) and Danish Red. The families had previously been shown to segregate for udder health QTL. A total of 524 progeny tested bulls were included in the analysis. A linkage map including 33 microsatellite and five SNP markers was constructed. We performed combined linkage disequilibrium and linkage analysis (LDLA) using the whole data set. Further analyses were performed for FA and SRB separately to study the origin of the identified QTL/haplotype and to examine if it was common in both populations. Finally, different two-trait models were fitted. These postulated either a pleiotropic QTL affecting both traits; two linked QTL, each affecting one trait; or one QTL affecting a single trait. A QTL affecting CM was fine-mapped. In FA, a haplotype having a strong association with a high negative effect on mastitis resistance was identified. The mapping precision of an earlier detected SCS-QTL was not improved by the LDLA analysis because of lack of linkage disequilibrium between the markers used and the QTL in the region.  相似文献   

4.
Previous expression quantitative trait loci (eQTL) studies have performed genetic association studies for gene expression, but most of these studies examined lymphoblastoid cell lines from non-diseased individuals. We examined the genetics of gene expression in a relevant disease tissue from chronic obstructive pulmonary disease (COPD) patients to identify functional effects of known susceptibility genes and to find novel disease genes. By combining gene expression profiling on induced sputum samples from 131 COPD cases from the ECLIPSE Study with genomewide single nucleotide polymorphism (SNP) data, we found 4315 significant cis-eQTL SNP-probe set associations (3309 unique SNPs). The 3309 SNPs were tested for association with COPD in a genomewide association study (GWAS) dataset, which included 2940 COPD cases and 1380 controls. Adjusting for 3309 tests (p<1.5e-5), the two SNPs which were significantly associated with COPD were located in two separate genes in a known COPD locus on chromosome 15: CHRNA5 and IREB2. Detailed analysis of chromosome 15 demonstrated additional eQTLs for IREB2 mapping to that gene. eQTL SNPs for CHRNA5 mapped to multiple linkage disequilibrium (LD) bins. The eQTLs for IREB2 and CHRNA5 were not in LD. Seventy-four additional eQTL SNPs were associated with COPD at p<0.01. These were genotyped in two COPD populations, finding replicated associations with a SNP in PSORS1C1, in the HLA-C region on chromosome 6. Integrative analysis of GWAS and gene expression data from relevant tissue from diseased subjects has located potential functional variants in two known COPD genes and has identified a novel COPD susceptibility locus.  相似文献   

5.
We have previously identified and mapped porcine expressed sequence tags (ESTs) derived from genes that are preferentially expressed in liver. The aim of the present study was to identify single nucleotide polymorphisms (SNPs) in porcine genes encoding enzymes in hepatic metabolic pathways and use the SNPs for mapping. Furthermore, these genes, which are involved in utilization and partitioning of nutrients, were examined for their effects on carcass and meat quality traits by linkage analyses. In total, 100 ESTs were screened for SNPs by single strand conformation polymorphism analyses across a diverse panel of animals with a 36% success rate. Twelve of 36 polymorphic loci segregated in a three-generation Duroc x Berlin Miniature Pig (F2) resource population, the DUMI resource population, and were genetically mapped. Interval mapping of the corresponding chromosomes was performed to verify mapping of the genes within quantitative trait loci (QTL) regions detected in this resource population. QTL with genome-wide significance were detected in the vicinity of GNMT, ESTL147 and HGD. These loci therefore are positional candidate genes.  相似文献   

6.
Susceptibility to Theiler's murine encephalomyelitis virus-induced demyelination (TMEVD), a mouse model for multiple sclerosis (MS), is genetically controlled. Through a mouse-human comparative mapping approach, identification of candidate susceptibility loci for MS based on the location of TMEVD susceptibility loci may be possible. Composite interval mapping (CIM) identified quantitative trait loci (QTL) controlling TMEVD severity in male and female backcross populations derived from susceptible DBA/2J and resistant BALBc/ByJ mice. We report QTL on chromosomes 1, 5, 15, and 16 affecting male mice. In addition, we identified two QTL in female mice located on chromosome 1. Our results support the existence of three linked sex-specific QTL on chromosome 1 with opposing effects on the severity of the clinical signs of TMEV-induced disease in male and female mice.  相似文献   

7.
Using data provided by the Collaborative Study on the Genetics of Alcoholism we studied the genetics of a quantitative trait: the maximum number of drinks consumed in a 24-hour period. A two-stage method was used. First, linkage analysis was performed, followed by association analysis in regions where linkage was detected. Additionally, the extent of linkage disequilibrium among single-nucleotide polymorphisms (SNP) associated with the phenotype was assessed. Linkage to chromosomes 2 and 7 was detected, and follow-up association analysis found multiple trait-associated SNPs in the chromosome 7 linkage region. Chromosome 4, which has been implicated in previous studies of the maximum drinks phenotype, did not pass our threshold for linkage evidence in stage 1, but secondary analyses of this chromosome indicated modest evidence for both linkage and association. The evidence suggests that chromosome 7 may harbor an additional locus influencing the maximum drinks consumption phenotype.  相似文献   

8.
An update of the human obesity gene map incorporating published results up to October 1997 is presented. Evidence from Mendelian disorders exhibiting obesity as a clinical feature; single-gene mutation rodent models; quantitative trait loci uncovered in human genome-wide scans and in crossbreeding experiments with mouse, rat, and pig models; association and case-control studies with candidate genes; and linkage studies with genes and other markers is reviewed. All chromosomal locations of the animal loci are converted into human genome locations based on syntenic relationships between the genomes. A complete listing of all of these loci reveals that all but chromosome Y of the 24 human chromosomes are represented. Some chromosomes show at least three putative loci related to obesity on both arms (1, 2, 6, 8, 11, and 20) and several on one chromosome arm only (3p, 4q, 5q, 7q, 12q, 13q, 15q, 15p, 22q, and Xq). Studies reporting negative association and linkage results are also listed, with the exception of the unlinked markers from genome-wide scans.  相似文献   

9.
Salinity tolerance in rice is highly desirable to sustain production in areas rendered saline due to various reasons. It is a complex quantitative trait having different components, which can be dissected effectively by genome-wide association study (GWAS). Here, we implemented GWAS to identify loci controlling salinity tolerance in rice. A custom-designed array based on 6,000 single nucleotide polymorphisms (SNPs) in as many stress-responsive genes, distributed at an average physical interval of <100 kb on 12 rice chromosomes, was used to genotype 220 rice accessions using Infinium high-throughput assay. Genetic association was analysed with 12 different traits recorded on these accessions under field conditions at reproductive stage. We identified 20 SNPs (loci) significantly associated with Na+/K+ ratio, and 44 SNPs with other traits observed under stress condition. The loci identified for various salinity indices through GWAS explained 5–18% of the phenotypic variance. The region harbouring Saltol, a major quantitative trait loci (QTLs) on chromosome 1 in rice, which is known to control salinity tolerance at seedling stage, was detected as a major association with Na+/K+ ratio measured at reproductive stage in our study. In addition to Saltol, we also found GWAS peaks representing new QTLs on chromosomes 4, 6 and 7. The current association mapping panel contained mostly indica accessions that can serve as source of novel salt tolerance genes and alleles. The gene-based SNP array used in this study was found cost-effective and efficient in unveiling genomic regions/candidate genes regulating salinity stress tolerance in rice.  相似文献   

10.
A validation study for six genomic regions previously identified by a genome‐wide association study for somatic cell score was conducted with data of clinical mastitis in German Holstein cattle. Out of 10 tested SNPs, five on chromosomes 6, 13 and 19 were significantly associated with clinical mastitis (< 0.05). Three SNPs on chromosomes 6 and 19 had the same direction of effect as those previously reported in the initial genome‐wide association study for somatic cell score. The other two SNPs on chromosome 13 had opposite effects. As well as validating associations within known QTL from previous studies, e.g. chromosomes 6 and 19, novel loci on chromosome 13 were confirmed. Promising candidate genes are, for example: deoxycytidine kinase, immunoglobulin J chain, vitamin D binding protein, forkhead box K2, sodium/hydrogen exchanger 8 and cytoplasmic nuclear factor of activated T‐cells 2. Our confirmation study provides additional evidence for the functional role of the linked genomic regions to immune response. This information can be used as a basis for further functional studies for those potential genes.  相似文献   

11.
This report constitutes the seventh update of the human obesity gene map incorporating published results up to the end of October 2000. Evidence from the rodent and human obesity cases caused by single‐gene mutations, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci uncovered in human genome‐wide scans and in cross‐breeding experiments in various animal models, and association and linkage studies with candidate genes and other markers are reviewed. Forty‐seven human cases of obesity caused by single‐gene mutations in six different genes have been reported in the literature to date. Twenty‐four Mendelian disorders exhibiting obesity as one of their clinical manifestations have now been mapped. The number of different quantitative trait loci reported from animal models currently reaches 115. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 130 studies reporting positive associations with 48 candidate genes. Finally, 59 loci have been linked to obesity indicators in genomic scans and other linkage study designs. The obesity gene map reveals that putative loci affecting obesity‐related phenotypes can be found on all chromosomes except chromosome Y. A total of 54 new loci have been added to the map in the past 12 months and the number of genes, markers, and chromosomal regions that have been associated or linked with human obesity phenotypes is now above 250. Likewise, the number of negative studies, which are only partially reviewed here, is also on the rise.  相似文献   

12.
We herein demonstrate that in the Holstein-Friesian dairy cattle population, microsatellites are as polymorphic on the X chromosome as on the autosomes but that the level of linkage disequilibrium between these markers is higher on the X chromosome than on the autosomes. The latter observation is not compatible with the small male-to-female ratio that prevails in this population and results in a higher gonosomal than autosomal effective population size. It suggests that the X chromosome undergoes distinct selective or mutational forces. We describe and characterize a novel Markovian approach to exploit this linkage disequilibrium to compute the probability that two chromosomes are identical-by-descent conditional on flanking marker data. We use the ensuing probabilities in a restricted maximum-likelihood approach to search for quantitative trait loci (QTL) affecting 48 traits of importance to the dairy industry and provide evidence for the presence of QTL affecting 5 of these traits on the bovine X chromosome.  相似文献   

13.
The aim of the study was to investigate quantitative trait loci (QTL) in previously identified regions of chicken chromosomes 1, 4 and 5 relating to 40-day body weights and conformation scores. Half-sib (HS) and variance component analyses were implemented and compared using QTL Express software. Data were from a two-generation design and consisted of 100 dam families nested in 46 sire families with trait values for 2,708 offspring. Chicken chromosome 4 showed nominal significance for QTL affecting body weight and conformation, and linkage was confirmed for both traits on chromosome 5. Results varied according to method of analysis and with common parent in the HS method.  相似文献   

14.
Single single-nucleotide polymorphism (SNP) genome-wide association studies (SSGWAS) may fail to identify loci with modest effects on a trait. The recently developed regional heritability mapping (RHM) method can potentially identify such loci. In this study, RHM was compared with the SSGWAS for blood lipid traits (high-density lipoprotein (HDL), low-density lipoprotein (LDL), plasma concentrations of total cholesterol (TC) and triglycerides (TG)). Data comprised 2246 adults from isolated populations genotyped using ∼300 000 SNP arrays. The results were compared with large meta-analyses of these traits for validation. Using RHM, two significant regions affecting HDL on chromosomes 15 and 16 and one affecting LDL on chromosome 19 were identified. These regions covered the most significant SNPs associated with HDL and LDL from the meta-analysis. The chromosome 19 region was identified in our data despite the fact that the most significant SNP in the meta-analysis (or any SNP tagging it) was not genotyped in our SNP array. The SSGWAS identified one SNP associated with HDL on chromosome 16 (the top meta-analysis SNP) and one on chromosome 10 (not reported by RHM or in the meta-analysis and hence possibly a false positive association). The results further confirm that RHM can have better power than SSGWAS in detecting causal regions including regions containing crucial ungenotyped variants. This study suggests that RHM can be a useful tool to explain some of the ‘missing heritability'' of complex trait variation.  相似文献   

15.
Linkage mapping of gene-associated SNPs to pig chromosome 11   总被引:3,自引:0,他引:3  
Single nucleotide polymorphisms (SNPs) were discovered in porcine expressed sequence tags (ESTs) orthologous to genes from human chromosome 13 (HSA13) and predicted to be located on pig chromosome 11 (SSC11). The SNPs were identified as sequence variants in clusters of EST sequences from pig cDNA libraries constructed in the Sino-Danish pig genome project. In total, 312 human gene sequences from HSA13 were used for similarity searches in our pig EST database. Pig ESTs showing significant similarity with HSA13 genes were clustered and candidate SNPs were identified. Allele frequencies for 26 SNPs were estimated in a group of 80 unrelated pigs from Danish commercial pig breeds: Duroc, Hampshire, Landrace and Large White. Eighteen of the 26 SNPs genotyped in the PiGMaP Reference Families were mapped by linkage analysis to SSC11. The EST-based SNPs published here are new genetic markers useful for linkage and association studies in commercial and experimental pig populations. This study represents the first gene-associated SNP linkage map of pig chromosome 11 and adds new comparative mapping information between SSC11 and HSA13. Furthermore, our data facilitate future studies aimed at the identification of interesting regions on pig chromosome 11, positional cloning and fine mapping of quantitative trait loci in pig.  相似文献   

16.
Twinning is a complex trait with negative impacts on health and reproduction, which cause economic loss in dairy production. Several twinning rate quantitative trait loci (QTL) have been detected in previous studies, but confidence intervals for QTL location are broad and many QTL are unreplicated. To identify genomic regions or genes associated with twinning rate, QTL analysis based on linkage combined with linkage disequilibrium (LLD) and individual marker associations was conducted across the genome using high-throughput single nucleotide polymorphism (SNP) genotypes. A total of 9919 SNP markers were genotyped with 200 sires and sons in 19 half-sib North American Holstein dairy cattle families. After SNPs were genotyped, informative markers were selected for genome-wide association tests and QTL searches. Evidence for twinning rate QTL was found throughout the genome. Thirteen markers significantly associated with twinning rate were detected on chromosomes 2, 5 and 14 ( P  < 2.3 × 10−5). Twenty-six regions on fourteen chromosomes were identified by LLD analysis at P  < 0.0007. Seven previously reported ovulation or twinning rate QTL were supported by results of single marker association or LLD analyses. Single marker association analysis and LLD mapping were complementary tools for the identification of putative QTL in this genome scan.  相似文献   

17.
Myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease in rats that closely mimics many clinical and histopathological aspects of multiple sclerosis. Non-MHC quantitative trait loci regulating myelin oligodendrocyte glycoprotein-induced EAE have previously been identified in the EAE-permissive strain, DA, on rat chromosomes 4, 10, 15, and 18. To find any additional gene loci in another well-known EAE-permissive strain and thereby to assess any genetic heterogeneity in the regulation of the disease, we have performed a genome-wide linkage analysis in a reciprocal (LEW.1AV1 x PVG.1AV1) male/female F(2) population (n = 185). We examined reciprocal crosses, but no parent-of-origin effect was detected. The parental rat strains share the RT1(av1) MHC haplotype; thus, non-MHC genes control differences in EAE susceptibility. We identified Eae16 on chromosome 8 and Eae17 on chromosome 13, significantly linked to EAE phenotypes. Two loci, on chromosomes 1 and 17, respectively showed suggestive linkage to clinical and histopathological EAE phenotypes. Eae16 and Eae17 differ from those found in previously studied strain combinations, thus demonstrating genetic heterogeneity of EAE. Furthermore, we detected a locus-specific parent-of-origin effect with suggestive linkage in Eae17. Further genetic and functional dissection of these loci may disclose critical disease-regulating molecular mechanisms.  相似文献   

18.
An update of the human obesity gene map up to October 1996 is presented. Evidence from Mendelian disorders exhibiting obesity as a clinical feature, single-gene mutation rodent models, quantitative trait loci uncovered in crossbreeding experiments with mouse, rat, and pig models, association and case-control studies with candidate genes, and linkage studies with genes and other markers is reviewed. All chromosomal locations of the animal loci are converted into human genome locations based on syntenic relationships between the genomes. A complete listing of all these loci reveals that only 4 of the 24 human chromosomes are not yet represented, i.e., 9, 18, 21, and Y. Several chromosome arms are characterized by the presence of several putative loci. The following arms include at least three such loci: 1p, 1q, 3p, 4q, 6p, 7q, 8p, 8q, 11p, 11q, 15q, 20q, and Xq. Studies with negative association and linkage results are also reviewed.  相似文献   

19.
The genetic loci affecting the commonly used BMI have been intensively investigated using linkage approaches in multiple populations. This study aims at performing the first genome‐wide linkage scan on BMI in the Chinese population in mainland China with hypothesis that heterogeneity in genetic linkage could exist in different ethnic populations. BMI was measured from 126 dizygotic twins in Qingdao municipality who were genotyped using high‐resolution Affymetrix Genome‐Wide Human SNP arrays containing about 1 million single‐nucleotide polymorphisms (SNPs). Nonparametric linkage analysis was performed with Merlin software package for linkage analysis using variance components approach for quantitative trait loci mapping. We identified a strong linkage peak at the end of chromosome 7 (7q36 at 186 cM) with a lod score of 4.06 which overlaps with that reported by a large multicenter study in western countries. Multiple loci showing suggestive linkage were found on chromosome 1 (lod score 2.38 at 242 cM), chromosome 8 (2.48 at 95 cM), and chromosome 14 (2.2 at 89.4 cM). The strong linkage identified in the Chinese subjects that is consistent with that found in populations of European origin could suggest the existence of evolutionarily preserved genetic mechanisms for BMI whereas the multiple suggestive loci could represent genetic effect from gene—environment interaction as a result of population‐specific environmental adaptation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号