首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Doxorubicin (DOX) cardiotoxicity is a significant side effect in cancer survivors. DOX and its metabolites alter cardiac gene expression and affect metabolic energy-related peptides. Adropin, copeptin, irisin and TRPM2 are produced locally in the heart and play a role in energy homeostasis. We investigated the fates of adropin, copeptin, irisin and TRPM2 in serum and cardiac tissues of DOX treated rats. Animals were divided into three groups of six: 1) untreated controls, 2) DOX treated and 3) saline treated. The rats were fed a standard diet ad libitum for 14 days then were sacrificed and heart and serum samples were taken. Adropin, copeptin, irisin levels in tissue homogenates and serum were measured using ELISA. Immunoreactivity of heart tissue adropin, copeptin, irisin and TRPM2 also were investigated. The peptides increased in both serum and cardiac tissue homogenates in animals treated with DOX compared to the other groups. DOX increased adropin in endocardial and myocardial cells, but it decreased expression of copeptin. DOX did not affect endocardial irisin and TRPM2 expressions, but myocardial irisin and TRPM2 expressions were increased. Serum adropin, irisin and copeptin were increased in DOX treated rats. Cardiac adropin, copeptin, irisin and TRPM2 are affected by DOX and may play a role in DOX cardiotoxicity.  相似文献   

2.
《Translational oncology》2020,13(2):471-480
Dysregulation of calcium homeostasis is a major mechanism of doxorubicin (DOX)-induced cardiotoxicity. Treatment with DOX causes activation of sarcoplasmic reticulum (SR) ryanodine receptor (RYR) and rapid release of Ca2+ in the cytoplasm resulting in depression of myocardial function. The aim of this study was to examine the effect of dantrolene (DNT) a RYR blocker on both the cardiotoxicity and antitumor activity of DOX in a rat model of breast cancer. Female F344 rats with implanted MAT B III breast cancer cells were randomized to receive intraperitoneal DOX twice per week (12 mg/kg total dose), 5 mg/kg/day oral DNT or a combination of DOX + DNT for 3 weeks. Echocardiography and blood troponin I levels were used to measure myocardial injury. Hearts and tumors were evaluated for histopathological alterations. Blood glutathione was assessed as a measure of oxidative stress. The results showed that DNT improved DOX-induced alterations in the echocardiographic parameters by 50%. Histopathologic analysis of hearts showed reduced DOX induced cardiotoxicity in the group treated with DOX + DNT as shown by reduced interstitial edema, cytoplasmic vacuolization, and myofibrillar disruption, compared with DOX-only–treated hearts. Rats treated with DNT lost less body weight, had higher blood GSH levels and lower troponin I levels than DOX-treated rats. These data indicate that DNT is able to provide protection against DOX cardiotoxicity without reducing its antitumor activity. Further studies are needed to determine the optimal dosing of DNT and DOX in a tumor-bearing host.  相似文献   

3.
Wang  Qilin  Sun  Wendong  Hao  Xuexi  Li  Tianliang  Su  Ling  Liu  Xiangguo 《Cancer cell international》2012,12(1):1-8

Background

Breast cancer is the most common cancer in the Arab world and it ranked first among Saudi females. Doxorubicin (DOX), an anthracycline antibiotic is one of the most effective anticancer agents used to treat breast cancer. chronic cardiotoxicity is a major limiting factor of the use of doxorubicin. Therefore, our study was designed to assess the role of a natural product resveratrol (RSVL) on sensitization of human breast cancer cells (MCF-7) to the action of DOX in an attempt to minimize doxorubicin effective dose and thereby its side effects.

Methods

Human breast cancer cell line MCF-7, was used in this study. Cytotoxic activity of DOX was determined using (sulforhodamine) SRB method. Apoptotic cells were quantified after treatment by annexin V-FITC- propidium iodide (PI) double staining using flow-cytometer. Cell cycle disturbance and doxorubicin uptake were determined after RSVL or DOX treatment.

Results

Treatment of MCF-7 cells with 15 μg/ml RSVL either simultaneously or 24 h before DOX increased the cytotoxicity of DOX, with IC50 were 0.056 and 0.035 μg/ml, respectively compared to DOX alone IC50 (0.417 μg/ml). Moreover, flow cytometric analysis of the MCF-7 cells treated simultaneously with DOX (0.5 μg/ml) and RSVL showed enhanced arrest of the cells in G0 (80%). On the other hand, when RSVL is given 24 h before DOX although there was more increased in the cytotoxic effect of DOX against the growth of the cells, however, there was decreased in percentage arrest of cells in G0, less inhibition of DOX-induced apoptosis and reduced DOX cellular uptake into the cells.

Conclusion

RSVL treatment increased the cytotoxic activity of DOX against the growth of human breast cancer cells when given either simultaneously or 24 h before DOX.  相似文献   

4.
5.
We show that the pseudoperoxidase activity of ferrylmyoglobin (MbIV) promotes oxidative degradation of doxorubicin (DOX), an anticancer anthracycline known to induce severe cardiotoxicity. MbIV, formed in vitro by reacting horse heart MbIII with H2O2, caused disappearance of the spectrum of DOX at 477 nm and appearance of UV-absorbing chromophores that indicated opening and degradation of its tetracyclic ring. Electron spray ionization mass spectrometry analyses of DOX/MbIV ultrafiltrates showed that DOX degradation resulted in formation of 3-methoxyphthalic acid, the product of oxidative modifications of its methoxy-substituted ring D. Other methoxy-substituted anthracyclines similarly released 3-methoxyphthalic acid after oxidation by MbIV, whereas demethoxy analogs released simple phthalic acid. Kinetic and stoichiometric analyses of reactions between DOX and MbIII/H2O2 or hemin/H2O2 showed that the porphyrin radical of MbIV-compound I and the iron-oxo moiety of MbIV-compound II were sequentially involved in oxidizing DOX; however, oxidation by compound I formed more 3-methoxyphthalic acid than oxidation by compound II. Sizeable amounts of 3-methoxyphthalic acid were formed in the heart of mice treated with DOX, in human myocardial biopsies exposed to DOX in vitro, and in human cardiac cytosol that oxidized DOX after activation of its endogenous myoglobin by H2O2. Importantly, H9c2 cardiomyocytes were damaged by low concentrations of DOX but could tolerate concentrations of 3-methoxyphthalic acid higher than those measured in murine or human myocardium. These results unravel a novel function for MbIV in the oxidative degradation of anthracyclines to phthalic acids and suggest that this may serve a salvage pathway against cardiotoxicity.  相似文献   

6.
Several front-line chemotherapeutics cause mitochondria-derived, oxidative stress-mediated cardiotoxicity. Iron chelators and other antioxidants have not completely succeeded in mitigating this effect. One hindrance to the development of cardioprotectants is the lack of physiologically-relevant animal models to simultaneously study antitumor activity and cardioprotection. Therefore, we optimized a syngeneic rat model and examined the mechanisms by which oxidative stress affects outcome. Immune-competent spontaneously hypertensive rats (SHRs) were implanted with passaged, SHR-derived, breast tumor cell line, SST-2. Tumor growth and cytokine responses (IL-1A, MCP-1, TNF-α) were observed for two weeks post-implantation. To demonstrate the utility of the SHR/SST-2 model for monitoring both anticancer efficacy and cardiotoxicity, we tested cardiotoxic doxorubicin alone and in combination with an established cardioprotectant, dexrazoxane, or a nitroxide conjugated to a triphenylphosphonium cation, Mito-Tempol (4) [Mito-T (4)]. As predicted, tumor reduction and cardiomyopathy were demonstrated by doxorubicin. We confirmed mitochondrial accumulation of Mito-T (4) in tumor and cardiac tissue. Dexrazoxane and Mito-T (4) ameliorated doxorubicin-induced cardiomyopathy without altering the antitumor activity. Both agents increased the pro-survival autophagy marker LC3-II and decreased the apoptosis marker caspase-3 in the heart, independently and in combination with doxorubicin. Histopathology and transmission electron microscopy demonstrated apoptosis, autophagy, and necrosis corresponding to cytotoxicity in the tumor and cardioprotection in the heart. Changes in serum levels of 8-oxo-dG-modified DNA and total protein carbonylation corresponded to cardioprotective activity. Finally, 2D-electrophoresis/mass spectrometry identified specific serum proteins oxidized under cardiotoxic conditions. Our results demonstrate the utility of the SHR/SST-2 model and the potential of mitochondrially-directed agents to mitigate oxidative stress-induced cardiotoxicity. Our findings also emphasize the novel role of specific protein oxidation markers and autophagic mechanisms for cardioprotection.  相似文献   

7.
Doxorubicin (DOX) is a broad spectrum antitumor agent. However, its clinical utility is limited due to the well-known cardiotoxicity. Resveratrol (RSV) has been reported to exert cardioprotective effect in some cardiovascular diseases. In this study, we aimed to determine the effect of RSV on DOX-induced cardiotoxicity, and further explore the underlying mechanism in this process.Male Sprague-Dawley (SD) rats were randomly divided into four groups: CON, DOX, RSV, or DOX+RSV group (10 rats in each group). DOX treatment significantly decreased cardiac function, and increased the release of serum lactate dehydrogenase (LDH) and creatine kinase isoenzyme (CK-MB) in rat serum. Increased cell death and apoptosis of cardiomyocytes were also observed in DOX group in comparison with CON group. DOX treatment dramatically down-regulated expression of VEGF-B either in vivo or in vitro. In contrast, the combination of RSV and DOX markedly attenuated DOX-induced cardiotoxicity with the up-regulation of VEGF-B. Inhibition of VEGF-B by small interfering RNA (siRNA) abolished the protective effects of RSV on DOX-treated cardiomyocytes.Consequently,our findings indicated that RSV attenuates DOX-induced cardiotoxicity through up-regulation of VEGF-B.  相似文献   

8.
Biochemical modulation has played an important role in the development of cancer chemotherapy. The combined effects of theanine, a specific amino acid in green tea, and glutamate transporter inhibitors on the antitumor activity of doxorubicin (DOX), were investigated and we clarified the biochemical mechanisms of action of these modulators. In M5076 ovarian sarcoma-bearing mice, theanine significantly enhanced the inhibitory effect of DOX on tumor growth and increased the DOX concentration in the tumor, compared to DOX-alone group. Furthermore, the oral administration of theanine or green tea similarly enhanced the antitumor activity of DOX. Moreover, the combination of theanine with DOX suppressed the hepatic metastasis of ovarian sarcoma. In contrast, an increase in DOX concentration was not observed in normal tissues, such as liver and heart. Namely, theanine did not enhance, rather it tended to normalize the increase of lipid peroxide (LPO) levels and reduction of glutathione peroxidase activity as indicators of the DOX-induced side toxicity. On the other hand, in vitro experiments proved that theanine inhibited the efflux of DOX from tumor cells, supporting a theanine-induced increase in the DOX concentration in tumors in vivo. Moreover, theanine significantly inhibited the glutamate uptake by M5076 cells similar to specific inhibitors. Two astrocytic high-affinity glutamate transporters, GLAST and GLT-1, were expressed in M5076 cells. These results suggested that the inhibition of DOX efflux was induced by theanine-mediated inhibition of glutamate transporters. The reduction in the concentration of glutamate in tumor cells caused by theanine induced decreases in the intracellular glutathione (GSH) and GS-DOX conjugate levels. As the expression of MRP5 in M5076 cells was confirmed, it is suggested that the GS-DOX conjugate was transported extracellularly via the MRP5/GS-X pump in M5076 cells and that theanine affected this route. Namely, theanine increases the concentration of DOX in a tumor in vivo through inhibition of the glutamate transporter via the GS-X pump. Similarly, dihydrokainate (DHK) and L-serine-O-sulfate (SOS), specific glutamate transporter inhibitors, indicated the enhancement of the DOX antitumor activity via inhibition of glutamate uptake. Therefore, we revealed the novel mechanism of enhancement of antitumor efficacy of DOX via the inhibition of glutamate transporters. Similarly, theanine enhanced the antitumor activities of other anthracyclines, cisplatin and irinotecan. Consequently, the modulating effect of theanine on the efficacy of antitumor agents is expected to be applicable in clinical cancer chemotherapy.  相似文献   

9.
Many studies have shown that metallothionein (MT) can be increased significantly by different oxidative insults in multiple organ systems. However, the increase in MT production often fails to protect against oxidative tissue injury. On the other hand, recent studies using a cardiac-specific, MT-overexpressing, transgenic mouse model have shown that MT protects against oxidative heart injury. Thus, the present study was undertaken to test the hypothesis that prior increase in MT levels is required to prevent oxidative injury. Oxidative heart injury was induced by doxorubicin (DOX), an important anticancer drug that causes severe cardiotoxicity through oxidative stress. Cardiac-specific, MT-overexpressing, transgenic mice and wild-type (WT) FVB mice were treated with DOX at 20 mg/kg. Four days after the treatment, MT concentrations were markedly elevated in the WT mouse heart. The elevated MT concentrations were comparable with those found in the transgenic mouse heart, which did not show further MT elevation in response to DOX challenge. Severe oxidative injury occurred in the heart of WT mice, including myocardial lipid peroxidation, morphological changes as examined by electron microscopy, high levels of serum creatine kinase activity, and decreased total glutathione concentrations in the heart. However, all of these pathological changes were significantly inhibited in the MT-transgenic mice. Therefore, this study demonstrates that there is a correlation between MT induction and oxidative stress in the DOX-treated mouse heart. However, MT can protect the heart from oxidative injury only if it is present prior to induction of oxidative stress.  相似文献   

10.
Kim S  Kim SS  Bang YJ  Kim SJ  Lee BJ 《Peptides》2003,24(7):945-953
In order to develop peptide agents with reduced length and enhanced tumoricidal activity, we have designed gaegurin 6 (GGN6) derivatives through deletions and/or substitutions of amino acids. The deletion of hydrophobic amino terminal region completely abolished antitumor activity whereas the deletion of carboxy terminal region had little influence on antitumor activity. Antitumor activity of the PTP peptides did not correlate with antibacterial activity. PTP7, the most potent derivative, was found to have comparable antitumor activity to GGN6 in spite of reduced number of amino acids which is about half the size of gaegurin 6; furthermore, it showed little cytotoxicity on PBMCs and RBCs. GGN6 and PTP7 also showed equivalent cytotoxicity against drug sensitive (MCF-7) and multidrug-resistant cell lines (MCF-7/DOX). Plasma membrane blebbing and DNA fragmentation of peptide-treated tumor cells indicated that the peptides could induce apoptosis in tumor cells. These results suggest that GGN6 and its derivatives can be developed as new anticancer agents and may provide a new strategy for overcoming MDR which is a major problem in cancer therapy.  相似文献   

11.
Thiarabine is undergoing clinical trials. In support of that effort combination therapy of thiarabine plus six clinical anticancer agents was evaluated using various human tumor xenograft models. The antitumor activity of thiarabine in combination appeared to be greater than additive with irinotecan (DLD-1 colon), paclitaxel (PC-3 prostate), cisplatin (PC-3 prostate), or cyclophosphamide (RL lymphoma), additive with irinotecan (NCI-H460 NSCLC), cisplatin (NCI-H460 NSCLC) or methotrexate (CCRF-CEM leukemia), and less than additive with irinotecan (HT29 colon), paclitaxel (NCI-H460 NSCLC) or cisplatin (NCI-H23 NSCLC). Combining thiarabine with irinotecan, paclitaxel, cisplatin, or cyclophosphamide should receive consideration in the clinical treatment of cancer.  相似文献   

12.
The efficacy of doxorubicin (DOX) as an antitumor agent is greatly limited by the induction of cardiomyopathy, which results from mitochondrial dysfunction and iron-catalyzed oxidative stress in the cardiomyocyte. Metformin (MET) has been seen to have a protective effect against the oxidative stress induced by DOX in cardiomyocytes through its modulation of ferritin heavy chain (FHC), the main iron-storage protein. This study aimed to assess the involvement of FHC as a pivotal molecule in the mitochondrial protection offered by MET against DOX cardiotoxicity. The addition of DOX to adult mouse cardiomyocytes (HL-1 cell line) increased the cytosolic and mitochondrial free iron pools in a time-dependent manner. Simultaneously, DOX inhibited complex I activity and ATP generation and induced the loss of mitochondrial membrane potential. The mitochondrial dysfunction induced by DOX was associated with the release of cytochrome c to the cytosol, the activation of caspase 3, and DNA fragmentation. The loss of iron homeostasis, mitochondrial dysfunction, and apoptosis induced by DOX were prevented by treatment with MET 24 h before the addition of DOX. The involvement of FHC and NF-κB was determined through siRNA-mediated knockdown. Interestingly, the presilencing of FHC or NF-κB with specific siRNAs blocked the protective effect induced by MET against DOX cardiotoxicity. These findings were confirmed in isolated primary neonatal rat cardiomyocytes. In conclusion, these results deepen our knowledge of the protective action of MET against DOX-induced cardiotoxicity and suggest that therapeutic strategies based on FHC modulation could protect cardiomyocytes from the mitochondrial damage induced by DOX by restoring iron homeostasis.  相似文献   

13.
Satoh M  Naganuma A  Imura N 《Life sciences》2000,67(6):627-634
The effect of tissue specific induction of metallothionein (MT) by preadministration of metal compounds on the antitumor activity and adverse effects of adriamycin (ADR) was examined using mice bearing colon 38 adenocarcinoma. Significant increase in MT concentration was observed in the heart and bone marrow but not in the tumor tissue of the mice given bismuth (Bi) compound. Copper (Cu) increased MT in the tumor tissue but did not induce MT either in bone marrow or in the heart, whereas zinc (Zn) increased MT level in the heart and bone marrow as well as in the tumor tissue. ADR exerted cardiotoxicity, indicated by increase in lipid peroxidation in the heart, bone marrow toxicity, indicated by decrease in number of peripheral leukocytes, and antitumor activity, assessed by reduction of tumor weight, in tumor-bearing mice untreated with MT inducing metal compounds. Preadministration of Bi significantly reduced the cardiotoxicity and bone marrow toxicity without compromising the antitumor activity of ADR. Cu pretreatment did not affect the extent of cardiotoxicity and bone marrow toxicity but significantly suppressed the antitumor effect. Pretreatment with Zn markedly reduced not only the adverse side effects but also the antitumor activity. The results described above suggest that ADR toxicity can be attenuated in the tissues in which the MT level was elevated and that the tissue specific induction of MT synthesis may provide a promising regimen for cancer chemotherapy.  相似文献   

14.
从3%三氯乙酸浸提过的金顶侧耳(Pleurotus citrinopileatus)子实体中分离纯化另一水溶性多糖PC-4。该多糖分子量约为189Kd。纸层析与气相层析分析表明其为单一葡聚糖。经高碘酸氧化,Smith降解,甲基化,气相层析,气质联机分析,核磁共振(~1H-NMR,~(13)C-NMR)谱及红外光谱测定等,可确定PC-4的主链结构由β(1→3)糖苷键相连的葡萄糖构成,部份残基C_6上带有分支。约每5个糖残基有两个侧链,侧链仅为1个葡萄糖残基。 给ICR小鼠腹腔注射PC-4,对移植性肿瘤S-180有一定的抑制作用,抑瘤率为67%。离体条件下,PC-4与肿瘤细胞S-180共同培养,则未显示抑瘤作用。  相似文献   

15.
Arabic gum (AG) is a naturally occurring compound that has been proposed to possess potent antioxidant activity. In this study, the possible effects whereby AG could protect against cardiotoxicity induced by doxorubicin (DOX) in mice were carried out. Administration of single dose of DOX (15 mg/kg, i.p.) induced cardiotoxicity 72 h, manifested biochemically by a significant elevation of serum creatine kinase (CK) (EC 2.7.3.2). In addition, cardiotoxicity was further confirmed by the significant increase in lipid peroxides measured as malondialdehyde (MDA). Administration of AG (25 g/kg) orally for 5 days before and 72 h after DOX injection produced a significant protection against cardiotoxicity induced by DOX. This was evidenced by significant reductions in serum CK and cardiac lipid peroxides. The effect of AG was examined on the superoxide anion radical generated by enzymatic and nonenzymatic methods. The results indicate that AG is a potent superoxide scavenger. The superoxide scavenging effect of AG may explain, at least in part, the protective effect of AG against cardiotoxicity induced by DOX.  相似文献   

16.

Background

The dose-dependent toxicities of doxorubicin (DOX) limit its clinical applications, particularly in drug-resistant cancers, such as liver cancer. In this study, we investigated the role of quercetin on the antitumor effects of DOX on liver cancer cells and its ability to provide protection against DOX-mediated liver damage in mice.

Methodology and Results

The MTT and Annexin V/PI staining assay demonstrated that quercetin selectively sensitized DOX-induced cytotoxicity against liver cancer cells while protecting normal liver cells. The increase in DOX-mediated apoptosis in hepatoma cells by quercetin was p53-dependent and occurred by downregulating Bcl-xl expression. Z-VAD-fmk (caspase inhibitor), pifithrin-α (p53 inhibitor), or overexpressed Bcl-xl decreased the effects of quercetin on DOX-mediated apoptosis. The combined treatment of quercetin and DOX significantly reduced the growth of liver cancer xenografts in mice. Moreover, quercetin decreased the serum levels of alanine aminotransferase and aspartate aminotransferase that were increased in DOX-treated mice. Quercetin also reversed the DOX-induced pathological changes in mice livers.

Conclusion and Significance

These results indicate that quercetin potentiated the antitumor effects of DOX on liver cancer cells while protecting normal liver cells. Therefore, the development of quercetin may be beneficial in a combined treatment with DOX for increased therapeutic efficacy against liver cancer.  相似文献   

17.
To examine the basis of the immune modulation induced by the anticancer agent doxorubicin (DOX), the immunophenotype, tumoricidal activity, cytokine protein and mRNA expression were determined using peritoneal exudate cells (PEC) from saline-treated (untreated) and DOX-treated mice. A greater percentage of PEC from DOX-treated mice than from untreated mice were adherent to plastic, had characteristics of granulocytes, and were positive for the NK1.1, CD11b/Mac-1, and CD3 markers. DOX decreased the percentage of CD45R/B220+ cells. PEC from DOX-treated mice had greater tumoricidal potential than those from untreated mice since IL2, LPS, or IFNgamma alone increased the cytolytic activity of PEC from DOX-treated mice, whereas PEC from untreated mice required both LPS and IFNgamma to become cytolytic. DOX treatment modulated the expression of specific cytokines. Following stimulation in culture, PEC from DOX-treated mice produced more TNF, IL1, and IFNgamma than PEC from untreated mice. DOX treatment increased the levels of TNF, but not IL1, mRNA and decreased the levels of IL6 mRNA and protein. These data demonstrate that a single DOX injection induces specific effects in PEC and, as a consequence, increases the tumoricidal potential of cells of the macrophage and natural killer types.  相似文献   

18.
Sulfatide is a glycosphingolipid known to interact with several extracellular matrix proteins, such as tenascin-C which is overexpressed in many types of cancer including that of the colon. In view of the limited success of chemotherapy in colorectal cancer and high toxicity of doxorubicin (DOX), a sulfatide-containing liposome (SCL) encapsulation approach was taken to overcome these barriers. This study assessed the in vitro cytotoxicity, biodistribution, therapeutic efficacy and systemic toxicity in vivo of sulfatide-containing liposomal doxorubicin (SCL-DOX) using human colonic adenocarcinoma HT-29 xenograft as the experimental model. In vitro, SCL-DOX was shown to be delivered into the nuclei and displayed prolonged retention compared with the free DOX. The use of this nanodrug delivery system to deliver DOX for treatment of tumor-bearing mice produced a much improved therapeutic efficacy in terms of tumor growth suppression and extended survival in contrast to the free drug. Furthermore, treatment of tumor-bearing mice with SCL-DOX resulted in a lower DOX uptake in the principal sites of toxicity of the free drug, namely the heart and skin, as well as reduced myelosuppression and diminished cardiotoxicity. Such natural lipid-guided nanodrug delivery systems may represent a new strategy for the development of effective anticancer chemotherapeutics targeting the tumor microenvironment for both primary tumor and micrometastases.  相似文献   

19.
The impact of cancer therapies on adult cardiac function is becoming a concern as more children survive their initial cancer. Cardiovascular disease is now a significant problem to adult survivors of childhood cancer. Specifically, doxorubicin (DOX) may be particularly harmful in young girls. The objective of this study was to characterize DOX damage and determine the ability of dexrazoxane (DEX) to reduce DOX-mediated cardiac damage in sedentary and swim-trained female rats. Female Sprague-Dawley rats were left intact or ovariectomized (OVX) at weaning then injected with DEX (60 mg/kg) before DOX (3 mg/kg), DOX alone, or PBS. Rats were separated into sedentary and swim cohorts. Body weight was reduced in DOX:DEX- but not PBS- or DOX-treated rats. Echocardiographic parameters were similar in sedentary rats. Swim training revealed greater concentric remodeling in DOX-treated rats and reduced fractional shortening in DOX:DEX-treated rats. Calsequestrin 2 was reduced with DOX and increased with DOX:DEX postswim. Sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a was reduced and calsequestrin 2 reduced further by swim training only in intact rats. OVX rats were heavier and developed eccentric remodeling post-swim with DOX and eccentric hypertrophy with DOX:DEX. Changes in SERCA2a and calsequestrin 2 expression were not observed. Ovariectomized DOX- and DOX:DEX-treated rats stopped growing during swim training. DEX coinjection did not relieve DOX-mediated cardiotoxicity in intact or hormone-deficient rats. DOX-mediated reductions in growth, cardiac function, and expression of calcium homeostasis proteins were exacerbated by swim. DEX coadministration did not substantially relieve DOX-mediated cardiotoxicity in young female rats. Ovarian hormones reduce DOX-induced cardiotoxicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号