首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By means of a simple procedure involving two gel filtrations and an ion-exchange chromatography, alpha-N-acetylgalactosaminidase was purified to an electrophoretically homogeneous form from skipjack liver, in which the enzyme is the dominant glycosidase. The final alpha-N-acetylgalactosaminidase preparation contained practically no other glycosidase activities except alpha-galactosidase activity, which amounted to 0.8% of the alpha-N-acetylgalactosaminidase activity and may be an intrinsic activity of the enzyme. The molecular weight of the enzyme was estimated to be 80,000 at pH 4.2 and 40,000 at pH 7.2 by molecular sieve chromatography, and to be 35,000 by SDS-polyacrylamide gel electrophoresis. The enzyme was most active at pH 4 and was inactive above pH 7. These results suggest that skipjack alpha-N-acetylgalactosaminidase exists as an active dimer at acidic pH and as inactive monomer at neutral or alkaline pH. The enzyme efficiently liberated the N-acetylgalactosamine unit from ovine submaxillary glycoprotein which had been desialylated by neuraminidase. The Km value and maximum velocity were 4.28 mM and 409 mumol/min X mg for p-nitrophenyl alpha-N-acetylgalactosaminide, and 0.0543 mM and 1.19 mumol/min X mg for ovine submaxillary asialoglycoprotein.  相似文献   

2.
Purified liver lysosomes, prepared from rats previously injected with Triton WR-1339, exhibited sialidase activity towards sialyllactose, fetuin, submaxillary mucin (bovine) and gangliosides, and could be disrupted hypotonically with little loss in these activities. After centrifugation, the activities with sialyllactose and fetuin were largely recovered in the supernatant, demonstrating that they were originally in the intralysosomal space. The activities towards submaxillary mucin and gangliosides, on the other hand, remained in the pellet. In the supernatant, activity with fetuin or orosomucoid was markedly reduced by protease inhibitors, suggesting that proteolysis of these glycoproteins may be prerequisite to sialidase activity. The intralysosomal sialidase was solubilized from the mitochondrial-lysosomal fraction of rat liver and partially purified by Sephadex G-200, or Sephadex G-200 followed by CM-cellulose. The enzyme was maximally active at pH 4.7 with sialyllactose as substrate and had a minimum relative molecular mass of 60 000 +/- 5000 by gel filtration; it hydrolyzed a variety of sialooligosaccharides , those containing (alpha 2----3)sialyl linkages being better substrates than those with (alpha 2----6)sialyl linkages. The enzyme failed to attack submaxillary mucin and gangliosides. It was also inactive towards fetuin, orosomucoid and transferrin but capable of hydrolyzing glycopeptides from pronase digest of fetuin. In contrast to the intralysosomal sialidase, the sialidase partially purified from rat liver cytosol by (NH4)2SO4 fractionation followed by chromatography on DEAE-cellulose and CM-cellulose hydrolyzed fetuin and orosomucoid to the extent about half that for sialyllactose. The enzyme was maximally active at pH 5.8 and had a relative molecular mass of approximately 60 000. It also hydrolyzed gangliosides but not submaxillary mucin.  相似文献   

3.
Nonsteroidal anti-inflammatory drugs inhibit gastric peroxidase activity   总被引:1,自引:0,他引:1  
The peroxidase activity of the mitochondrial fraction of rat gastric mucosa was inhibited with various nonsteroidal anti-inflammatory drugs (NSAIDs) in vitro. Indomethacin was found to be more effective than phenylbutazone (PB) or acetylsalicylic acid (ASA). Mouse gastric peroxidase was also very sensitive to indomethacin inhibition. Indomethacin has no significant effect on submaxillary gland peroxidase activity of either of the species studied. Purified rat gastric peroxidase activity was inhibited 75% with 0.15 mM indomethacin showing half-maximal inhibition at 0.04 mM. The inhibition could be withdrawn by increasing the concentration of iodide but not by H2O2. NSAIDs inhibit gastric peroxidase activity more effectively at acid pH (pH 5.2) than at neutral pH. Spectral studies showed a bathochromic shift of the Soret band of the enzyme with indomethacin indicating its interaction at or near the heme part of the enzyme.  相似文献   

4.
A derivative of crosslinked Sepharose, p-(N-acetyl-L-tyrosine azo) benzamidoethyl-CL-Sepharose 4B, was synthesized and used for the selective immobilization of thermostable lactase from Aspergillus oryzae.Preparations of soluble and immobilized lactase were evaluated under initial velocity conditions in a batch process. Immobilization had no significant effect on the pH optimum at 50 degrees C or kinetic parameters at pH 4.5 or pH 6.5 and 50 degrees C. At pH 4.5, the soluble enzyme possessed maximum activity at 60 degrees C and the immobilized at 55 degrees C; at pH 6.5 both showed maximum activity at 55 degrees C. The activation energy, entropy, and enthalpy decreased significantly with immobilization at pH 4.5 but not at pH 6.5. When the immobilized enzyme was placed in a packed-bed reactor, the effect of temperature on activity was altered as reflected by a marked decrease in the thermodynamic parameters of activation at both pH levels. Upon immobilization there was also a dramatic increase in the apparent thermal stability of the lactase, and the mean half-life at 50 degrees C was increased from 7.2 to 13 days at pH 4.5 and from 3.8 to 16 days at pH 6.5.  相似文献   

5.
From the homogenate of rat submaxillary gland, two kinds of serine proteinases, named tentatively proteinases A and B, were isolated and their chemical properties and activities toward rat kininogens were examined, in comparison with those of submaxillary kallikrein. Proteinase A with Mr of 28,200 rapidly cleaved high-molecular-weight (HMW) kininogen into a protein of 67 kDa, which retained thiol-proteinase inhibitory activity, but had lost the correcting activity of HMW kininogen on the prolonged clotting time of Fitzgerald trait plasma. It liberated bradykinin from HMW kininogen but did not liberate kinin from T-kininogen and did not degrade T-kininogen. On the other hand, proteinase B with Mr of 30,400 showed a very weak activity for the liberation of kinin from T-kininogen and the cleavage of T-kininogen at pH 8.0. However, the enzyme extensively degraded T-kininogen at pH 4.5. Proteinase B also degraded HMW kininogen at pH 4.5 and pH 8.0, but liberated bradykinin only at pH 8.0. Thiol-proteinase inhibitory activities of HMW kininogen and T-kininogen were inactivated after the incubation with proteinase B at pH 4.5 but not at pH 8.0, while the correcting activity of HMW kininogen on the Fitzgerald trait plasma was inactivated at pH 4.5 and 8.0. The NH2-terminal amino acid sequences of proteinases A and B were different from each other, and distinguishable with those of serine proteinases in rat submaxillary gland so far reported. These results provide evidence that in addition to the known kallikrein, there exist at least two kinds of serine proteinases in rat submaxillary gland, both of which liberate bradykinin from rat HMW kininogen at pH 8.0 and modulate the functional activities of HMW kininogen and T-kininogen, degrading these proteins at pH 8.0 or 4.5.  相似文献   

6.
A novel hydroxylase activity catalyzing the formation of trans-caffeoyl-CoA from trans-4-coumaroyl-CoA was identified in crude extracts from cultured parsley cells. The extracts were less active (Vmax/Km) in converting trans-4-coumaric to trans-caffeic acid. Optimal hydroxylase activity was found at pH 6.5 with a steep decline toward both pH 7.4 and pH 5.0. The enzyme activity requires ascorbate and Zn2+ at optimal concentrations of 50 and 0.5 mM, respectively. No other reductant could replace ascorbate, whereas high concentrations of Ca2+ partially substituted for Zn2+. The enzyme is soluble and appears to be located in the cytoplasm. The unusual pH optimum suggests that the hydroxylase is inactive at the normal cytoplasmic pH. Upon treatment of parsley cells with an elicitor derived from Phytophthora megasperma f. sp. glycinea, the cytoplasmic pH dropped by approximately 0.25 pH unit within 55 min as determined by 31P NMR spectroscopy. Our results suggest that this shift in the cytoplasmic pH is sufficient for the activation of the hydroxylase, eventually leading to the formation of caffeoyl and feruloyl esters. Such esters may be a part of a very rapid resistance response of the plant cells, which would leave no time for de novo enzyme synthesis.  相似文献   

7.
Chimeric calcium/calmodulin dependent protein kinase (CCaMK) is characterized by the presence of a visinin-like Ca(2+)-binding domain unlike other known calmodulin- dependent kinases. Ca(2+)-Binding to the visinin-like domain leads to autophosphorylation and changes in the affinity for calmodulin [Sathyanarayanan P.V., Cremo C.R. & Poovaiah B.W. (2000) J. Biol. Chem. 275, 30417-30422]. Here, we report that the Ca(2+)-stimulated autophosphorylation of CCaMK results in time-dependent loss of enzyme activity. This time-dependent loss of activity or self-inactivation due to autophosphorylation is also dependent on reaction pH and ATP concentration. Inactivation of the enzyme resulted in the formation of a sedimentable enzyme due to self-association. Specifically, autophosphorylation in the presence of 200 microm ATP at pH 7.5 resulted in the formation of a sedimentable enzyme with a 33% loss in enzyme activity. Under similar conditions at pH 6.5, the enzyme lost 67% of its activity and at pH 8.5, 84% enzyme activity was lost. Furthermore, autophosphorylation at either acidic or alkaline reaction pH lead to the formation of a sedimentable enzyme. Transmission electron microscopic studies on autophosphorylated kinase revealed particles that clustered into branched complexes. The autophosphorylation of wild-type kinase in the presence of AMP-PNP (an unhydrolyzable ATP analog) or the autophosphorylation-site mutant, T267A, did not show formation of branched complexes under the electron microscope. Autophosphorylation- dependent self-inactivation may be a mechanism of modulating the signal transduction pathway mediated by CCaMK.  相似文献   

8.
Phage TP-8 lysates of Bacillus stearothermophilus 4S or 4S(8) contain lytic activity exhibiting two pH optima, one at pH 6.5 and the other at pH 7.5. Using a variety of fractionation procedures, the two lytic activities could not be separated. At pH 7.5 the lytic enzyme is an endopeptidase which hydrolyzes the l-alanyl-d-glutamyl linkage in the peptide subunits of the cell wall peptidoglycan and at pH 6.5 it exhibits N-acetylmuramidase activity. Endopeptidase activity is inhibited by NaCl and neither lytic activity was significantly affected by divalent cations or ethylenediaminetetraacetic acid. Crude lysates contain 2.5 to 3.0 times more endopeptidase activity than N-acetylmuramidase activity. The ratio of the two lytic activities (endopeptidase/N-acetylmuramidase) changes to 1.3 to 1.7 during the course of purification, to 1.0 after isoelectric focusing, and 3.9 and 6.00 after exposure for 2 h at 60 and 65 C, respectively. We conclude that the two lytic activities may be associated with a single protein or a lytic enzyme complex composed of two enzymes. Lytic activity at pH 7.5 is more effective in solubilizing cells or cell walls than the lytic activity at pH 6.5. LiCl extracts of 4S and 4S(8) cells contain lytic activity exhibiting endopeptidase activity at pH 7.5 and N-acetylmuramidase activity at pH 6.5. Lytic activity in these LiCl extracts also has a number of other properties in common with those in lysates of phage TP-8. We proposed that the lytic enzyme(s) are not coded for by the phage genome but are part of the host autolytic system.  相似文献   

9.
Neuraminidase in Bacteroides fragilis.   总被引:3,自引:0,他引:3       下载免费PDF全文
A neuraminidase from Bacteroides fragilis was purified 542-fold by isoelectric focusing, adsorption chromatography on Affi-Gel 202, and gel filtration chromatography on Sephadex G-200. On isoelectric focusing the neuraminidase was resolved into three differently charged fractions with pI values of 6.8, 7.1, and 7.4. The major component of pI 7.1 was used for further purification. The purified enzyme had optimal activity at pH 6.4 with N-acetylneuraminlactose as the substrate. Its molecular weight, determined by Sephadex G-200 gel filtration chromatography, was 92,000. The neuraminidase hydrolyzed terminal neuraminic acid residues from N-acetylneuraminlactose, fetuin, bovine submaxillary mucin, and porcine stomach lining mucin. A new method for the detection of neuraminidase activity is described which is based on rocket affinoelectrophoresis. It utilizes the differences in the interaction of sialylated and desialylated mucin with Helix pomatia lectin, enzymatic activity being detected by formation of affinorockets after incubation of the neuraminidase with bovine submaxillary mucin.  相似文献   

10.
1. Four different types of alpha-mannosidase activity were shown to occur in several tissues from the rat. There is the Zn2+-dependent enzyme, active at acidic pH, and three enzymes that are active near to neutral pH. 2. The 'neutral' enzymes are activated by Fe2+, Co2+ or Mn2+. 3. Optimum activities for these three enzymes are shown at pH values of 5.2, 6.5 and 7.3. The activity at pH6.5 is the only one evident without metal-ion activation, but activity is enhanced by all three metal ions. The activity at pH 5.2 is seen only in the presence of Fe2+ or Co2+, and the activity at pH7.3 is seen only in the presence of Co2+ or Mn2+ and in a non-chelating buffer medium. 4. The pH6.5-active enzyme is inactivated by EDTA, but activity is restored by excess of metal ion. 5. The enzymes differ markedly in their stability. The pH6.5-active enzyme is very labile and the pH7.3-active enzyme is the most stable. 6. Tissue preparations vary widely in their activity at pH6.5, but where activity is low it can be increased by incubation with one of the activating metal cations. 7. All the enzymes active at neutral pH are inhibited by heavy-metal ions and stabilized to some extent by thiol groups.  相似文献   

11.
A survey has been made of the activity of a wide variety of standard strains of streptococci against bovine submaxillary mucin. Strain 6646 (group K) and strain D 168A "X" (group M) completely broke down and strain H 60R (group F) incompletely broke down bound sialic acid of bovine submaxillary mucin added to the growth medium. Among these strains, strain 6646 (group K) produced sialidase in the cell and in the culture fluid. An appropriate amount of glucose in the culture medium stimulated growth and the production of enzyme, but an excess of glucose in the culture medium caused abundant growth without production of the enzyme. The streptococcal sialidase was precipitated from the culture fluid by ammonium sulfate at 50% saturation, and further purification was achieved by diethylaminoethyl cellulose chromatography. Ca(++) and Co(++) stimulated the sialidase activity, and Mn(++), Zn(++), and ethylenediaminetetraacetate inhibited it. With acetate buffer, the optimal pH lay between 5 and 6. Sialic acid was detected in the reaction product of the streptococcal sialidase and bovine submaxillary mucin.  相似文献   

12.
We have characterized a UDP-GlcNAc:Gal beta-3-GalNAc (GlcNAc----GalNAc) beta-6-N-acetylglucosaminyltransferase from rabbit small intestinal epithelium by using freezing point depression glycoprotein as the acceptor. Optimal enzyme activity was obtained at pH 7.0-7.5, at 3 mM MnCl2, and at 0.08% Triton X-100. Ca2+, Mg2+, and Ba2+ also enhanced enzyme activity. The apparent Michaelis constant was 4.80 mM for freezing point depression glycoprotein, 0.59 mM for periodate-treated porcine submaxillary mucin, 0.49 mM for Gal beta 1----3 GalNAc alpha Ph, and 1.03 mM for UDP-GlcNAc. No enzyme activity was observed when asialo ovine submaxillary mucin was used as the acceptor. The 14C-labeled oligosaccharide obtained by alkaline borohydride treatment of the product was shown to be a homogeneous trisaccharide by compositional analysis, Bio-Gel P-4 gel filtration, and high-performance liquid chromatography. The structure of the trisaccharide was identified as Gal beta 1----3-(GlcNAc beta 1----6)GalNAc-H2 by (a) identification of 2,3,4,6-tetramethyl-1,5-diacetylgalactitol and 1,4,5-trimethyl-3,6-diacetyl-2-N-methylacetamidogalactitol by gas-liquid chromatography-mass spectrometry and (b) the complete cleavage of the newly formed glycosidic bond by jack bean beta-hexosaminidase. The structure of the trisaccharide was confirmed by 1H nuclear magnetic resonance (270 MHz) and also by periodate oxidation of the trisaccharide followed by NaBH4 reduction, 4 N HCl hydrolysis, a second NaBH4 reduction, and the identification of threosaminitol on an amino acid analyzer. By acceptor competition studies, the enzyme activity was shown to be a much N-acetylglucosaminyltransferase. We postulate that this glycosyltransferase may play a key role in the regulation of mucin oligosaccharide synthesis.  相似文献   

13.
Intracellular thermostable amylases from a thermophilic Baccilus sp. AK-2 have been isolated and purified. The crude enzyme, having pH optimum at 6.5. and temperature optimum at 68 degrees C was purified by DEAE-cellulose column chromatography. Three separable enzyme fractions having starch hydrolyzing property were eluted by lowering the pH from 8.5 to 7.0. Electrophoretic mobility of these fractions showed a single band. Calcium ion up to a concentration of 20 mM had an activating effect on the three fractions. The optimum temperature for the three fractions (FI, FII and FIII) was 65 degrees C and the pH optimum for each was 6.0, 6.5 and 6.0, respectively. The -SH group in the amylase molecule was essential for enzyme activity. Except for Ca2+, Mg2+, Sr2+ and Mn2+ all other metal ions studied inhibited both alpha and beta-amylase activities. EDTA showed dose dependent non-competitive inhibition. Product formation studies proved FI and FIII to be of the alpha-amylase type and FII of the beta-amylase type. The Km for the substrate (starch) in the presence or absence of EDTA was 0.8 X 10(-3) and 1.13 X 10(-3) g/ml for alpha-amylase and beta-amylase, respectively.  相似文献   

14.
Two genes, xynB and xynC, coding for xylanases were isolated from Thermotoga maritima FjSS3B.1 by a genomic-walking-PCR technique. Sequencing of the genes showed that they encode multidomain family 10 xylanases. Only XynB exhibited activity against xylan substrates. The temperature optimum (87 degrees C) and pH optimum (pH 6.5) of XynB are different from the previously reported xylanase, XynA (also a family 10 enzyme), from this organism. The catalytic domain expressed without other domains has a lower temperature optimum, is less thermostable, and has optimal activity at pH 6.5. Despite having a high level of sequence similarity to xynB, xynC appears to be nonfunctional since its encoded protein did not show significant activity on xylan substrates.  相似文献   

15.
The mitochondrial NADP-dependent malic enzyme (EC 1.1.1.40) was purified about 300-fold from cod Gadus morhua heart to a specific activity of 48 units (mumol/min)/mg at 30 degrees C. The possibility of the reductive carboxylation of pyruvate to malate was studied by determination of the respective enzyme properties. The reverse reaction was found to proceed at about five times the velocity of the forward rate at a pH 6.5. The Km values determined at pH 7.0 for pyruvate, NADPH and bicarbonate in the carboxylation reaction were 4.1 mM, 15 microM and 13.5 mM, respectively. The Km values for malate, NADP and Mn2+ in the decarboxylation reaction were 0.1 mM, 25 microM and 5 microM, respectively. The enzyme showed substrate inhibition at high malate concentrations for the oxidative decarboxylation reaction at pH 7.0. Malate inhibition suggests a possible modulation of cod heart mitochondrial NADP-malic enzyme by its own substrate. High NADP-dependent malic enzyme activity found in mitochondria from cod heart supports the possibility of malate formation under conditions facilitating carboxylation of pyruvate.  相似文献   

16.
Protease was isolated from Sporosarcina RRLJ1 which was collected from acid tea (Camellia sinensis) plantations. It showed potential for production of the enzyme for commercial purposes. The study revealed that optimum pH for growth of the organism was 6.5-7 and supplement of casein (1%) in the medium was required for production of protease. Enzyme production and enzyme activity was maximum in 72 hr old broth culture. Maximum activity of the enzyme was found at pH 6.5.  相似文献   

17.
The plasma membrane fractions from separated cortex and stele of primary roots of corn (Zea mays L. WF9 × M14) contained cation ATPase activity at similar levels but with somewhat different properties. ATPase activity from cortex was optimum at pH 6.5, showed a simple Michaelis-Menten saturation with increasing ATP·Mg, and showed complex kinetic data for K+ stimulation similar in character to the kinetic data for K+-ATPase and K+ influx in primary roots. The results for cortex indicate that homogenates of primary roots are dominated by membranes from cortical cells.

ATPase activity from stele was optimum at pH 6.5 and showed another maximum at pH 9. At pH 6.5, activity from stele had properties similar to that from cortex except that the kinetics of K+ stimulation closely approached that expected for a Michaelis-Menten enzyme. At pH 9, the enzyme activity from stele was inhibited by 5 μg/ml oligomycin, suggesting that a significant portion of the activity was of mitochondrial origin. Sucrose density gradient analysis indicated some contamination of mitochondrial membranes in the plasma membrane fraction from stele. The results for stele are consistent with the view that stelar parenchyma cells are not deficient in ion pumps.

  相似文献   

18.
Poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) is the key enzyme of PHB synthesis in Ralstonia eutropha and other PHB-accumulating bacteria and catalyzes the polymerization of 3-hydroxybutyryl-CoA to PHB. Activity assays of R. eutropha PHB synthase are characterized by the presence of lag phases and by low specific activity. It is assumed that the lag phase is caused by the time necessary to convert the inactive PhaC1 monomer into the active dimeric form by an unknown priming process. The lag phase can be reduced by addition of nonionic detergents such as hecameg [6-O-(N-heptyl-carbamoyl)-methyl-α-d-glucopyranoside], which apparently accelerates the formation of PhaC1 dimers. We identified the PHB granule-associated protein (PGAP) PhaM as the natural primer (activator) of PHB synthase activity. PhaM was recently discovered as a novel type of PGAP with multiple functions in PHB metabolism. Addition of PhaM to PHB synthase assays resulted in immediate polymerization of 3HB coenzyme A with high specific activity and without a significant lag phase. The effect of PhaM on (i) PhaC1 activity, (ii) oligomerization of PhaC1, (iii) complex formation with PhaC1, and (iv) PHB granule formation in vitro and in vivo was shown by cross-linking experiments of purified proteins (PhaM, PhaC1) with glutardialdehyde, by size exclusion chromatography, and by fluorescence microscopic detection of de novo-synthesized PHB granules.  相似文献   

19.
The deamination of AMP by AMP aminohydrolase (EC 3.5.4.6.) serves as the major source of ammonia production in skeletal muscle. It has been suggested that the ammonia may serve either in a buffering capacity to combat acidosis due to the accumulation of lactic acid produced during prolonged muscular activity, or as a substrate for glutamine formation which can ultimately be utilized by the kidney in adapting to metabolic acidosis. In view of this proposal, the properties of the enzyme obtained from skeletal muscle of acidotic rats have been compared with the enzyme from normal muscle. The specific activity of AMP deaminase in crude homogenates of acidotic muscle was not significantly different from normal levels. The enzyme from acidotic muscle was purified to homogeneity and was found to be identical to the enzyme obtained from normal muscle by the criteria of electrophoretic mobility, pH optimum, molecular weight, sedimentation coefficient, subunit composition, amino acid composition, monovalent cation requirement, substrate saturation, and inhibition by ATP, Pi and creatine-P. Thus, if the enzyme functions to prevent acidosis, the ability to respond to changes in the intracellular environment which accompany acidosis must be built into the structure of the enzyme normally found in skeletal muscle. Three lines of evidence strongly support this viewpoint: (a) the rate of deamination is approximately 2-fold higher at pH 6.5 than at pH 7.0, (b) the activity increases linearly with a decrease in the adenylate energy charge, and (c) within the normal physiological range of the adenylate energy charge, the enzyme is operating at only 10--20% of its maximum capacity.  相似文献   

20.
The (R)-imine reductase (RIR) of Streptomyces sp. GF3587 was purified and characterized. It was found to be a NADPH-dependent enzyme, and was found to be a homodimer consisting of 32 kDa subunits. Enzymatic reduction of 10 mM 2-methyl-1-pyrroline (2-MPN) resulted in the formation of 9.8 mM (R)-2-methylpyrrolidine ((R)-2-MP) with 99% e.e. The enzyme showed not only reduction activity for 2-MPN at neutral pH (6.5-8.0), but also oxidation activity for (R)-2-MP under alkaline pH (10-11.5) conditions. It appeared to be a sulfhydryl enzyme based on the sensitivity to sulfhydryl specific inhibitors. It was very specific to 2-MPN as substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号