首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collagens, the most abundant proteins in animals, are modified by hydroxylation of proline and lysine residues and by glycosylation of hydroxylysine. Dedicated prolyl hydroxylase, lysyl hydroxylase, and collagen glycosyltransferase enzymes localized in the endoplasmic reticulum mediate these modifications prior to the formation of the collagen triple helix. Whereas collagen-like proteins have been described in some fungi, bacteria, and viruses, the post-translational machinery modifying collagens has never been described outside of animals. We demonstrate that the L230 open reading frame of the giant virus Acanthamoeba polyphaga mimivirus encodes an enzyme that has distinct lysyl hydroxylase and collagen glycosyltransferase domains. We show that mimivirus L230 is capable of hydroxylating lysine and glycosylating the resulting hydroxylysine residues in a native mimivirus collagen acceptor substrate. Whereas in animals from sponges to humans the transfer of galactose to hydroxylysine in collagen is conserved, the mimivirus L230 enzyme transfers glucose to hydroxylysine, thereby defining a novel type of collagen glycosylation in nature. The presence of hydroxylysine in mimivirus proteins was confirmed by amino acid analysis of mimivirus recovered from A. polyphaga cultures. This work shows for the first time that collagen post-translational modifications are not confined to the domains of life. The utilization of glucose instead of the galactose found throughout animals as well as a bifunctional enzyme rather than two separate enzymes may represent a parallel evolutionary track in collagen biology. These results suggest that giant viruses may have contributed to the evolution of collagen biology.  相似文献   

2.
It has been previously shown that dermis from subjects with hydroxylysine-deficient collagen contains approximately 5% of normal levels of hydroxylysine and sonicates of skin fibroblasts contain less than 15% of normal levels of collagen lysyl hydroxylase activity. However, cultures of dermal fibroblasts from two siblings with hydroxylysine-deficient collagen (Ehlers-Danlos Syndrome Type VI) compared to fibroblasts from normal subjects synthesize collagen containing approximately 50% of normal amounts of hydroxylysine. The lysyl hydroxylase deficient cultures synthesize both Type I and Type III collagen in the same proportion as control cultures. Both alpha 1(I) and alpha 2 chains are similarly reduced in hydroxylysine content. Collagen prolyl hydroxylation by normal collagen lysyl hydroxylation is the same with or without ascorbate supplementation. In mutant cells the rate of prolyl hydroxylation measured after release of inhibition by alpha, alpha'-dipyridyl is the same as in control cells. The rate of lysyl hydroxylation is reduced in mutant cells but only to approximately 50% of normal.  相似文献   

3.
It has been previously shown that dermis from subjects with hydroxylysine-deficient collagen contains approximately 5% of normal levels of hydroxylysine and sonicates of skin fibroblasts contain less than 15% of normal levels of collagen lysyl hydroxylase activity. However, cultures of dermal fibroblasts from two siblings with hydroxylysine-deficient collagen (Ehlers-Danlos Syndrome Type VI) compared to fibroblasts from normal subjects synthesize collagen containing approximately 50% of normal amounts of hydroxylysine. The lysyl hydroxylase deficient cultures synthesize both Type I and Type III collagen in the same proportion as control cultures. Both α1(I) and α2 chains are similarly reduced in hydroxylysine content. Collagen prolyl hydroxylation by normal and mutant cells is severely depressed without ascorbate but in all cultures collagen lysyl hydroxylation is the same with or without ascorbate supplementation. In mutant cells the rate of prolyl hydroxylation measured after release of inhibition by α,α′-dipyridyl is the same as in control cells. The rate of lysyl hydroxylation is reduced in mutant cells but only to approximately 50% of normal.  相似文献   

4.
The effect of hydralazine on several parameters of collagen biosynthesis has been studied in cultured human skin fibroblasts. Cells treated with hydralazine synthesized procollagen which was severely deficient in hydroxyproline and hydroxylysine, indicating inhibition of prolyl and lysyl hydroxylase reactions in the cell. Assays of prolyl and lysyl hydroxylase activities, however, revealed markedly increased levels in hydralazine-treated cells. The stimulatory effect of hydralazine could not be simulated in cell extracts, demonstrating its requirement for intact cells. The effect occurred slowly over a period of 96 h and was dependent on hydralazine concentration between 10 and 100 microM. This phenomenon was also observed in lysyl hydroxylase-deficient mutants. In both normal and mutant cells the relative magnitude of the hydralazine effect could be modified by ascorbic acid in the culture medium. Ascorbic acid increased the response of prolyl hydroxylase to hydralazine from 1.5- to 2-fold to 3- to 7-fold, whereas it decreased the response of lysyl hydroxylase to hydralazine from 4- to 8-fold to 2- to 3-fold. Total collagen synthesis was substantially reduced in hydralazine-treated cells; the time course and the dose-response relationship were similar to those observed for the hydroxylases. alpha, alpha'-Dipyridyl, an iron chelator, mimicked these effects of hydralazine. The studies suggest the existence in cultured cells of a compensatory mechanism for overproduction of these crucial enzymes in collagen biosynthesis, a mechanism which remains functional in cells derived from patients afflicted with hydroxylysine-deficient collagen disease.  相似文献   

5.
Collagen deposits in fibrotic lesions often display elevated levels of hydroxyallysine (pyridinoline) cross-links. The relation between the occurrence of pyridinoline cross-links and the irreversibility of fibrosis suggests that these cross-links contribute to the aberrant accumulation of collagen. Based on its inhibitory effect on lysyl hydroxylase activity minoxidil has been postulated to possess anti-fibrotic properties by limiting the hydroxylysine supply for hydroxyallysine cross-linking. However, to interfere with hydroxyallysine cross-linking specifically lysyl hydroxylation of the collagen telopeptide should be inhibited, a reaction predominantly catalysed by lysyl hydroxylase (LH) 2b. In this study, we demonstrate that minoxidil treatment of cultured fibroblasts reduces LH1>LH2b>LH3 mRNA levels dose-and time-dependently, but has essentially no effect on the total number of pyridinoline cross-links in the collagen matrix. Still the collagen produced in the presence of minoxidil displays some remarkable features: hydroxylation of triple helical lysine residues is reduced to 50% and lysylpyridinoline cross-linking is increased at the expense of hydroxylysylpyridinoline cross-linking. These observations can be explained by our finding that LH1 mRNA levels are the most sensitive to minoxidil treatment, corroborating that LH1 has a preference for triple helical lysine residues as substrate. In addition, the non-proportional increase in cross-links (20-fold) with respect to the decrease in lysyl hydroxylation state of the triple helix (2-fold) even suggests that LH1 preferentially hydroxylates triple helical lysine residues at the cross-link positions. We conclude that minoxidil is unlikely to serve as an anti-fibroticum, but confers features to the collagen matrix, which provide insight into the substrate specificity of LH1.  相似文献   

6.
Changes in the regulation of collagen post-translational modification in transformed cells were studied in three established human sarcoma cell lines and in chick-embryo fibroblasts freshly transformed by Rous sarcoma virus. The collagens synthesized by all but one of these and by all the control human and chick-embryo cell lines were almost exclusively of types I and/or III. The relative rate of collagen synthesis and the amounts of prolyl hydroxylase activity and immunoreactive protein were markedly low in all the transformed human cell lines. The other enzymes studied, lysyl hydroxylase, hydroxylysyl galactosyltransferase and galactosylhydroxylysyl glucosyltransferase, never showed as large a decrease in activity as did prolyl hydroxylase, suggesting a more efficient regulation of the last enzyme than of the three others. The chick-embryo fibroblasts freshly transformed by Rous sarcoma virus differed from the human sarcoma cells in that prolyl hydroxylase activity was distinctly increased, whereas the decreases in immunoreactive prolyl hydroxylase protein and the three other enzyme activities were very similar to those in the simian-virus-40-transformed human fibroblasts. It seems possible that this increased prolyl hydroxylase activity is only a temporary phenomenon occurring shortly after the transformation, and may be followed by a decrease in activity later. The newly synthesized collagens of all the transformed cells that produced almost exclusively collagen types I and/or III had high extents of lysyl hydroxylation, and there was also an increase in the ratio of glycosylated to non-glycosylated hydroxylysine. The data suggest that one critical factor affecting modification is the rate of collagen synthesis, which affects the ratio of enzyme to substrate in the cell.  相似文献   

7.
The activity of highly purified lysyl hydroxylase towards lysyl residues within both the helical and the N-terminal non-helical telopeptide regions of chick type I collagen has been examined. The peptides alpha 1(I)-CB1 and alpha 2(I)-CB1, isolated from protocollagen following CNBr digestion and containing the N-terminal telopeptidyl lysyl residues, failed themselves to act as substrates. With protocollagen as substrate, analysis of products obtained following bacterial collagenase digestion of the reaction mixture showed that overall 37% hydroxylation of lysyl residues within the helical region of collagen had been obtained, which may be maximal. No hydroxylation, however, of the single lysyl residue in either alpha 1(I)-CB1 or alpha 2(I)-CB1, isolated following CNBr digestion of the reaction mixture, was observed, despite the known susceptibility of these residues to hydroxylation. These findings provide strong circumstantial evidence for the suggestion that a lysyl hydroxylase specific for the telopeptidyl residues and distinct from that active towards lysyl residues in the helical portion of the molecule may exist [Barnes, Constable, Morton & Royce (1974) Biochem. J. 139, 461-468].  相似文献   

8.
Collagen is the most abundant protein in the human body and thereby a structural protein of considerable biotechnological interest. The complex maturation process of collagen, including essential post-translational modifications such as prolyl and lysyl hydroxylation, has precluded large-scale production of recombinant collagen featuring the biophysical properties of endogenous collagen. The characterization of new prolyl and lysyl hydroxylase genes encoded by the giant virus mimivirus reveals a method for production of hydroxylated collagen. The coexpression of a human collagen type III construct together with mimivirus prolyl and lysyl hydroxylases in Escherichia coli yielded up to 90 mg of hydroxylated collagen per liter culture. The respective levels of prolyl and lysyl hydroxylation reaching 25 % and 26 % were similar to the hydroxylation levels of native human collagen type III. The distribution of hydroxyproline and hydroxylysine along recombinant collagen was also similar to that of native collagen as determined by mass spectrometric analysis of tryptic peptides. The triple helix signature of recombinant hydroxylated collagen was confirmed by circular dichroism, which also showed that hydroxylation increased the thermal stability of the recombinant collagen construct. Recombinant hydroxylated collagen produced in E. coli supported the growth of human umbilical endothelial cells, underlining the biocompatibility of the recombinant protein as extracellular matrix. The high yield of recombinant protein expression and the extensive level of prolyl and lysyl hydroxylation achieved indicate that recombinant hydroxylated collagen can be produced at large scale for biomaterials engineering in the context of biomedical applications.  相似文献   

9.
Lysyl hydroxylase (EC 1.14.11.4), an alpha 2 dimer, catalyzes the formation of hydroxylysine in collagens by the hydroxylation of lysine residues in X-Lys-Gly sequences. We report here on the isolation of cDNA clones coding for the enzyme from a chick embryo lambda gt11 library. Several overlapping clones covering all the coding sequences of the 4-kilobase mRNA and virtually all the noncoding sequences were characterized. These clones encode a polypeptide of 710 amino acid residues and a signal peptide of 20 amino acids. The polypeptide has four potential attachment sites for asparagine-linked oligosaccharides and 9 cysteine residues, at least one of which is likely to be involved in the binding of the Fe2+ atom to a catalytic site. A surprising finding was that no significant homology was found between the primary structures of lysyl hydroxylase and prolyl 4-hydroxylase in spite of the marked similarities in kinetic properties between these two enzymes. A computer-assisted comparison indicated only an 18% identity between lysyl hydroxylase and the alpha-subunit of prolyl 4-hydroxylase and a 19% identity between lysyl hydroxylase and the beta-subunit of prolyl 4-hydroxylase. Visual inspection of the most homologous areas nevertheless indicated the presence of several regions of 20-40 amino acids in which the identity between lysyl hydroxylase and one of the prolyl 4-hydroxylase subunits exceeded 30% or similarity exceeded 40%. Southern blot analyses of chick genomic DNA indicated the presence of only one gene coding for lysyl hydroxylase.  相似文献   

10.
A fraction greatly enriched in microsomes was prepared from chick embryo limb bone tissue homogenates by differential centrifugation in a high density solution of Metrizamide. This fraction was used to determine the submicrosomal localization of prolyl hydroxylase. At a low concentration (0.05%) of the non-ionic detergents Triton X-100 and Brij-35, 90 to 93% of prolyl hydroxylase activity was released from microsomes. Concentrations of Triton X-100 greater than 0.1% were required to solubilize the intrinsic membrane enzyme NADH-ferricyanide reductase and to release membrane-bound ribosomes, while Brij-35 did not extensively solubilize membrane components even at concentrations up to 0.4%. In addition, prolyl hydroxylase activity which could subsequently be released from microsomes by Brij-35 was relatively resistant to trypsin proteolysis at concentrations which removed more than 50% of the ribosomes and approximately 40% of the protein from microsomes. These results suggest that 90 to 93% of prolyl hydroxylase activity in connective tissue is located within the cisternae of the endoplasmic reticulum. Gel filtration of prolyl hydroxylase released from microsomes or found in the soluble fraction of limb bone homogenates revealed two peaks of activity corresponding to molecular weights of 230,000 and 450,000 to 500,000. The latter is twice the value reported for purified chick embryo prolyl hydroxylase. A fraction of the total prolyl hydroxylase activity (generally 20 to 35%) in microsome preparations could be measured in the absence of detergent, although the microsomal membrane should be impermeable to the large unhydroxylated collagen chains used as substrate. On the basis of experimental data, it was concluded that detergent-independent activity was most likely due to damaged microsomal membranes and that this damage was sufficient to allow substrate and trypsin to enter the cisternae but not to allow prolyl hydroxylase to be released.  相似文献   

11.
Summary The parents of a child with the clinical symptoms of Ehlers-Danlos syndrome type VI were identified as third-degree cousins. Biochemical analysis of the dermis of the patient revealed a complete lack of hydroxylysine in the dermal collagen. The dermis of both parents contained only half the amount of hydroxylysine found in healthy individuals. Hydroxylation of prolyl residues was normal in the skin of the patient and his parents. Investigation of the collagen synthesized by fibroblasts derived from the skin of the patient showed a normal proportion of type I and type III collagen. However, while hydroxylation of prolyl residues was normal in type I and type III collagen, hydroxylation of lysyl residues was markedly lower than normal in both type I and type III collagen.Presented at the Annual Meeting of the Arbeitsgemeinschaft Dermatologische Forschung (ADF) Frankfurt, November 18–20, 1977  相似文献   

12.
Lysyl hydroxylase is the enzyme catalyzing the formation of hydroxylysyl residues in collagens. Large differences in the extent of hydroxylysyl residues are found among collagen types. Three lysyl hydroxylase isoenzymes (LH1, LH2, LH3) have recently been characterized from human and mouse tissues. Nothing is known about the distribution of these isoforms within cells or whether they exhibit collagen type specificity. We measured mRNA levels of the three isoforms, as well as the mRNAs of the main collagen types I, III, IV, and V and the alpha subunit of prolyl 4-hydroxylase, another enzyme involved in collagen biosynthesis, in different human cell lines. Large variations were found in mRNA expression of LH1 and LH2 but not LH3. Immunoblotting was utilized to confirm the results of Northern hybridization. The levels of mRNA of LH1, LH2, and the alpha subunit of prolyl 4-hydroxylase showed significant correlations with each other. The LH3 mRNA levels did not correlate with those of LH1, LH2, or the alpa subunit of prolyl 4-hydroxylase, clearly indicating a difference in the regulation of LH3. No correlation was observed between LH isoforms and individual collagen types, indicating a lack of collagen type specificity for lysyl hydroxylase isoforms. Our observations suggest that LH1, LH2, and the alpha subunit of prolyl 4-hydroxylase are coregulated together with total collagen synthesis but not with the specific collagen types and indicate that LH3 behaves differently from LH1 and LH2, implying a difference in their substrates. These observations set the basis for further studies to define the functions of lysyl hydroxylase isoforms.  相似文献   

13.
Concomitant hydroxylation of proline and lysine residues in protocollagen was studied using purified enzymes. The data suggest that prolyl 4-hydroxylase (prolyl-glycyl-peptide, 2-oxoglutarate: oxygen oxidoreductase (4-hydroxylating), EC 1.14.11.2) and lysyl hydroxylase (peptidyllysine, 2-oxoglutarate; oxygen 5-oxidoreductase, EC 1.14.11.4) are competing for the protocollagen substrate, this competition resulting in an inhibition of the lysyl hydroxylase but not of the prolyl 4-hydroxylase reaction. When the same protocollagen was used for these hydroxylases, the affinity of prolyl 4-hydroxylase to the protocollagen substrate was about 2-fold higher than that of lysyl hydroxylase. Hydroxylation of lysine residues in protocollagen had no effect on the affinity of prolyl 4-hydroxylase, whereas hydroxylation of proline residues decreased the affinity of lysyl hydroxylase to one-half of the value determined before the hydroxylation. When enzyme preparations containing different ratios of lysyl hydroxylase activity to prolyl 4-hydroxylase activity were used to hydroxylase protocollagen substrate, it was found that in the case of a low ratio the hydroxylation of lysine residues seemed to proceed only after a short lag period. Accordingly, it seems probable that most proline residues are hydroxylated to 4-hydroxyproline residues before hydroxylation of lysine residues if the prolyl 4-hydroxylase and lysyl hydroxylase are present as free enzymes competing for the same protocollagen substrate.  相似文献   

14.
Catechol analogs inhibit the activity of lysyl hydroxylase (peptidyllysine, 2-oxyglutarate: oxygen 5-oxidoreductase, EC 1.14.11.4), a microsomal enzyme which catalyzes the transformation of certain lysyl residues in collagen to hydroxylysine. Chick embryo lysyl hydroxylase activity was measured by specific tritium release as tritiated water from an L-[4,5-3H]lysine-labelled unhydroxylated collagen substrate prepared from chick calvaria. Catechol analogs did not bind irreversibly to either enzyme or substrate, as full activity was restored with dialysis. Addition of excess cofactor, Fe2+, ascorbic acid, or alpha-ketoglutarate, did not affect inhibition. Kinetic analysis revealed that with respect to collagen substrate, catechol demonstrated a noncompetitive type of inhibition with a Ki of 15 muM.  相似文献   

15.
We previously have described a substance present in crude sonicates of L-929 cells which replaced ascorbate in vitro as a reductant for prolyl hydroxylase (B. Peterkofsky, D. Kalwinksy and R. Assad, 1980, Arch. Biochem. Biophys.199, 362–373). In the present study we found that almost 90% of the substance was particulate after differential centrifugation of stationary phase L-929 cell homogenates. The substance was not localized in nuclei or mitochondria and was found in the same fractions as microsomes, but these fractions also contained lysosomes and cell membranes. The reductant could not be solubilized from particles by Brij-35, indicating that it is an intrinsic component of a membrane rather than intracisternally located. The intramembranous cofactor, in the absence of ascorbate, participated in the in vitro hydroxylation of [4-3H]proline in radio-actively labeled, intracisternal unhydroxylated procollagen in isolated microsomes which also contained prolyl hydroxylase. Hydroxylation was determined by measuring tritiated water formed from release of the 4-trans tritium atom. Since it is unlikely that such participation could occur if the cofactor were located within the membrane of another subcellular organelle, we have concluded that it is in the same particle as prolyl hydroxylase and unhydroxylated procollagen, that is, the microsome. With the endogenous reductant the reaction was slower than with saturating ascorbate and was increased by NADH. Maximum hydroxylation with the endogenous reductant was close to that which could be achieved with ascorbate. These results provide strong evidence that the endogenous reductant alone can account for the phenomenon of ascorbate-independent proline hydroxylation in L-929 cells. As in the case of ascorbate, the microsomal reductant functioned only in the presence of α-ketoglutarate and Fe2+ and served as reductant for lysyl hydroxylase. It also was detected in the particulate fraction of virally transformed BALB 3T3 cells and in purified microsomes from bones of intact chick embryos. Since ascorbate could be taken up and concentrated in bone microsomes, it is unlikely that the endogenous reductant serves as an intermediary between ascorbate and intracisternal prolyl hydroxylase.  相似文献   

16.
The relationship between the changes in the four enzyme activities catalysing intracellular post-translational modifications in collagen biosynthesis were studied in rat liver as a function of age and in experimental hepatic injury induced by the administration of dimethylnitrosamine. During aging, relatively large changes were found in prolyl hydroxylase and lysyl hydroxylase activities, whereas only minor changes took place in collagen galactosyltransferase and collagen glucosyltransferase activities. In hepatic injury, the two hydroxylase activities increased earlier and to a larger extent than did the two glycosyltransferase activities, and the largest was found in lysyl hydroxylase activity. The data support previous suggestions that changes in the rate of collagen biosynthesis in the liver cannot be explained simply by a change in the number of collagen-producing cells, but regulation of the enzyme activities existed, so that the two hydroxylase activities altered considerably more than did the two collagen glycosyltransferase activities.  相似文献   

17.
Inhibitors of purified, soluble prolyl hydroxylase (K. Majamaa et al. (1984) Eur. J. Biochem. 138, 239-245; K. Majamaa et al. (1986) J. Biol. Chem. 261, 7819-7823) were tested against isolated chick embryo bone microsomes containing intracisternal prolyl hydroxylase and its radiolabeled, unhydroxylated procollagen substrate. Two groups of inhibitors were used which consisted of pyridine-2-carboxylate and 1,2-dihydroxybenzene (catechol) derivatives. The 2,4- and 2,5-pyridine dicarboxylic acids, which are potent inhibitors of the soluble enzyme (Ki values 2 and 0.8 microM, respectively), were effective in the same concentration range against intracisternal prolyl hydroxylase, although their relative affinities were reversed. Inhibition by pyridine-2,4-dicarboxylate in the microsomal system was reversed by increasing the concentration of 2-oxoglutarate. Pyridine-2,4-dicarboxylic acid did not inhibit the uptake of 2-[14C]oxoglutarate into microsomes, so it appears likely that the inhibitor must traverse the microsomal membrane and act directly at the enzyme level. Pyridine-2-carboxylic acid was ineffective in the microsomal system at 1 mM whereas it is a relatively potent inhibitor of the soluble enzyme with a Ki of 25 microM. This finding suggests that the second carboxyl group of the pyridine carboxylate derivatives may be required for their transport into the microsomal lumen. In the soluble system, 3,4-dihydroxybenzoic acid and 1,2-dihydroxybenzene had been found to be competitive inhibitors with relatively low Ki values of 5 and 25 microM, respectively. In the microsomal system, half-maximal inhibition was obtained at approximately 50-100 microM and inhibition was not reversed by increasing the concentrations of either 2-oxoglutarate or ascorbate, alone or together. These results imply that in situ these compounds do not inhibit prolyl hydroxylase directly. Thus, the microsomal system can assess the accessibility of the intracisternal enzyme to potential inhibitors and offers an insight into the in cellulo potential of such compounds.  相似文献   

18.
Morphological studies were carried out on fibroblasts from chick embryo tendons, cells which have been used in a number of recent studies on collagen biosynthesis. The cells were relatively rich in endoplasmic reticulum and contained a well-developed Golgi complex comprised of small vesicles, stacked membranes, and large vacuoles. Techniques were then devised for preparing cell fragments which were penetrated by ferritin-antibody conjuates but which retained the essential morphological features of the cells. Finally, the new procedures were employed to develop further information as to how collagen is synthesized. As reported elsewhere, preliminary studies with ferritin-labeled antibodies showed that prolyl hydroxylase was found in the endoplasmic reticulum of freshly isolated fibroblasts and that procollagen is found in both the cisternae of the endoplasmic reticulum and the large Golgi vacuoles. In the experiments described here, the cells were manipulated so that amino acids continued to be incorporated into polypeptide chains but assembly of the molecule was not completed because hydroxylation of prolyl and lysyl residues was prevented. The results indicated that these manipulations produced no change in the distribution of prolyl hydroxylase. Examination of the cells with ferritin conjugated to antibodies which reacted with protocollagen, the unhydroxylated form of procollagen, demonstrated that protocollagen was retained in the cisternae of the endoplasmic reticulum during inhibition of the prolyl and lysyl hydroxylases. Assays for prolyl hydroxylase with an immunologic technique demonstrated that although the enzyme is found within the endoplasmic reticulum, it is not secreted along with procollagen. The observations provided further evidence for a special role for prolyl hydroxylase in the control of collagen biosynthesis.  相似文献   

19.
Collagen synthesis and the activities of prolyl hydroxylase, lysyl hydroxylase, collagen galactosyltransferase and collagen glucosyltransferase were studied in isolated chick-embryo tendon cells after the administration of cortisol acetate to the chick embryos. When the steroid was injected 1 day before isolation of the tendon cells, collagen synthesis was decreased, even though the enzyme activities were not changed. When cortisol acetate was given as repeated injections over a period of 4 days, both collagen synthesis and the enzyme activities decreased. The hydroxylase activities decreased even more than the two collagen glycosyltransferase activities, both in isolated cells and in whole chick embryos. The amount of prolyl hydroxylase protein diminished to the same extent as the enzyme activity, indicating that cortisol acetate inhibits enzyme synthesis. The inhibitory effect of cortisol acetate on collagen synthesis and on the enzyme activities was partially reversible in 3 days. Total protein synthesis was completely restored within this time. Only massive doses of cortisol acetate inhibited collagen synthesis in vitro. Additional experiments indicated that cortisol acetate did not decrease the rate of the enzyme reactions when added directly to the enzyme incubation mixtures. The results suggest that cortisol acetate decreases collagen synthesis both by its direct effect on collagen polypeptide-chain synthesis and by decreasing the activities of enzymes involved in post-translational modifications.  相似文献   

20.
Lysine-rich and arginine-rich histones were examined as substrates for lysyl hydroxylase. Both proteins are known to be rich in lysyl residues, and lysine-rich histone also contains -X-Lys-Gly-sequences, whereas no such sequences are found in the arginine-rich histone. Both histones were found to be hydroxylated by lysyl hydroxylase, and the time courses of the hydroxylation reactions with these substrates were linear for at least 60 min. The Km values observed where 3 - 10(-6)M for heat-denatured lysine-rich histone and 6 - 10(-6)M for heat-denatured arginine-rich histone. Heat-denatured lysine-rich histone was hydroxylated at a higher rate than non-denatured both at 37 and 25 degrees C. No such phenomenon was found, however, when arginine-rich histone was examined as a substrate. Furthermore, at 37 degrees C lysine-rich histone was a better substrate for lysyl hydroxylase then arginine-rich histone, but this relationship was reversed at 25 degrees C. The synthesis of hydroxylysine observed with arginine-rich histone indicates that the lysyl hydroxylase preparation used in these experiments catalyzes the synthesis of hydroxylysine not only in the sequence -X-Lys-Gly-, but also in some other sequences. Certain collagen polypeptide chains are known to contain one hydroxlysyl residue in a sequence other than -X-Lys-Gly-, and the present results may explain this finding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号