首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proline rich RNA-binding protein (Prrp), which associates with mRNAs that employ the late pathway for localization in Xenopus oocytes, was used as bait in a yeast two-hybrid screen of an expression library. Several independent clones were recovered that correspond to a paralog of 40LoVe, a factor required for proper localization of Vg1 mRNA to the vegetal cortex. 40LoVe is present in at least three alternatively spliced isoforms; however, only one, corresponding to the variant identified in the two-hybrid screen, can be crosslinked to Vg1 mRNA. In vitro binding assays revealed that 40LoVe has high affinity for RNA, but exhibits little binding specificity on its own. Nonetheless, it was only found associated with localized mRNAs in oocytes. 40LoVe also interacts directly with VgRBP71 and VgRBP60/hnRNP I; it is the latter factor that likely determines the binding specificity of 40LoVe. Initially, 40LoVe binds to Vg1 mRNA in the nucleus and remains with the RNA in the cytoplasm. Immunohistochemical staining of oocytes shows that the protein is distributed between the nucleus and cytoplasm, consistent with nucleocytoplasmic shuttling activity. 40LoVe is excluded from the mitochondrial cloud, which is used by RNAs that localize through the early (METRO) pathway in stage I oocytes; nonetheless, it is associated with at least some early pathway RNAs during later stages of oogenesis. A phylogenetic analysis of 2×RBD hnRNP proteins combined with other experimental evidence suggests that 40LoVe is a distant homolog of Drosophila Squid.  相似文献   

2.
Asymmetric distribution of cellular components underlies many biological processes, and the localization of mRNAs within domains of the cytoplasm is one important mechanism of establishing and maintaining cellular asymmetry. mRNA localization often involves assembly of large ribonucleoproteins (RNPs) in the cytoplasm. Using an RNA affinity chromatography approach, we investigated localization RNP formation on the vegetal localization element (VLE) of the mRNA encoding Vg1, a Xenopus TGF-beta family member. We identified 40LoVe, an hnRNP D family protein, as a specific VLE binding protein from Xenopus oocytes. Interaction of 40LoVe with the VLE strictly correlates with the ability of the RNA to localize, and antibodies against 40LoVe inhibit vegetal localization in vivo in oocytes. Our results associate an hnRNP D protein with mRNA localization and have implications for several functions mediated by this important protein family.  相似文献   

3.
Xenopus laevis Vg1 mRNA undergoes both localization and translational control during oogenesis. We previously characterized a 250-nucleotide AU-rich element, the Vg1 translation element (VTE), in the 3'-untranslated region (UTR) of this mRNA that is responsible for the translational repression. UV-cross-linking and immunoprecipitation experiments, described here, revealed that the known AU-rich element binding proteins, ElrA and ElrB, and TIA-1 and TIAR interact with the VTE. The levels of these proteins during oogenesis are most consistent with a possible role for ElrB in the translational control of Vg1 mRNA, and ElrB, in contrast to TIA-1 and TIAR, is present in large RNP complexes. Immunodepletion of TIA-1 and TIAR from Xenopus translation extract confirmed that these proteins are not involved in the translational repression. Mutagenesis of a potential ElrB binding site destroyed the ability of the VTE to bind ElrB and also abolished translational repression. Moreover, multiple copies of the consensus motif both bind ElrB and support translational control. Therefore, there is a direct correlation between ElrB binding and translational repression by the Vg1 3'-UTR. In agreement with the reporter data, injection of a monoclonal antibody against ElrB into Xenopus oocytes resulted in the production of Vg1 protein, arguing for a role for the ELAV proteins in the translational repression of Vg1 mRNA during early oogenesis.  相似文献   

4.
Although it is widely regarded that the targeting of RNA molecules to subcellular destinations depends upon the recognition of cis-elements found within their 3' untranslated regions (UTR), relatively little is known about the specific features of these cis-sequences that underlie their function. Interaction between specific repeated motifs within the 3' UTR and RNA-binding proteins has been proposed as a critical step in the localization of Vg1 RNA to the vegetal pole of Xenopus oocytes. To understand the relative contributions of repeated localization element (LE) sequences, we used comparative functional analysis of Vg1 LEs from two frog species, Xenopus laevis and Xenopus borealis. We show that clusters of repeated VM1 and E2 motifs are required for efficient localization. However, groups of either site alone are not sufficient for localization. In addition, we present evidence that the X. borealis Vg1 LE is recognized by the same set of RNA-binding proteins as the X. laevis Vg1 LE and is capable of productive interactions with the X. laevis transport machinery as it is sufficient to direct vegetal localization in X. laevis oocytes. These results suggest that clustered sets of cis-acting sites within the LE direct vegetal transport through specific interactions with the localization machinery.  相似文献   

5.
Xenopus Vg1RBP is a member of the highly conserved IMP family of four KH-domain RNA binding proteins, with roles in RNA localization, translational control, RNA stability, and cell motility. Vg1RBP has been implicated in localizing Vg1 mRNAs to the vegetal cortex during oogenesis, in a process mediated by microtubules and microfilaments, and in migration of neural crest cells in embryos. Using c-mos morpholino, kinase inhibitors, and constitutely active recombinant kinases we show that Vg1RBP undergoes regulated phosphorylation by Erk2 MAPK during meiotic maturation, on a single residue, S402, located between the KH2 and KH3 domains. Phosphorylation temporally correlates with the release of Vg1 mRNA from its tight cortical association, assayed in lysates in physiological salt buffers, but does not affect RNA binding, nor self-association of Vg1RBP. U0126, a MAP kinase inhibitor, prevents Vg1RBP cortical release and Vg1 mRNA solubilization in meiotically maturing eggs, while injection of MKK6-DD, a constitutively activated MAP kinase kinase, promotes the release of both Vg1RBP and Vg1 mRNA from insoluble cortical structures. We propose that Erk2 MAP kinase phosphorylation of Vg1RBP regulates the protein:protein-mediated association of Vg1 mRNP with the cytoskeleton and/or ER. Since the MAP kinase site in Vg1RBP is conserved in several IMP homologs, this modification also has important implications for the regulation of IMP proteins in somatic cells.  相似文献   

6.
Xenopus Vg1 mRNA is localized to the vegetal cortex during oogenesis in a process involving microtubules and microfilaments and proteins that specifically recognize the vegetal localization element (VLE) within the 3' untranslated region. One of the best characterized VLE-binding proteins is Vg1RBP or Vera. Primary sequence analysis of Vg1RBP and its homologs suggests that most of its open reading frame is occupied by RNA-binding modules, including two RRMs and four KH domains, arranged as three pairs of didomains. In the first detailed domain analysis of Vg1RBP, we show that the interaction of Vg1RBP with the VLE requires both KH didomains, but not the RRM didomain, and moreover that the KH didomains contribute cooperatively to RNA binding. In the full-length protein, individual KH domains display significant redundancy, and their relative importance appears to vary with the RNA target. We also demonstrate that the KH34 didomain mediates Vg1RBP self-association, which is stabilized by RNA, and occurs in vivo as well as in vitro. Altogether, our findings highlight the importance of multiple KH domains in mediating RNA-protein and protein-protein interactions in the formation of a stable complex of Vg1RBP and Vg1 mRNA.  相似文献   

7.
Cytoplasmic localization of mRNA molecules is a powerful mechanism for generating cell polarity. In vertebrates, one paradigm is localization of Vg1 RNA within the Xenopus oocyte, a process directed by recognition of a localization element within the Vg1 3' UTR. We show that specific base changes within the localization element abolish both localization in vivo and binding in vitro by a single protein, VgRBP60. VgRBP60 is homologous to a human hnRNP protein, hnRNP I, and combined immunolocalization and in situ hybridization demonstrate striking colocalization of hnRNP I and Vg1 RNA within the vegetal cytoplasm of the Xenopus oocyte. These results implicate a novel role in cytoplasmic RNA transport for this family of nuclear RNA-binding proteins.  相似文献   

8.
Transport of specific mRNAs to defined regions within the cell cytoplasm is a fundamental mechanism for regulating cell and developmental polarity. In the Xenopus oocyte, Vg1 RNA is transported to the vegetal cytoplasm, where localized expression of the encoded protein is critical for embryonic polarity. The Vg1 localization pathway is directed by interactions between key motifs within Vg1 RNA and protein factors recognizing those RNA sequences. We have investigated how RNA-protein interactions could be modulated to trigger distinct steps in the localization pathway and found that the Vg1 RNP is remodeled during cytoplasmic RNA transport. Our results implicate two RNA-binding proteins with key roles in Vg1 RNA localization, PTB/hnRNP I and Vg1RBP/vera, in this process. We show that PTB/hnRNP I is required for remodeling of the interaction between Vg1 RNA and Vg1RBP/vera. Critically, mutations that block this remodeling event also eliminate vegetal localization of the RNA, suggesting that RNP remodeling is required for localization.  相似文献   

9.
Heterogeneous nuclear ribonucleoproteins (hnRNPs) comprise a large group of modular RNA-binding proteins classified according to their conserved domains. This modular nature, coupled with a large choice of alternative splice variants generates functional diversity. Here, we investigate the biological differences between 40LoVe, its splice variant Samba and its pseudoallele hnRNP AB in neural development. Loss of function experiments lead to defects in neural development with reduction of eye size, which stem primarily from increased apoptosis and reduced proliferation in neural tissues. Despite very high homology between 40LoVe/Samba and hnRNP AB, these proteins display major differences in localization, which appear to be in part responsible for functional differences. Specifically, we show that the 40Love/Samba carboxy-terminal domain (GRD) enables nucleocytoplasmic shuttling behavior. This domain is slightly different in hnRNP AB, leading to nuclear-restricted localization. Finally, we show that shuttling is required for 40LoVe/Samba function in neural development.  相似文献   

10.
Vg 1 RNA becomes localized at the vegetal cortex of Xenopus oocytes in a process requiring both intact microtubules (MT) and microfilaments. This localization occurs during a narrow window of oogenesis, when a number of RNA-binding proteins associate with the RNA. xVICKZ3 (Vg1 RBP/Vera), the first Vg1 RNA-binding protein identified, helps mediate the association of Vg1 RNA with MT and is co-localized with the RNA at the vegetal cortex. Given the complexity of the Vg1 RNA ribonucleoprotein (RNP) complex, it has remained unclear how xVICKZ3 functions in Vg1 RNA localization. Here, we have taken a closer look at the process of xVICKZ3 localization in oocytes. We have made use of deletion constructs to perform a structure-function analysis of xVICKZ3. The ability of xVICKZ3-GFP constructs to vegetally localize correlates with their association to MT but not with Vg1 RNA-binding ability. We find that when the ability of xVICKZ3 to bind Vg1 RNA is inhibited by the injection of a construct that dominantly inhibits RNA binding, both the construct and Vg1 RNA still localize, apparently through their continued association with a Vg1 RNA-containing RNP complex. These results emphasize the importance of protein-protein interactions in both xVICKZ3 and Vg1 RNA localization.  相似文献   

11.
Z Elisha  L Havin  I Ringel    J K Yisraeli 《The EMBO journal》1995,14(20):5109-5114
Localized RNAs are found in a variety of somatic and developing cell types. In many cases, microtubules have been implicated as playing a role in facilitating transport of these RNAs. Here we report that Vg1 RNA, which is localized to the vegetal cortex of Xenopus laevis oocytes, is associated with microtubules in vivo. Because of the ubiquitous nature of tubulin, the association of specific RNAs with microtubules is likely to involve factors that recognize both RNA and microtubules. Vg1 RNA binding protein (Vg1 RBP), previously shown to bind with high affinity to the vegetal localization site in Vg1 RNA, appears to function in this capacity. Vg1 RBP is associated with microtubules: it is enriched in microtubule extracts of oocytes and is also co-precipitated by heterologous, polymerized tubulin. Furthermore, Vg1 RBP binding activity is required for the specific association of Vg1 RNA to microtubules in vitro. These data suggest a general model for how specific RNAs can be localized to particular sites via common cytoskeletal elements.  相似文献   

12.
The heterogeneous nuclear RNP (hnRNP) A1 protein is one of the major pre-mRNA/mRNA binding proteins in eukaryotic cells and one of the most abundant proteins in the nucleus. It is localized to the nucleoplasm and it also shuttles between the nucleus and the cytoplasm. The amino acid sequence of A1 contains two RNP motif RNA-binding domains (RBDs) at the amino terminus and a glycine-rich domain at the carboxyl terminus. This configuration, designated 2x RBD-Gly, is representative of perhaps the largest family of hnRNP proteins. Unlike most nuclear proteins characterized so far, A1 (and most 2x RBD-Gly proteins) does not contain a recognizable nuclear localization signal (NLS). We have found that a segment of ca. 40 amino acids near the carboxyl end of the protein (designated M9) is necessary and sufficient for nuclear localization; attaching this segment to the bacterial protein beta- galactosidase or to pyruvate kinase completely localized these otherwise cytoplasmic proteins to the nucleus. The RBDs and another RNA binding motif found in the glycine-rich domain, the RGG box, are not required for A1 nuclear localization. M9 is a novel type of nuclear localization domain as it does not contain sequences similar to classical basic-type NLS. Interestingly, sequences similar to M9 are found in other nuclear RNA-binding proteins including hnRNP A2.  相似文献   

13.
The subcellular localization of specific mRNAs is a widespread mechanism for regulating gene expression. In Xenopus oocytes microtubules are required for localization of Vg1 mRNA to the vegetal cortex during the late RNA localization pathway. The factors that mediate microtubule-based RNA transport during the late pathway have been elusive. Here we show that heterotrimeric kinesin II becomes enriched at the vegetal cortex of stage III/IV Xenopus oocytes concomitant with the localization of endogenous Vg1 mRNA. In addition, expression of a dominant negative mutant peptide fragment or injection of a function-blocking antibody, both of which impair the function of heterotrimeric kinesin II, block localization of Vg1 mRNA. We also show that exogenous Vg1 RNA or Xcat-2, another RNA that can use the late pathway, recruits endogenous kinesin II to the vegetal pole and colocalizes with it at the cortex. These data support a model in which kinesin II mediates the transport of specific RNA complexes destined for the vegetal cortex.  相似文献   

14.
Zhao WM  Jiang C  Kroll TT  Huber PW 《The EMBO journal》2001,20(9):2315-2325
A 340 nucleotide element within the 3' untranslated region of Vg1 mRNA determines its localization to the vegetal cortex of Xenopus oocytes. To identify protein factors that bind to this region, we screened a cDNA expression library with an RNA probe containing this sequence. Five independent isolates encoded a protein (designated Prrp for proline-rich RNA binding protein) having two RNP domains followed by multiple polyproline segments. Prrp and Vg1 mRNAs are co-localized to the vegetal cortex of stage IV oocytes, substantiating an interaction between the two in vivo. Prrp also associates with VegT mRNA, which like Vg1 mRNA uses the late localization pathway, but not with Xcat-2 or Xwnt-11 mRNAs, which use the early pathway. The proline-rich domain of Prrp interacts with profilin, a protein that promotes actin polymerization. Prrp can also associate with the EVH1 domain of Mena, another microfilament-associated protein. Since the anchoring of Vg1 mRNA to the vegetal cortex is actin dependent, one function of Prrp may be to facilitate local actin polymerization, representing a novel function for an RNA binding protein.  相似文献   

15.
The human IGF-II mRNA-binding proteins (IMPs) 1-3, and their Xenopus homologue Vg1 RNA-binding protein (Vg1-RBP) are RNA-binding proteins implicated in mRNA localization and translational control in vertebrate development. We have sequenced the Drosophila homologue (dIMP) of these genes, and examined its expression pattern in Drosophila embryos by in situ hybridization. The study shows that dIMP exhibits a biphasic expression pattern. In the early stages of development, a maternal pool of dIMP mRNA is evenly distributed in the embryo and degraded by the end of stage 4. Expression reappears in the developing central nervous system, where dIMP is expressed throughout neurogenesis. In addition, dIMP is present in the pole cells.  相似文献   

16.
hnRNP A1 is a nucleocytoplasmic shuttling protein that is involved in many aspects of mRNA metabolism. We have previously shown that activation of the p38 stress-signaling pathway in mammalian cells results in both hyperphosphorylation and cytoplasmic accumulation of hnRNP A1, affecting alternative splicing regulation in vivo. Here we show that the stress-induced cytoplasmic accumulation of hnRNP A1 occurs in discrete phase-dense particles, the cytoplasmic stress granules (SGs). Interestingly, mRNA-binding activity is required for both phosphorylation of hnRNP A1 and localization to SGs. We also show that these effects are mediated by the Mnk1/2 protein kinases that act downstream of p38. Finally, depletion of hnRNP A1 affects the recovery of cells from stress, suggesting a physiologically significant role for hnRNP A1 in the stress response. Our data are consistent with a model whereby hnRNP A1 recruitment to SGs involves Mnk1/2-dependent phosphorylation of mRNA-bound hnRNP A1.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号