首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method to discriminate G1, S, G2, M, and G1 postmitotic cells   总被引:1,自引:0,他引:1  
A new flow cytometric method combining light scattering measurements, detection of bromodeoxyuridine (BrdU) incorporation via fluorescent antibody, and quantitation of cellular DNA content by propidium iodide (PI) allows identification of additional compartments in the cell cycle. Thus, while cell staining with BrdU-antibodies and PI reveals the G1, S, and G2 + M phases of the cell cycle, differences in light scattering allow separation of G2 phase cells from M phase cells and subdivision of G1 phase into two compartments, i.e., G1A representing postmitotic cells which mature to G1B cells ready to initiate DNA synthesis. The method involves fixation of cells in 70% ethanol, extraction of histones with HC1, and thermal denaturation of DNA. This treatment appears to enhance the differences in chromatin structure of cells in the various phases of the cell cycle to the extent that cells could be separated on the basis of the 90 degrees scatter. Mitotic cells show much lower scatter than G2 phase cells, and G1 postmitotic cells (G1A) show lower scatter than G1 cells about to enter the S phase (G1B). Light scattering is correlated with chromatin condensation, as judged by microscopic evaluation of cells sorted on the basis of light scatter. The method has the advantage over the parental BrdU/DNA bivariate analysis in allowing the G2 and M phases of the cell cycle to be separated and the G1 phase to be analyzed in more detail. The method may also allow separation of unlabeled S phase cells from mitotic cells and distinguish between labeled and unlabeled mitotic cells.  相似文献   

2.
Summary An electron cytochemical technique is described for the localization of GABA-T, the enzyme which degrades the neurotransmitter GABA, in rat cerebellar cortex. The technique allows ultrastructural demonstration of GABA-T activity by the final deposition of an electron dense formazan precipitate at reaction sites, whilst maintaining adequate ultrastructural preservation for recognition of cellular and subcellular structures. Numerous electron dense precipitates are evident as discrete punctate deposits situated mainly in mitochondria of stellate cells, basket cells and astrocytic glial cells; they are also seen in axonal or dendritic profiles at some synaptic junctions. The technique enables the first cytochemical demonstration of the mitochondrial localization of GABA-T activity in nervous tissue to be presented. It establishes that GABA-T is present in supposed GABA neurones, in pre- or post-synaptic endings, or both, of presumed inhibitory synapses and in glial cells which may be associated with these synapses. From this seemingly ubiquitous distribution, functional aspects of GABA-T in these cells is considered.  相似文献   

3.
GABA (γ-aminobutyric acid) is important neurotransmitter and regulator of endocrine functions. Its metabolism involves three enzymes: glutamate decarboxylase (GAD65 and GAD67), GABA aminotransferase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). As many cellular processes GABA turnover can depend on calcium homeostasis, which is maintained by plasma membrane calcium ATPases (PMCAs). In excitable cells PMCA2 and PMCA3 isoforms are particularly important. In this study we focused on GABA-metabolizing enzymes expression and activity in rat anterior pituitary GH3 cells with suppressed expression of PMCA2 or PMCA3. We observed that PMCA3-reduced cells have increased GAD65 expression. Suppression of PMCA2 caused a decrease in total GAD and GABA-T activity. These results indicate that PMCA2 and PMCA3 presence may be an important regulatory factor in GABA metabolism. Results suggest that PMCA2 and PMCA3 function is rather related to regulation of GABA synthesis and degradation than supplying cells with metabolites, which can be potentially energetic source.  相似文献   

4.
Abstract: cDNAs encoding γ-aminobutyric acid aminotransferase (GABA-T) were isolated from a λZAP rat hippocampal cDNA expression library by two independent cloning methods, immunological screening with an antimouse GABA-T antibody and plaque hybridization with a GABA-T cDNA probe derived by polymerase chain reaction. We have produced enzymatically active GABA-T from a rat brain cDNA containing the full-length GABA-T coding region. Our rat brain GABA-T cDNAs hybridize to mRNAs in brain and peripheral tissues, including liver, kidney, and testis. We have also detected GABA-T mRNA in GABAergic cells of rat cerebellar cortex by in situ hybridization. Our rat brain GABA-T probe hybridizes to Purkinje, basket, stellate, and Golgi II cells, the same GABAergic neurons previously shown to contain glutamate decarboxylase GAD85 and GAD87.  相似文献   

5.
Viruses reshape the organization of the cell interior to achieve different steps of their cellular cycle. Particularly, viral replication and assembly often take place in viral factories where specific viral and cellular proteins as well as nucleic acids concentrate. Viral factories can be either membrane-delimited or devoid of any cellular membranes. In the latter case, they are referred as membrane-less replication compartments. The most emblematic ones are the Negri bodies, which are inclusion bodies that constitute the hallmark of rabies virus infection. Interestingly, Negri bodies and several other viral replication compartments have been shown to arise from a liquid-liquid phase separation process and, thus, constitute a new class of liquid organelles. This is a paradigm shift in the field of virus replication. Here, we review the different aspects of membrane-less virus replication compartments with a focus on the Mononegavirales order and discuss their interactions with the host cell machineries and the cytoskeleton. We particularly examine the interplay between viral factories and the cellular innate immune response, of which several components also form membrane-less condensates in infected cells.  相似文献   

6.
The effect of sodium n dipropylacetate (nDPA), a competitive GABA-T inhibitor with respect to GABA, has been investigated on glial and neuronal cellular GABA level. After 1 to 4 days incubation with nDPA in the culture medium, a decrease of GABA level in M5 neuroblastoma clonal cell lines and no modification of GABA level in C6 astrocytoma cells has been observed. The combined addition of nDPA 4 micrometer with dibutyryl cyclic AMP (1 mM) to the culture medium induces the same decrease in GABA level in C6 astrocytoma cells as the addition of DB-c-AMP alone. After shorter incubation time with nDPA (5-150 min), we observed a decreased GABA level in C6 astrocytoma glial cells.  相似文献   

7.
Abstract: The intramuscular administration of a γ-aminobutyrate-α-oxoglutarate aminotransferase (GABA-T) inhibitor, gabaculine, to mice resulted in significant increases in GABA content and decreases in the content of aspartate, glutamate, and glutamine in the nerve endings (synaptosomes). These effects were ameliorated by the concurrent administration of the GABA uptake inhibitor ketamine. A major cause of these effects was the gabaculine-induced inhibition of GABA-T activity and the lessening of this inhibition by ketamine. The latter phenomenon was not due to a direct action of ketamine on the enzyme, nor to an interaction between gabaculine and ketamine. Rather, it appeared that ketamine might be interfering with the transport of gabaculine into the cellular structures. The anticonvulsant action of the GABA-T inhibitor and the GABA uptake inhibitor together was little different from that of the GABA-T inhibitor alone.  相似文献   

8.
A sensitive and rapid in situ immunoassay to quantitatively determine the cellular antigens in intact cells was developed. Antigens located in plasma membrane, endosome, cytosol, lysosome or endoplasmic reticulum of cultured cells were fixed in situ and reacted with monoclonal antibodies after permeabilization of cells with saponin. The antigen-antibody complexes were quantified by colorimetric method of peroxidase-substrate reaction. Epidermal growth factor receptor, monomer of pyruvate kinase M2 and the endoplasmic reticulum-associated thyroid hormone-binding protein were easily detected from 0.5-1 x 10(4) cells by this method. Antibody as low as 10 ng/ml gave reproducible results. Using this method, the in vivo dynamic interconversion of monomer-tetramer of pyruvate kinase M2 was found to be regulated by glucose. The ligand-induced epidermal growth factor receptor through different subcellular compartments during endocytosis was easily quantified by this method. This method was also used to compare the different amounts of the endoplasmic reticulum-associated thyroid hormone-binding protein in various cultured cells. Thus, the in situ immunoassay is an easy and versatile method which can be used to study various cellular antigens and their involvement in cellular processes.  相似文献   

9.
Unidirectional ion fluxes are measured in cells isolated by a trypsination-dissection method from the epithelium of the frog Leptodactylus ocellatus. Potassium seems to be contained in a single cellular compartment. The influx of potassium is 0.0068 mumole min-1 mg-1 of dry weight and is carried by a ouabain-sensitive pump. Sodium seems to be contained in two cellular compartments, one of which does not exchange its Na within the experimental period. The possibility that these compartments reflect the existence of different types of cells is not discarded. 49% of the rate constant for the Na efflux is ouabain-sensitive and 23% is ethacrynic-sensitive. Under control conditions the permeability to potassium (PK), sodium (PNa) and chloride (PC1) are 7.6 X 10(-5), 2.6 X 10(-5) and 2.8 X 10(-5) liters/min mg, respectively. The value of PNa is much higher than predicted by current electrical models of the epithelium. The discrepancy might offer some insight into the nature of the "inner facing barrier" of the skin.  相似文献   

10.
The two fundamental types of photoreceptor cells have evolved unique structures to expand the apical membrane to accommodate the phototransduction machinery, exemplified by the cilia-based outer segment of the vertebrate photoreceptor cell and the microvilli-based rhabdomere of the invertebrate photoreceptor. The morphogenesis of these compartments is integral for photoreceptor cell integrity and function. However, little is known about the elementary cellular and molecular mechanisms required to generate these compartments. Here we investigate whether a conserved cellular mechanism exists to create the phototransduction compartments by examining the functional role of a photoreceptor protein common to both rhabdomeric and ciliated photoreceptor cells, Prominin. First and foremost we demonstrate that the physiological role of Prominin is conserved between rhabdomeric and ciliated photoreceptor cells. Human Prominin1 is not only capable of rescuing the corresponding rhabdomeric Drosophila prominin mutation but also demonstrates a conserved genetic interaction with a second photoreceptor protein Eyes Shut. Furthermore, we demonstrate the Prominin homologs in vertebrate and invertebrate photoreceptors require the same structural features and post-translational modifications for function. Moreover, expression of mutant human Prominin1, associated with autosomal dominant retinal degeneration, in rhabdomeric photoreceptor cells disrupts morphogenesis in ways paralleling retinal degeneration seen in ciliated photoreceptors. Taken together, our results suggest the existence of an ancestral Prominin-directed cellular mechanism to create and model the apical membranes of the two fundamental types of photoreceptor cells into their respective phototransduction compartments.  相似文献   

11.
Membrane dynamics is an essential part of many cellular mechanisms such as intracellular trafficking, membrane fusion/fission and mitotic organelle reconstitution. The dynamics of membranes is dependent primarily on their phospholipid and cholesterol composition and how these molecules are ordered in relation to one another. To determine the physical status of membranes in whole cells or purified membranes of subcellular compartments we have developed a novel application exploiting solid-state (2)H-NMR spectroscopy. We utilise this method to probe the dynamics of intact sperm and nuclear envelope precursor membranes. We show, using mass spectrometry, that either multilamellar or small unilamellar vesicles of deuterium-labelled palmitoyl-oleoylphosphatidylcholine can be used to probe the dynamics of sperm cells or nuclear envelope precursor membrane vesicles, respectively. Using (2)H-NMR we determine the order parameters of sperm cells and nuclear envelope precursor membrane vesicles. We demonstrate that whole sperm membranes are more dynamic than nuclear envelope precursor membranes due to the higher cholesterol levels of the latter. Our new application can be exploited as a generic method for monitoring membrane dynamics in whole cells, various subcellular membrane compartments and membrane domains in subcellular compartments.  相似文献   

12.
Subcellular fractionation of tissue culture cells   总被引:5,自引:0,他引:5  
Subcellular fractionation has two major steps, (1) the homogenization of the cells and (2) the subsequent separation of the organelles. The homogenization step is discussed with reference to the problems encountered using tissue culture cells. Promising techniques for the isolation of specific compartments are illustrated using the isolation of the endosomal compartment as the example.  相似文献   

13.
Quantitation of GFP-fusion proteins in single living cells   总被引:9,自引:0,他引:9  
  相似文献   

14.
Heterogeneity of brain fractions containing neuronals and glial cells   总被引:2,自引:0,他引:2  
Abstract— A density-gradient procedure, previously reported to enable the separation of intact metabolically active neuronal and glial cells, has been appraised in terms of cellular homogeneity and integrity. Morphological examination by light and electron microscopy of fractions prepared by this method demonstrated marked heterogeneity and a high degree of cellular damage. The ‘neuronally enriched’ fraction contained a large proportion of non-neuronal tissue including fragmented capillaries and endothelial cells. The ‘glial-enriched’ fraction contained numerous nerve-endings and synaptic boutons. The distribution of protein, DNA, carbonic anhydrase, succinate dehydrogenase and lactate dehydrogenase was examined, but such data were difficult to interpret in view of the marked heterogeneity of the fractions. Particulate material from the fractions was capable of endogenous respiration which was stimulated by glucose or pyruvate to levels slightly lower than that found in slices of cerebral cortex. The limitations of this and other methods for separation of cell types from neural tissue are discussed.  相似文献   

15.
Many studies have focussed on modulating the activity of γ-aminobutyric acid transaminase (GABA-T), a GABA-catabolizing enzyme, for treating neurological diseases, such as epilepsy and drug addiction. Nevertheless, human GABA-T synthesis and purification have not been established. Thus, biochemical and drug design studies on GABA-T have been performed by using porcine GABA-T mostly and even bacterial GABA-T. Here we report an optimised protocol for overexpression of 6xHis-tagged human GABA-T in human cells followed by a two-step protein purification. Then, we established an optimised human GABA-T (0.5 U/mg) activity assay. Finally, we compared the difference between human and bacterial GABA-T in sensitivity to two irreversible GABA-T inhibitors, gabaculine and vigabatrin. Human GABA-T in homodimeric form showed 70-fold higher sensitivity to vigabatrin than bacterial GABA-T in multimeric form, indicating the importance of using human GABA-T. In summary, our newly developed protocol can be an important first step in developing more effective human GABA-T modulators.  相似文献   

16.
An apparatus was designed for preparative density gradient electrophoresis of mammalian cells. In a low conductivity isotonic Ficoll density gradient of 1.5 cm length, human erythrocytes treated with neuraminidase were separated from untreated erythrocytes at an electric field strength of approximately 2.7 v/cm. Within 5 min two bands of erythrocytes were visible. Electrophoretic separation was completed within 25 min. The fractionation is performed in a design consisting of three Perspex circular plates, bottom and top plates of which can be displaced simultaneously relative to the stationary middle plate by a worm-gear mechanism. The middle plate contains a cylindrical separation chamber of 50 cm2 and 1.5 cm high. Top and bottom plates contain cones and flow deflectors for the undisturbed thin layering of cell suspensions and for introduction of the density gradient. Also present in top and bottom plates are electrode compartments containing a large platinum electrode and a cellophane membrane that isolates the separation chamber hydrodynamically but not electrically from the electrode compartment. The electrode compartments were flushed with electrophoresis buffer to remove products of electrophoresis as well as the (low) generated Joule heat.  相似文献   

17.
GABA is the major inhibitory neurotransmitter in the nervous system. It is also released by the insulin-producing beta-cells, providing them with a potential paracrine regulator. Because glucose was found to inhibit GABA release, we investigated whether extracellular GABA can serve as a marker for glucose-induced mitochondrial activity and thus for the functional state of beta-cells. GABA release by rat and human beta-cells was shown to reflect net GABA production, varying with the functional state of the cells. Net GABA production is the result of GABA formation through glutamate decarboxylase (GAD) and GABA catabolism involving a GABA-transferase (GABA-T)-mediated shunt to the TCA cycle. GABA-T exhibits K(m) values for GABA (1.25 mM) and for alpha-ketoglutarate (alpha-KG; 0.49 mM) that are, respectively, similar to and lower than those in brain. The GABA-T inhibitor gamma-vinyl GABA was used to assess the relative contribution of GABA formation and catabolism to net production and release. The nutrient status of the beta-cells was found to regulate both processes. Glutamine dose-dependently increased GAD-mediated formation of GABA, whereas glucose metabolism shunts part of this GABA to mitochondrial catabolism, involving alpha-KG-induced activation of GABA-T. In absence of extracellular glutamine, glucose also contributed to GABA formation through aminotransferase generation of glutamate from alpha-KG; this stimulatory effect increased GABA release only when GABA-T activity was suppressed. We conclude that GABA release from beta-cells is regulated by glutamine and glucose. Glucose inhibits glutamine-driven GABA formation and release through increasing GABA-T shunt activity by its cellular metabolism. Our data indicate that GABA release by beta-cells can be used to monitor their metabolic responsiveness to glucose irrespective of their insulin-secretory activity.  相似文献   

18.
Membrane dynamics is an essential part of many cellular mechanisms such as intracellular trafficking, membrane fusion/fission and mitotic organelle reconstitution. The dynamics of membranes is dependent primarily on their phospholipid and cholesterol composition and how these molecules are ordered in relation to one another. To determine the physical status of membranes in whole cells or purified membranes of subcellular compartments we have developed a novel application exploiting solid-state 2H-NMR spectroscopy. We utilise this method to probe the dynamics of intact sperm and nuclear envelope precursor membranes. We show, using mass spectrometry, that either multilamellar or small unilamellar vesicles of deuterium-labelled palmitoyl-oleoylphosphatidylcholine can be used to probe the dynamics of sperm cells or nuclear envelope precursor membrane vesicles, respectively. Using 2H-NMR we determine the order parameters of sperm cells and nuclear envelope precursor membrane vesicles. We demonstrate that whole sperm membranes are more dynamic than nuclear envelope precursor membranes due to the higher cholesterol levels of the latter. Our new application can be exploited as a generic method for monitoring membrane dynamics in whole cells, various subcellular membrane compartments and membrane domains in subcellular compartments.  相似文献   

19.
Why do cells age? Recent advances show that the cytoplasm is organized into many membrane‐less compartments via a process known as phase separation, which ensures spatiotemporal control over diffusion‐limited biochemical reactions. Although phase separation is a powerful mechanism to organize biochemical reactions, it comes with the trade‐off that it is extremely sensitive to changes in physical‐chemical parameters, such as protein concentration, pH, or cellular energy levels. Here, we highlight recent findings showing that age‐related neurodegenerative diseases are linked to aberrant phase transitions in neurons. We discuss how these aberrant phase transitions could be tied to a failure to maintain physiological physical‐chemical conditions. We generalize this idea to suggest that the process of cellular aging involves a progressive loss of the organization of phase‐separated compartments in the cytoplasm.
  相似文献   

20.
Protein trafficking in plant cells   总被引:2,自引:1,他引:1       下载免费PDF全文
The cells of higher plants contain distinct subcellular compartments (organelles) that perform specialized functions such as photosynthesis, carbohydrate and lipid metabolism, and so forth. The majority of the protein constituents of plant organelles are formed as cytosolic precursors with N-terminal extensions that direct transport across one or more membrane bilayers in a post- or co-translational fashion. Since the majority of proteins in plant cells are products of nuclear gene expression, there must be precise sorting mechanisms in the cytoplasm that direct proteins to their correct cellular locations. Based on recent studies of protein targeting to chloroplasts and vacuoles, the details of these intracellular sorting mechanisms are becoming clear. The ability to direct proteins to specific compartments within cells provides new opportunities for improvement of plants by genetic manipulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号