首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
GABA(A)-mediated toxicity of hippocampal neurons in vitro   总被引:2,自引:0,他引:2  
In the present study, we examined whether the elevation of GABA by gamma-vinyl-GABA protects cultured rat fetal hippocampal neurons against toxicity induced by a 20-min incubation with 100 microM L-glutamate. Neither a 24-h pretreatment nor posttreatment with gamma-vinyl-GABA (100 microM) had any neuroprotective effects, as determined by counting microtubule-associated protein-2 positive cells and lactate dehydrogenase assay 24 h after the glutamate treatment. Unexpectedly, gamma-vinyl-GABA alone induced a 20% loss of microtubule-associated protein-2-positive cells in a culture that was grown in medium containing 25 mM KCl. The toxic effect of gamma-vinyl-GABA was mimicked by a 24-h treatment with GABA (100 microM) and the GABA(A) receptor agonist, muscimol (10 microM), but not the GABA(B) receptor agonist, baclofen (10 microM). The GABA(A) receptor antagonist, bicuculline (10 microM), protected against gamma-vinyl-GABA and GABA-evoked toxicity. Neither gamma-vinyl-GABA nor GABA was toxic in culture medium containing 15 mM KCl. These data indicate that, under depolarizing conditions, an increased GABA level is toxic for a subpopulation of developing hippocampal neurons in vitro. The effect is GABA(A) receptor-mediated. These data provide a new view for understanding neurodegenerative processes, and raise a question of the safety of therapies aimed at increasing GABA concentration following brain insults, especially in immature brains.  相似文献   

2.
In the cerebellum, infusion of NMDA (200 microM) for 20 min evoked a marked (200%) increase of extracellular cyclic GMP (cGMP) levels. The selective GABA(A) receptor agonist muscimol (0.01-100 microM) was able to counteract the NMDA effect with an EC(50) of 0.65 microM; the inhibitory effect of muscimol (10 microM) was prevented by bicuculline (50 microM). Diazepam (10 microM) significantly potentiated the muscimol (1 microM) inhibition; furthermore, when coinfused with 0.1 microM muscimol (a concentration not affecting, on its own, the cGMP response to NMDA), diazepam (10 microM) reduced the NMDA effect. Similar results were obtained with zolpidem (0.1-1 microM). Finally, local infusion of the benzodiazepine site antagonist flumazenil (10 microM), together with muscimol and diazepam, almost completely restored the effect of NMDA on extracellular cGMP levels. It is concluded that GABA(A) receptors potently control the NMDA/nitric oxide/cGMP pathway in the cerebellum in vivo. In terms of the alpha subunit composition, we can deduce that the cerebellar GABA(A) receptor does not contain alpha(6) or beta(4) subunits because it is diazepam-sensitive. Moreover, the observation that zolpidem is active at a rather low concentration, in combination with localization studies present in the literature, tend to exclude the presence of alpha(5) subunits in the receptor composition and suggest the involvement of an alpha(1) subunit.  相似文献   

3.
In frozen-thawed repeatedly washed rat cortical synaptic membranes, Ca2+ (1-5 mM) decreased the binding of [3H]muscimol whereas it increased the binding of [3H]gamma-aminobutyric acid (GABA). However, the binding of [3H]GABA was decreased by the same extent as the binding of [3H]muscimol when the membranes were incubated with baclofen (a selective ligand for the GABAB binding site) and Ca2+. Scatchard analysis of [3H]muscimol binding revealed that Ca2+ reduced the density of GABA binding sites without affecting the dissociation constant. Ca2+ was more potent than Ba2+, Mg2+ was ineffective, and the Ca2+ antagonist La3+ stimulated [3H]muscimol binding. The inhibition of [3H]muscimol binding by Ca2+ was not influenced by calmodulin (50 micrograms/ml), trifluoperazine (10(-5) M), verapamil (10(-6) M), quinacrine (10(-4) M), cordycepin (0.1 mM), leupeptin (20 microM), or soybean trypsin inhibitor (0.1 mg/ml). Moreover, the effect of Ca2+ was additive to that of GABA-modulin. These results indicate that Ca2+ decreases the number of GABAA binding sites while unveiling GABAB binding sites.  相似文献   

4.
There is evidence for glycine and GABA(A)-receptor-mediated inhibition of hypoglossal motoneurons in vitro. However, comparable studies have not been performed in vivo, and the interactions of such mechanisms with integrative reflex respiratory control have also not been determined. This study tests the hypotheses that glycine at the hypoglossal motor nucleus (HMN) will suppress genioglossus (GG) muscle activity, even in the presence of hypercapnic respiratory stimulation, and the effects of glycine will be blocked by strychnine. We also determined whether coapplication of glycine and muscimol (GABA(A)- receptor agonist) to the HMN is additive in suppressing GG activity. Twenty-four urethane-anesthetized, tracheotomized, and vagotomized rats were studied. Diaphragm and GG activities, the electroencephalogram, and blood pressure were recorded. Microdialysis probes were implanted into the HMN for delivery of artificial cerebrospinal fluid (control), glycine (0.0001-10 mM), or muscimol (0.1 microM). Increasing glycine at the HMN produced graded suppression of GG activity (P < 0.001), although the GG still responded to stimulation with 7% inspired CO(2) (P = 0.002). Strychnine (0.1 mM) reversed the glycine-mediated suppression of GG activity, whereas combined glycine and muscimol were additive in GG muscle suppression. It remains to be determined whether the recruitment of such glycine and GABA mechanisms explains the periods of major GG suppression in behaviors such as rapid eye movement sleep.  相似文献   

5.
We investigated a role of nitric oxide (NO) on ionomycin-evoked [3H]GABA release using mouse cerebral cortical neurons. lonomycin dose-dependently released [3H]GABA up to 1 microM. The extent of the release by 0.1 microM ionomycin was in a range similar to that by 30 mM KCl. The ionomycin (0.1 microM)-evoked [3H]GABA release was dose-dependently inhibited by NO synthase inhibitors and hemoglobin, indicating that the ionomycin-evoked [3H]GABA release is mediated through NO formation. The inhibition of cGMP formation by 1H-[1,2,4] oxodizao [4,3-a] quinoxalin-1-one (ODQ), a selective inhibitor for NO-sensitive guanylate cyclase, showed no affects on the ionomycin-evoked [3H]GABA release. Tetrodotoxin and dibucaine significantly suppressed the ionomycin-evoked [3H]GABA release and ionomycin increased fluorescence intensity of bis-oxonol, suggesting the involvement of membrane depolarization in this release. The ionomycin-evoked [3H]GABA release was maximally reduced by about 50% by GABA uptake inhibitors. The concomitant presence of nifedipine and omega-agatoxin VIA (omega-ATX), inhibitors for L- and P/Q-type voltage-dependent calcium channels, respectively, caused the reduction in the ionomycin-evoked release by about 50%. The simultaneous addition of nifedipine, omega-ATX and nipecotic acid completely abolished the release. Although ionomycin released glutamate, (+)-5-methyl-1-,11-dihydro-5H-dibenzo-[a,d]cycloheptan-5,10-imine (MK-801) and 6,7-dinitroquinoxaline-2,3-dione (DNQX) showed no effects on the ionomycin-induced [3H]GABA release. Based on these results, it is concluded that NO formed by ionomycin plays a critical role in ionomycin-evoked [3H]GABA release from the neurons.  相似文献   

6.
The effects of tagetone on flunitrazepam (FNTZ) binding to synaptosomal membranes from chick brains in the presence and absence of allosteric modulations induced by gamma-aminobutyric acid (GABA) were investigated. Tagetone, at 50 micrograms/ml (final concentration), decreased the binding affinity of [3H]FNTZ to synaptosomal membranes form chick brain (Kd = 3.34 +/- 0.36 nM without tagetone and Kd,t = 5.86 +/- 0.86 nM with tagetone; p < 0.05, two tailed Student's t-test) without affecting maximal binding (Bmax = 488 +/- 24 fmoles/mg protein, and Bmax,t = 500 +/- 25 fmoles/mg protein in the absence and in the presence of tagetone respectively). The potency of GABA to stimulate [3H]FNTZ binding increased in the presence of tagetone (EC50 values were 2.78 and 1.12 microM with and without tagetone respectively). GABA was able to decrease merocyanine delta A570-610 values in a concentration dependent manner; half maximal effect was attained at a GABA concentration of 34 +/- 13 microM. Tagetone, at a concentration of 50 micrograms/ml and in the presence of GABA 30 microM or 60 microM, enhanced the ability of GABA alone on decreasing delta A570-610. Tagetone alone did not change delta A570-610 values. FNTZ, a well known GABA modulator, could also potentiate the effect of GABA. Theoretical calculations indicate that the effects on merocyanine delta A570-610 value are mainly exerted at the membrane potential level (delta psi m). The present results strongly suggest that tagetone affected the function of GABAA receptor in a complex way: on the one hand it impaired FNTZ binding: on the other hand tagetone improved both the coupling between FNTZ and GABA binding sites and it enhanced GABA-induced chloride permeability. Changes in the geometrical and electrostatic properties of the self-organized membrane structure may account for these effects of tagetone.  相似文献   

7.
Fenamate NSAIDs have several central effects, including anti-epileptic and neuroprotective actions. The underlying mechanism(s) of these actions are not presently understood. In this study, the effects of five members of the fenamate NSAID group were investigated on native ligand-gated ion channels expressed in cultured rat hippocampal neurons. All fenamates tested (1-100 microM) dose-dependently potentiated GABA-evoked currents; mefenamic acid (MFA) was the most potent and efficacious and was found to shift the GABA dose-response curve to the left without effect on the maximum amplitude or the GABA Hill Slope. The modulation of GABA receptors by MFA was not reduced in the presence of the benzodiazepine antagonist, flumazenil (10 microM) and was moderately voltage-dependent. MFA at concentrations >or=10 microM evoked dose-dependent currents in the absence of GABA. These currents were potentiated by diazepam (1 microM) and blocked by bicuculline (10 microM). The MFA (50 microM) current-voltage relationship and reversal potential were similar to that evoked by GABA. MFA (1-100 microM) had no effects on sub-maximal glycine, glutamate or NMDA evoked currents. These data show that fenamate NSAIDs are a highly effective class of GABA(A) receptor modulator and activators.  相似文献   

8.
gamma-Aminobutyric acid (GABA) is a neurotransmitter with a demonstrated neuroregulatory role in reproduction in most representative species of vertebrate classes via the hypothalamus. The role of GABA on the hypothalamus-pituitary axis in lampreys has not been fully elucidated. Recent immunocytochemical and in situ hybridization studies suggest that there may be a neuroregulatory role of GABA on the gonadotropin-releasing hormone (GnRH) system in lampreys. To assess possible GABA-GnRH interactions, the effects of GABA and its analogs on lamprey GnRH in vitro and in vivo were studied in adult female sea lampreys (Petromyzon marinus). In vitro perfusion of GABA and its analogs at increasing concentrations (0.1-100 microM) was performed over a 3-h time course. There was a substantial increase of GnRH-I and GnRH-III following treatment of muscimol at 100 microM. In in vivo studies, GABA or muscimol injected at 200 microg/kg significantly increased lamprey GnRH concentration in the brain 0.5 h after treatment compared to controls in female sea lampreys. No significant change in lamprey GnRH-I or GnRH-III was observed following treatment with bicuculline. These data provide novel physiological data supporting the hypothesis that GABA may influence GnRH in the brain of sea lamprey.  相似文献   

9.
The aim of the present paper was to determine whether the release of glutamate from putative "glutamergic" terminals in the cerebellum is influenced by gamma-aminobutyric acid (GABA). In a group of preliminary experiments, we present biochemical evidence in favour of a neurotransmitter role of glutamate in the cerebellum: (1) endogenous glutamate was released from depolarized cerebellar synaptosomal preparations in a Ca2+-dependent away; (2) [14C]glutamate was synthesized from [14C]glutamine in cerebellar synaptosomes, and the newly synthesized [14C]glutamate was released released in a Ca2+-dependent way; (3) the elevation of cyclic GMP elicited by depolarization of cerebellar slices in the presence of Ca2+ was partly reversed by the glutamate antagonist glutamic acid diethyl ester, which probably prevented the interaction of endogenously released glutamate with postsynaptic receptors. GABA and muscimol at low concentrations (2--20 micrometers) potentiated the depolarization-induced release of D-[3H]aspartate (a glutamate analogue which labels the glutamate "reuptake pool") from cerebellar synaptosomes. The effect was concentration dependent and was largely prevented by two GABA antagonists, bicuculline and picrotoxin. The stimulation of D-[3H]aspartate release evoked by muscimol was linearly related to the logarithm of K+ concentration in the depolarizing medium. GABA did not affect the overall release of endogenous glutamate, but potentiated, in a picrotoxin-sensitive manner, the depolarization-evoked release of [14C]glutamate previously synthesized from [14C]glutamine. Since nerve endings are the major site of glutamate synthesis from glutamine, GABA and muscimol appear to exert their stimulatory effect at the level of "glutamergic" nerve terminals, probably after interacting with presynaptic GABA receptors. The possible functional significance of these findings is briefly discussed.  相似文献   

10.
The effects of gamma-amino butyric acid (GABA) and glutamate, their ionotropic agonists and antagonists on hydra's ectodermal and endodermal pacemaker systems were studied. GABA decreased ectodermal body contraction bursts (CBs) and the number of pulses in a burst (P/CB) and endodermal rhythmic potentials (RPs); tentacle pulses (TPs) were not affected. The GABA(A) agonist, muscimol, and the benzodiazepine receptor agonist, diazepam, mimicked the effects of GABA on the endodermal system. The GABA(A) antagonist bicuculline counteracted GABA's effects. Low concentrations of glutamate increased CBs and RPs. Higher concentrations required concanavalin A (Con A) to produce the same effect on CBs and P/CB. TPs were increased by high concentrations of glutamate and kainate. The ionotropic glutamate agonist, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) also required Con A to increase CBs and RPs. The effects of AMPA were antagonized by 6-nitro-7-sulfamoylbenzo[f]quinoxaline-2,3-dione (NBQX), which, per se, decreased CBs. The results indicate that GABA and glutamate, acting on their ionotropic receptors, modify the impulses of hydra's pacemaker systems. On the whole GABA decreased the outputs of both ectodermal and endodermal impulse generating systems, while glutamate increased them.  相似文献   

11.
Modulation of [3H]muscimol binding by picrotoxin, pentobarbitone, and etomidate was investigated in rat cerebellar and cerebral cortical membranes. In cerebellum, at 37 degrees C in the presence of chloride ions (150 mM), picrotoxin and picrotoxinin decreased specific [3H]muscimol binding to 43 +/- 3% of control, with an EC50 of 1.2 +/- 0.1 microM. [3H]Muscimol saturation experiments in the presence and absence of picrotoxin indicated that the picrotoxin effect was primarily due to a loss of high-affinity muscimol sites with KD approximately equal to 10 nM. Pentobarbitone enhanced specific [3H]muscimol binding to 259 +/- 3% of control, with EC50 = 292 +/- 37 microM, and etomidate increased binding to 298 +/- 18%, with EC50 = 7.1 +/- 1.0 microM. The influence of temperature and chloride ion concentration on these effects was investigated by comparing experiments at 37 and 0 degrees C in the presence or absence of chloride at constant ionic strength. The results indicate that studies at 0 degrees C underestimate the coupling between GABA receptors and barbiturate sites and that they greatly overestimate the importance of chloride ions in this phenomenon. In cerebral cortical membranes (37 degrees C, 150 mM Cl-), the effect of picrotoxin was similar to that observed in cerebellum, whereas the effects of pentobarbitone and etomidate were greater, but occurred at higher concentrations.  相似文献   

12.
The effect of gamma-hydroxybutyric acid on extracellular glutamate levels in the hippocampus was studied by microdialysis in freely moving rats and in isolated hippocampal synaptosomes. Intra-hippocampal (CA1) perfusion with gamma-hydroxybutyric acid (10 nM-1 mM) concentration-dependently influenced glutamate levels: gamma-hydroxybutyric acid (100 and 500 nM) increased glutamate levels; 100 and 300 microM concentrations were ineffective; whereas the highest 1 mM concentration reduced local glutamate levels. The stimulant effect of gamma-hydroxybutyric acid (100 nM) was suppressed by the locally co-perfused gamma-hydroxybutyric acid receptor antagonist NCS-382 (10 microM) but not by the GABA(B) receptor antagonist CGP-35348 (500 microM). Furthermore, the gamma-hydroxybutyric acid (1 mM)-induced reduction in CA1 glutamate levels was counteracted by NCS-382 (10 microM), and it was also reversed into an increase by CGP-35348. Given alone, neither NCS-382 nor CGP-35348 modified glutamate levels. In hippocampal synaptosomes, gamma-hydroxybutyric acid (50 and 100 nM) enhanced both the spontaneous and K(+)-evoked glutamate efflux, respectively, both effects being counteracted by NCS-382 (100 nM), but not by CGP-35348 (100 microM). These findings indicate that gamma-hydroxybutyric acid exerts a concentration-dependent regulation of hippocampal glutamate transmission via two opposing mechanisms, whereby a direct gamma-hydroxybutyric acid receptor mediated facilitation is observed at nanomolar gamma-hydroxybutyric acid concentrations, and an indirect GABA(B) receptor mediated inhibition predominates at millimolar concentrations.  相似文献   

13.
In mammalian peripheral sympathetic ganglia GABA acts presynaptically to facilitate cholinergic transmission and postsynaptically to depolarize membrane potential. The GABA effect on parasympathetic pancreatic ganglia is unknown. We aimed to determine the effect of locally applied GABA on cat pancreatic ganglion neurons. Ganglia with attached nerve trunks were isolated from cat pancreata. Conventional intracellular recording techniques were used to record electrical responses from ganglion neurons. GABA pressure microejection depolarized membrane potential with an amplitude of 17.4 +/- 0.7 mV. Electrically evoked fast excitatory postsynaptic potentials were significantly inhibited (5.4 +/- 0.3 to 2.9 +/- 0.2 mV) after GABA application. GABA-evoked depolarizations were mimicked by the GABA(A) receptor agonist muscimol and abolished by the GABA(A) receptor antagonist bicuculline and the Cl(-) channel blocker picrotoxin. GABA was taken up and stored in ganglia during preincubation with 1 mM GABA; beta-aminobutyric acid application after GABA loading significantly (P < 0.05) increased depolarizing response to GABA (15.6 +/- 1.0 vs. 7.8 +/- 0.8 mV without GABA preincubation). Immunolabeling with antibodies to GABA, glial cell fibrillary acidic protein, protein gene product 9.5, and glutamic acid decarboxylase (GAD) immunoreactivity showed that GABA was present in glial cells, but not in neurons, and that glial cells did not contain GAD, whereas islet cells did. The data suggest that endogenous GABA released from ganglionic glial cells acts on pancreatic ganglion neurons through GABA(A) receptors.  相似文献   

14.
The effect of γ-aminobutyric acid (GABA) and its agonists muscimol and 4,5,6,7-tetrahydroisoxazolo[5-4-c]pyridin-3-ol (THIP) on the development of GABA receptors on cerebellar granule cells was studied by cultivation of the cells in media containing these substances. It was found that the presence of 50 μM GABA in the culture media led to the induction of low-affinity GABA receptors (KD 546 ± 117 nM) in addition to the high-affinity receptors (KD 7 ± 0.5 nM) which were present regardless of the presence of GABA in the culture media. The functional activity of the GABA receptors was tested by investigating the ability of GABA to modulate evoked glutamate release from the cells. It was found that GABA could inhibit evoked glutamate release (ED50 10 ± 3 (μM) only when the cells had been cultured in the presence of 50 νM GABA, 50 μM muscimol, or 150 μM THIP, i.e., under conditions where low-affinity GABA receptors were present on the cells. This inhibitory effect of GABA could be blocked by 120 μM bicuculline and mimicked by 50 μM muscimol or 150 μM THIP whereas 150 μM (-)-baclofen had no effect. It is concluded that GABA acting extracellularly induces formation of low-affinity receptors on cerebellar granule cells and that these receptors are necessary for mediating an inhibitory effect of GABA on evoked glutamate release. The pharmacological properties of these GABA receptors indicate that they belong to the so-called GABAA receptors.  相似文献   

15.
The aim of the present study was to investigate, using microdialysis, the effects of aging on the glutamate/dopamine/GABA interaction in striatum and nucleus accumbens of the awake rat. For that, the effects of an increase of the endogenous concentration of glutamate on the extracellular concentration of dopamine and GABA in striatum and nucleus accumbens of young (2-4 months), middle-aged (12-14 months), aged (27-33 months), and very aged (37 months) male Wistar rats were studied. Endogenous extracellular glutamate was selectively increased by perfusing the glutamate uptake inhibitor L-trans-pyrrolidine-3,4-dicarboxylic acid (PDC) through the microdialysis probe. In young rats, PDC (1, 2, and 4 mM) produced a dose-related increase of dialysate concentrations of glutamate in both striatum and nucleus accumbens. PDC also increased dialysate dopamine and GABA in both structures. These increases were significantly correlated with the increases of glutamate but not with the PDC dose used, which strongly suggests that the increases of dopamine and GABA were produced by glutamate. In striatum, there were no significant differences in the dopamine/glutamate and GABA/glutamate correlations between young and aged rats. This means that the effects of glutamate on dopamine and GABA do not change during aging. On the contrary, in the nucleus accumbens of aged rats, the increases of dopamine, when correlated with the increases of glutamate, were significantly lower than in young rats. Moreover, the ratio of dopamine to glutamate increases at maximal increases of glutamate was negatively correlated with aging. On the contrary, the ratio of GABA to glutamate increases in nucleus accumbens was positively correlated with aging, which suggests that the effects of endogenous glutamate on GABA tend to be higher in the nucleus accumbens of aged rats. The findings of this study suggest that aging changes the interaction between endogenous glutamate, dopamine, and GABA in nucleus accumbens, but not in striatum, of the awake rat.  相似文献   

16.
Slices of rat neostriatum were incubated in Krebs-Henseleit medium. Modulation of [3H]GABA release by GABA agonists and antagonists was investigated. The GABAA receptor agonists muscimol (0.1 microM) and isoguvacine (5 microM) enhanced the stimulated release of [3H]GABA. The antagonists picrotoxin (1 microM) and bicuculline (50 microM) prevented the effects of the agonists. In the presence of naloxone (1 microM), which blocked the effects of enkephalinergic neurons within the slice preparation, muscimol (1 microM) no longer affected the release of [3H]GABA.  相似文献   

17.
The biotransformation of L-sodium glutamate (L-MSG) to gamma-aminobutyric acid (GABA) catalyzed by the cells of Lactobacillus brevis with higher glutamate decarboxylase activity was investigated. The results showed that pH, temperature, and FeSO(4) x 7H(2)O concentration had significantly positive effect on GABA yield. The individual and interactive effects of pH, temperature, and FeSO(4) x 7H(2)O concentration were further optimized in terms of GABA yield. In the present work, an artificial neural network (ANN) and response surface methodology (RSM) models were developed, which incorporated pH, temperature, and FeSO(4) x 7H(2)O concentration as input variables, and GABA yield as output variable. The optimized ANN topology included four neurons in the hidden layer and the best network architecture was 3-4-1. The trained ANN gave total root-mean square error (sigma) equal to 1.84 for GABA yield while the RSM gave sigma equal to 2.63. The results demonstrated a slightly higher prediction accuracy of ANN compared to RSM. The modeled maximum GABA yield was identified by applying particle swarm optimization algorithm to the ANN model developed. The modeled maximum GABA yield reached 91 mM under the following optimal conditions: 25 mL Na(2)HPO(4)-citric acid buffer (100 mM, pH 4.23), 120 mM L-MSG, 0.83 g/L FeSO(4) x 7H(2)O, 10 microM PLP, the resting cells obtained from a 60-h culture broth, 2.68 g dry cell weight (DCW)/L, and without agitation at 40 degrees C for 5 h. The previous high value of GABA yield that was observed was 81.8 mM. The optimized conditions allowed GABA yield to be increased from 81.8 to 90.57 mM after verification experiments test.  相似文献   

18.
The release of preaccumulated gamma-amino[3H]butyric acid ([3H]GABA) from putative GABAergic amacrine cells was studied in neuronal monolayer cultures made from embryonic chick retina. Release was specifically stimulated by excitatory amino acid agonists. N-Methyl-D-aspartate (NMDA; EC50, 19.1 +/- 5.0 microM), kainic acid (EC50, 15.6 +/- 2.3 microM), and the presumptive endogenous ligand glutamate (EC50, 3.6 +/- 0.5 microM) showed the same efficacy. Quisqualic acid, although the most potent agonist (EC50, 0.56 +/- 0.12 microM), was only half as efficacious. The time course of [3H]GABA release and autoradiographic visualization of responsive GABA-accumulating cells suggest that approximately 50% of the [3H]GABA-accumulating cells possess no or very low responsiveness to quisqualic acid. Depolarization (56 mM KCl)-induced release was fivefold lower than the maximal effect elicited by excitatory amino acids. Release of [3H]GABA and of endogenous GABA was entirely independent of extracellular Ca2+ but was completely abolished after replacement of Na+ by choline or Li+. The effects of NMDA and low concentrations of glutamate (up to 10 microM) were blocked by 2-amino-5-phosphonovaleric acid, by MK 801, and (in a voltage-dependent manner) by Mg2+. The reduction of NMDA responses by kynurenic acid was reversed by D-serine, and quisqualic acid competitively inhibited kainic acid-evoked release. Our results show that the cultured [3H]GABA-accumulating neurons, which probably represent the in vitro counterparts of GABAergic amacrine cells, express at least two types of excitatory amino acid receptors (of the NMDA and non-NMDA type), both of which can mediate a Ca2(+)-independent but Na2(+)-dependent release of GABA.  相似文献   

19.
This study used whole cell patch clamp recordings in rat hypothalamic slice preparations to evaluate the effects of GABA(B) receptor activation on GABA(A)-mediated inhibitory postsynaptic currents (IPSCs) in paraventricular nucleus magnocellular neurons evoked by electrical stimulation in the suprachiasmatic nucleus (SCN). Baclofen induced a dose-dependent (1-10 microM) and reversible reduction in SCN-evoked IPSC amplitude (11/11 cells), blockable with 2-hydroxysaclofen (300 microM; 3/3 cells). IPSCs displayed paired-pulse depression (PPD), attenuated by both baclofen and 2-hydroxysaclofen, but neither altered resting membrane conductances or IPSC time constants of decay. Baclofen induced a significant dose-dependent (1-100 microM) reduction in frequency, but not amplitude, of spontaneous IPSCs and miniature IPSCs, reversible with 2-hydroxysaclofen pretreatment. Baclofen effects and PPD persisted in slices pretreated with pertussis toxin (PTX) and N-ethylmaleimide, implying that these GABA(B) receptors are coupled to PTX-insensitive G proteins. Responses were unaltered by barium (2 mM) or nimodipine, ruling out involvement of K(+) channels and L-type Ca(2+) channels. Thus pre- and postsynaptic GABA(B) and GABA(A) receptors participate in SCN entrainment of paraventricular neurosecretory neurons.  相似文献   

20.
In the present study, GABA was shown to induce a necrotic neuronal death in cultured striatal neurones from mouse embryos. This effect did not depend on the activation of GABA(A), GABA(B) or GABA(C) receptors as it was neither antagonized by bicuculline, saclofen or picrotoxin, respectively, nor reproduced by the GABA receptor agonists, muscimol and baclofen. Excluding the participation of glutamate, GABA neurotoxicity persisted in the presence of either the antagonists of ionotropic and metabotropic glutamate receptors or glutamate pyruvate transaminase, which induces an immediate catabolism of glutamate. A GABA transport-associated process is involved in GABA neurotoxicity as nipecotic acid and NO 711, two inhibitors of the high-affinity neuronal GABA transporters (GAT-1, in particular), completely prevented the neurotoxic effect of GABA. The activation of a subset of G proteins is also implicated in the GABA transport-mediated neuronal death as GABA neurotoxicity was completely suppressed when striatal neurones were pre-treated with pertussis toxin. Further demonstrating the specificity of this neurotoxic process, GABA-induced neurotoxicity was not observed in cortical neurones which, in contrast to striatal neurones, are largely represented by glutamatergic neurones. In conclusion, our study suggests that glutamate is not the sole neurotransmitter that can be responsible for brain damage and that GABA neurotoxicity involves both GABA transport and G protein transduction pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号