首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whales receive underwater sounds through a fundamentally different mechanism than their close terrestrial relatives. Instead of hearing through the ear canal, cetaceans hear through specialized fatty tissues leading to an evolutionarily novel feature: an acoustic funnel located anterior to the tympanic aperture. We traced the ontogenetic development of this feature in 56 fetal specimens from 10 different families of toothed (odontocete) and baleen (mysticete) whales, using X-ray computed tomography. We also charted ear ossification patterns through ontogeny to understand the impact of heterochronic developmental processes. We determined that the acoustic funnel arises from a prominent V-shaped structure established early in ontogeny, formed by the malleus and the goniale. In odontocetes, this V-formation develops into a cone-shaped funnel facing anteriorly, directly into intramandibular acoustic fats, which is likely functionally linked to the anterior orientation of sound reception in echolocation. In contrast, the acoustic funnel in balaenopterids rotates laterally, later in fetal development, consistent with a lateral sound reception pathway. Balaenids and several fossil mysticetes retain a somewhat anteriorly oriented acoustic funnel in the mature condition, indicating that a lateral sound reception pathway in balaenopterids may be a recent evolutionary innovation linked to specialized feeding modes, such as lunge-feeding.  相似文献   

2.
3.
Rorqual whales (crown Balaenopteridae) are unique among aquatic vertebrates in their ability to lunge feed. During a single lunge, rorquals rapidly engulf a large volume of prey‐laden water at high speed, which they then filter to capture suspended prey. Engulfment biomechanics are mostly governed by the coordinated opening and closing of the mandibles at large gape angles, which differentially exposes the floor of the oral cavity to oncoming flow. The mouth area in rorquals is delimited by unfused bony mandibles that form kinetic linkages to each other and with the skull. The relative scale and morphology of these skeletal elements have profound consequences for the energetic efficiency of foraging in these gigantic predators. Here, we performed a morphometric study of rorqual mandibles using a data set derived from a survey of museum specimens. Across adult specimens of extant balaenopterids, mandibles range in size from ~1–6 m in length, and at their upper limit they represent the single largest osteological element of any vertebrate, living or extinct. Our analyses determined that rorqual mandibles exhibit positive allometry, whereby the relative size of these mandibles becomes greater with increasing body size. These robust scaling relationships allowed us to predict mandible length for fragmentary remains (e.g. incomplete and/or fossil specimens), as we demonstrated for two partial mandibles from the latest Miocene of California, USA, and for mandibles from previously described fossil balaenopterids. Furthermore, we showed the allometry of mandible length to body size in extant mysticetes, which hints at fundamental developmental constraints in mysticetes despite their ecomorphological differences in feeding styles. Lastly, we outlined how our findings can be used to test hypotheses about the antiquity and evolution of lunge feeding. © 2012 The Linnean Society of London  相似文献   

4.
Extant baleen whales (Cetacea, Mysticeti) are all large filter-feeding marine mammals that lack teeth as adults, instead possessing baleen, and feed on small marine animals in bulk. The early evolution of these superlative mammals, and their unique feeding method, has hitherto remained enigmatic. Here, I report a new toothed mysticete from the Late Oligocene of Australia that is more archaic than any previously described. Unlike all other mysticetes, this new whale was small, had enormous eyes and lacked derived adaptations for bulk filter-feeding. Several morphological features suggest that this mysticete was a macrophagous predator, being convergent on some Mesozoic marine reptiles and the extant leopard seal (Hydrurga leptonyx). It thus refutes the notions that all stem mysticetes were filter-feeders, and that the origins and initial radiation of mysticetes was linked to the evolution of filter-feeding. Mysticetes evidently radiated into a variety of disparate forms and feeding ecologies before the evolution of baleen or filter-feeding. The phylogenetic context of the new whale indicates that basal mysticetes were macrophagous predators that did not employ filter-feeding or echolocation, and that the evolution of characters associated with bulk filter-feeding was gradual.  相似文献   

5.
Unlike other mammals, odontocetes and mysticetes have highly derived craniofacial bones. A growth process referred to as “telescoping” is partly responsible for this morphology. Here, we explore how changes in facial morphology during fetal growth relate to differences in telescoping between the adult odontocete Stenella attenuata and the mysticete Balaena mysticetus. We conclude that in both Stenella and Balaena head size increases allometrically. Similarly, odontocete nasal length and mysticete mouth size have strong positive allometry compared to total body length. However, the differences between odontocetes and mysticetes in telescoping are not directly associated with their fetal growth patterns. Our results suggest that cranial changes related to echolocation and feeding between odontocetes and mysticetes, respectively, begin during ontogeny before telescoping is initiated.  相似文献   

6.
Balaenopteroids (Balaenopteridae + Eschrichtiidae) are a diverse lineage of living mysticetes, with seven to ten species divided between three genera (Megaptera, Balaenoptera and Eschrichtius). Extant members of the Balaenopteridae (Balaenoptera and Megaptera) are characterized by their engulfment feeding behavior, which is associated with a number of unique cranial, mandibular, and soft anatomical characters. The Eschrichtiidae employ suction feeding, which is associated with arched rostra and short, coarse baleen. The recognition of these and other characters in fossil balaenopteroids, when viewed in a phylogenetic framework, provides a means for assessing the evolutionary history of this clade, including its origin and diversification. The earliest fossil balaenopterids include incomplete crania from the early late Miocene (7–10 Ma) of the North Pacific Ocean Basin. Our preliminary phylogenetic results indicate that the basal taxon, “Megaptera” miocaena should be reassigned to a new genus based on its possession of primitive and derived characters. The late late Miocene (5–7 Ma) balaenopterid record, except for Parabalaenoptera baulinensis and Balaenoptera siberi, is largely undescribed and consists of fossil specimens from the North and South Pacific and North Atlantic Ocean basins. The Pliocene record (2–5 Ma) is very diverse and consists of numerous named, but problematic, taxa from Italy and Belgium, as well as unnamed taxa from the North and South Pacific and eastern North Atlantic Ocean basins. For the most part Pliocene balaenopteroids represent extinct species and genera and reveal a greater degree of morphological diversity than at present. The Pleistocene record is very limited and, unfortunately, fails to document the evolutionary details leading to modern balaenopteroid species diversity. It is evident, however, that most extant species evolved during the Pleistocene. Morphological and molecular based phylogenies support two competing hypotheses concerning relationships within the Balaenopteroidea: (1) balaenopterids and eschrichtiids as sister taxa, and (2) eschrichtiids nested within a paraphyletic Balaenopteridae. The addition of fossil taxa (including a new Pliocene species preserving a mosaic of balaenopterid and eschrichtiid characters) in morphological and “total evidence” analyses, offers the potential to resolve the current controversy concerning the possible paraphyly of Balaenopteridae.  相似文献   

7.
Living mysticetes (baleen whales) and odontocetes (toothed whales) differ significantly in auditory function in that toothed whales are sensitive to high‐frequency and ultrasonic sound vibrations and mysticetes to low‐frequency and infrasonic noises. Our knowledge of the evolution and phylogeny of cetaceans, and mysticetes in particular, is at a point at which we can explore morphological and physiological changes within the baleen whale inner ear. Traditional comparative anatomy and landmark‐based 3D‐geometric morphometric analyses were performed to investigate the anatomical diversity of the inner ears of extinct and extant mysticetes in comparison with other cetaceans. Principal component analyses (PCAs) show that the cochlear morphospace of odontocetes is tangential to that of mysticetes, but odontocetes are completely separated from mysticetes when semicircular canal landmarks are combined with the cochlear data. The cochlea of the archaeocete Zygorhiza kochii and early diverging extinct mysticetes plot within the morphospace of crown mysticetes, suggesting that mysticetes possess ancestral cochlear morphology and physiology. The PCA results indicate variation among mysticete species, although no major patterns are recovered to suggest separate hearing or locomotor regimes. Phylogenetic signal was detected for several clades, including crown Cetacea and crown Mysticeti, with the most clades expressing phylogenetic signal in the semicircular canal dataset. Brownian motion could not be excluded as an explanation for the signal, except for analyses combining cochlea and semicircular canal datasets for Balaenopteridae. J. Morphol. 277:1599–1615, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
9.
Whale-fall communities support a deep-sea invertebrate assemblage that subsists entirely on the decaying carcasses of large cetaceans. The oldest whale-falls are Late Eocene in age, but these early whale-falls differ in faunal content and host cetacean size from Neogene and Recent whale-falls. Vesicomyid bivalves, for example, are major components of the sulphophilic stage in Miocene and Recent whale-fall communities, but they are absent from Palaeogene fossil whale-falls. The differences between Palaeogene and Neogene communities led to the hypothesis that the origin of modern whale-fall communities was linked with the evolution of extremely large mysticetes, which provided sufficient biomass and oil to sustain the modern complement of whale-fall invertebrates. Here, we describe a fossil whale-fall community from the Miocene of California, showing vesicomyid bivalves in direct association with a host mysticete smaller than the adult individuals of any living mysticete species. This association, which is the youngest yet reported from the Neogene of North America, demonstrates that body size is not a necessary factor for the formation of modern whale-fall communities. Instead, we suggest that high skeletal oil content may have been a more important factor, which, based on the age of the fossil whale-fall, evolved at least by the Late Miocene.  相似文献   

10.
The titanic baleen whales (Cetacea, Mysticeti) have a bizarre skull morphology, including an elastic mandibular symphysis, which permits dynamic oral cavity expansion during bulk feeding. How this key innovation evolved from the sutured symphysis of archaeocetes has remained unclear. Now, mandibles of the Oligocene toothed mysticete Janjucetus hunderi show that basal mysticetes had an archaeocete-like sutured symphysis. This archaic morphology was paired with a wide rostrum typical of later-diverging baleen whales. This demonstrates that increased oral capacity via rostral widening preceded the evolution of mandibular innovations for filter feeding. Thus, the initial evolution of the mysticetes' unique cranial form and huge mouths was perhaps not linked to filtering plankton, but to enhancing suction feeding on individual prey.  相似文献   

11.
The origin of baleen in mysticete whales represents a major transition in the phylogenetic history of Cetacea. This key specialization, a keratinous sieve that enables filter-feeding, permitted exploitation of a new ecological niche and heralded the evolution of modern baleen-bearing whales, the largest animals on Earth. To date, all formally described mysticete fossils conform to two types: toothed species from Oligocene-age rocks ( approximately 24 to 34 million years old) and toothless species that presumably utilized baleen to feed (Recent to approximately 30 million years old). Here, we show that several Oligocene toothed mysticetes have nutrient foramina and associated sulci on the lateral portions of their palates, homologous structures in extant mysticetes house vessels that nourish baleen. The simultaneous occurrence of teeth and nutrient foramina implies that both teeth and baleen were present in these early mysticetes. Phylogenetic analyses of a supermatrix that includes extinct taxa and new data for 11 nuclear genes consistently resolve relationships at the base of Mysticeti. The combined data set of 27,340 characters supports a stepwise transition from a toothed ancestor, to a mosaic intermediate with both teeth and baleen, to modern baleen whales that lack an adult dentition but retain developmental and genetic evidence of their ancestral toothed heritage. Comparative sequence data for ENAM (enamelin) and AMBN (ameloblastin) indicate that enamel-specific loci are present in Mysticeti but have degraded to pseudogenes in this group. The dramatic transformation in mysticete feeding anatomy documents an apparently rare, stepwise mode of evolution in which a composite phenotype bridged the gap between primitive and derived morphologies; a combination of fossil and molecular evidence provides a multifaceted record of this macroevolutionary pattern.  相似文献   

12.
13.
14.
Conservation of highly repetitive DNA in cetaceans   总被引:4,自引:0,他引:4  
It is controversial whether odontocetes (toothed whales) and mysticetes (whalebone whales) have a common ancestry. Cetacean karyological uniformity, which is unique among mammalian orders, suggests a monophyletic origin; however, several anatomical authorities have maintained that odontocetes and mysticetes are diphyletic. We investigated the issue using Southern blot hybridization. Two labelled restriction fragment probes from the DNA of the sei whale (a mysticete) were hybridized to restricted DNA of cetacean species representing all extant families except the Eschrichtiidae, the gray whales. The probes hybridized to specific restriction fragments in all odontocete and mysticete materials. Hybridizations showed preservation of hybridization homologies and a striking conservation of the length of highly repeated DNA sequences. The results are compatible with a common ancestry of odontocetes and mysticetes.  相似文献   

15.
Abstract

A fragment of mandible of an indeterminate squalodontid dolphin (Upper Oligocene or lowermost Miocene, New Zealand) has 2 anomalous single-rooted teeth intercalated between typically squalodontid anterior cheek-teeth. The anomalous teeth are considered to be truly supernumerary, and not homologous with any erupted teeth in phylogenetically earlier Cetacea. This type of anomaly appears not to have been reported previously for any fossil cetacean. Polydonty, a characteristic of extant odontocetes, was probably attained initially in primitive odontocetes by intercalation of permanent and deciduous teeth, and later was elaborated by the addition of supernumerary teeth. The present specimen represents a morphological (but not phylogenetic) stage between odontocetes with limited and advanced polydonty. Some fossil mysticetes and embryonic extant mysticetes are also polydont, but mysticete polydonty and that of odontocetes have probably evolved convergently.  相似文献   

16.
Species of Lecithodesmus (Campulidae) occur almost exclusively in baleen whales throughout a wide geographical distribution. Other campulids occur only in odontocetes and, secondarily, in pinnipeds and the sea otter. Therefore, the ancestor of Lecithodesmus might have either cospeciated with mysticetes during the early divergence of mysticete and odontocete cetaceans or originated later via host switching. We evaluate both possibilities based on a phylogenetic analysis. The ND3 mitochondrial gene sequence of a species of Lecithodesmus was included in a previous partial molecular phylogeny of the Campulidae. Fasciola hepatica and Dicrocoelium dendriticum were used as outgroups. Maximum parsimony, neighbor-joining, and maximum likelihood methods indicated a nonbasal position of Lecithodesmus sp. in the tree, suggesting that the ancestor of Lecithodesmus colonized mysticetes from campulids of odontocetes. This result emphasizes the importance of host-switching processes in the development of the helminth fauna of marine vertebrates, as previously suggested.  相似文献   

17.
Toothed mysticetes of the family Aetiocetidae from Oligocene rocks of the North Pacific play a key role in interpretations of cetacean evolution because they are transitional in grade between dorudontine archaeocetes and edentulous mysticetes. The holotype skull of Aetiocetus weltoni from the late Oligocene (28–24 Ma) of Oregon, USA, has been further prepared, revealing additional morphological features of the basicranium, rostrum and dentary that have important implications for mysticete evolution and functional anatomy. The palate of Aetiocetus weltoni preserves diminutive lateral palatal foramina and associated delicate sulci which appear to be homologous with the prominent palatal foramina and sulci that occur along the lateral portion of the palate in extant mysticetes. In modern baleen whales these foramina allow passage of branches of the superior alveolar artery, which supplies blood to the epithelia of the developing baleen racks. As homologous structures, the lateral palatal foramina of A. weltoni suggest that baleen was present in this Oligocene toothed mysticete. Cladistic analysis of 46 cranial and dental characters supports monophyly of the Aetiocetidae, with toothed mysticetes Janjucetus and Mammalodon positioned as successive sister taxa. Morawanacetus is the earliest diverging aetiocetid with Chonecetus as sister taxon to Aetiocetus species. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 308–352.  相似文献   

18.
A new genus and species of platyrrhine primate, Nuciruptor rubricae, are added to the increasingly diverse primate fauna from the middle Miocene of La Venta, Colombia. This species displays a number of dental and gnathic features indicating that it is related to living and extinct Pitheciinae (extant Callicebus, Pithecia, Chiropotes, Cacajao, and the Colombian middle Miocene Cebupithecia sarmientoi). Nuciruptor is markedly more derived than Callicebus but possesses a less derived mandibular form and incisor-canine complex than extant and extinct pitheciins (Cebupithecia, Pithecia, Chiropotes, and Cacajao), suggesting that it is a primitive member of the tribe Pitheciini within the larger monophyletic Pitheciinae. Nuciruptor has procumbent and moderately elongate lower incisors and low-crowned molars, suggesting that it was a seed predator, as are living pitheciins. Its estimated body size of approximately 2.0 kg places it within the size range of extant pitheciines. The dental and gnathic morphology of Nuciruptor clarifies several aspects of dental character evolution in Pitheciinae and makes it less likely that the enigmatic Mohanamico hershkovitzi (m. Miocene, Colombia) is a pitheciin. Am. J. Phys. Anthropol. 102:407–427, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
The sequence of the mitochondrial control region was determined in all 10 extant species commonly assigned to the suborder Mysticeti (baleen or whalebone whales) and to two odontocete (toothed whale) species (the sperm and the pygmy sperm whale). In the mysticetes, both the length and the sequence of the control region were very similar, with differences occurring primarily in the first approximately 160 bp of the 5' end of the L-strand of the region. There were marked differences between the mysticete and sperm whale sequences and also between the two sperm whales. The control region, less its variable portion, was used in a comparison including the 10 mysticete sequences plus the same region of an Antarctic minke whale specimen and the two sperm whales. The difference between the minke whales from the North Atlantic and the Antarctic was greater than that between any acknowledged species belonging to the same genus (Balaenoptera). The difference was similar to that between the families Balaenopteridae (rorquals) and Eschrichtiidae (gray whales). The findings suggest that the Antarctic minke whale should have a full species status, B. bonaerensis. Parsimony analysis separated the bowhead and the right whale (family Balaenidae) from all remaining mysticetes, including the pygmy right whale. The pygmy right whale is usually included in family Balaenidae. The analysis revealed a close relationship between the gray whale (family Eschrichtiidae) sequence and those of the rorquals (family Balaenopteridae). The gray whale was included in a clade together with the sei, Bryde's, fin, blue, and humpback whales. This clade was separated from the two minke whale types, which branched together.   相似文献   

20.
Phonotaxis is the ability to orient towards or away from sound sources. Crickets can locate conspecifics by phonotaxis to the calling (mating) song they produce, and can evade bats by negative phonotaxis from echolocation calls. The behaviour and underlying physiology have been studied in some depth, and the auditory system solves this complex problem in a unique manner. Experiments conducted on a simulation model of the system indicated that the mechanism output a directional signal to sounds ahead at calling song frequency and to sounds behind at echolocation frequencies. We suggest that this combination of responses helps simplify later processing in the cricket. To further explore this result, an analogue, very large scale integrated (aVLSI) circuit model of the mechanism was designed and built; results from testing this agreed with the simulation. The aVLSI circuit was used to test a further hypothesis about the potential advantages of the positioning of the acoustic inputs for sound localisation during walking. There was no clear advantage to the directionality of the system in their location. The aVLSI circuitry is now being extended to use on a robot along with previously modelled neural circuitry to better understand the complete sensorimotor pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号