首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The acid-base balance during ammonium (used to mean NH 4+ and/or NH3) assimilation in Hydrodictyon africanum has been measured on cells growing with about 1 mol m?3 ammonium at an external pH of about 6.5. Measurements made included (1) ash alkalinity (corrected for intracellular ammonium) which yields net organic negative charge, (2) the accumulation of organic N in the cells and (3) the change in extracellular H+ (from the pH change and the buffer capacity). These measurements showed that some 0.25 excess organic negative charge (half in the cell wall, half inside the plasmalemma) accumulates per organic N synthesized, while some 1.25H+ accumulate in the medium per organic N synthesized. Granted a permeability (PNH3) of some 10?3 cm s?1, and a finite [NH3] in the cytoplasm of these N-assimilating cells it is likely that most of the ammonium entering these growing cells is as NH 4+. This means that most of the H + appearing in the medium must have originated from inside the cell and have been subjected to active efflux at the plasmalemma: H+ accumulates in the medium equivalent to any NH3 entry by requilibration from exogenous NH 4+. The cell composition (net organic negative charge, organic N content) is very similar in these ammonium-grown cells to that of NO3+grown cells, suggesting that there is no action of a ‘biochemical pH stat’ during longterm assimilation of NO3+in H. africanum. Short-term experiments were carried out at an external pH of 7.2 in which ammonium at various concentrations were supplied to NO3+-grown cells. There was in all cases a rapid influx followed by a slower uptake; at least at the lower concentrations (less than 100 μmol dm?3) the net influx was all attributable to NH4+influx via a uniporter, probably partly short-circuited by a passive NH3 efflux due to intrinsic membrane permeability to NH3. The net ammonium influx was in all cases associated with H+ accumulation in the medium. (1.3-1.7 H + per ammonium taken up); as in the growth experiments, most of the ammonium taken up was assimilated. Determinations of cytoplasmic pH showed either no effect on, or a slight decrease in, pH during ammonium assimilation; the changes that occurred were in the direction expected for actuating a ‘pH-regulating’ change in H+ fluxes.  相似文献   

2.
Escherichia coli expresses a specific ammonium (methylammonium) transport system (Amt) when cultured with glutamate or glutamine as the nitrogen source. Over 95% of this Amt activity is repressed by growth of wild-type cells on media containing ammonia. The control of Amt expression was studied with strains containing specific mutations in the glnALG operon. GlnA- (glutamine synthetase deficient) mutants, which contain polar mutations on glnL and glnG genes and therefore have the Reg- phenotype (fail to turn on nitrogen-regulated operons such as histidase), expressed less than 10% of the Amt activity observed for the parental strain. Similarly, low levels of Amt were found in GlnG mutants having the GlnA+ Reg- phenotype. However, GlnA- RegC mutants (a phenotype constitutive for histidase) contained over 70% of the parental Amt activity. At steady-state levels, GlnA- RegC mutants accumulated chemically unaltered [14C]methylammonium against a 60- to 80-fold concentration gradient, whereas the labeled substrate was trapped within parental cells as gamma-glutamylmethylamide. GlnL Reg- mutants (normal glutamine synthetase regulation) had less than 4% of the Amt activity observed for the parental strain. However, the Amt activity of GlnL RegC mutants was slightly higher than that of the parental strain and was not repressed during growth of cells in media containing ammonia. These findings demonstrate that glutamine synthetase is not required for Amt in E. coli. The loss of Amt in certain GlnA- strains is due to polar effects on glnL and glnG genes, whose products are involved in expression of nitrogen-regulated genes, including that for Amt.  相似文献   

3.
In order to utilize different nitrogen sources and to survive situations of nitrogen limitation, microorganisms have developed several mechanisms to adapt their metabolism to changes in the nitrogen supply. In this communication, recent advances in our knowledge of ammonium uptake, its assimilation, and connected regulatory systems in Corynebacterium glutamicum are discussed with respect to the situation in the bacterial model organisms Escherichia coli and Bacillus subtilis. The regulatory network of nitrogen control in C. glutamicum differs substantially from that in these bacteria, for example, by the presence of AmtR, the unique "master regulator" of nitrogen control, the absence of a NtrB/NtrC two-component signal transduction system, and a different sensing mechanism in C. glutamicum.  相似文献   

4.
5.
6.
7.
8.
9.
10.
We present a new method for probing cellular metabolic fluxes that is based on the kinetics of assimilation of isotope-labeled nutrient into a diversity of downstream metabolites. In the case of nitrogen assimilation, half-maximal labeling of most metabolites occurs in 10-300 s. Fluxes measured on the basis of the kinetics of nitrogen assimilation in exponentially growing E. coli agree well with those fluxes predicted to allow optimal biomass production.  相似文献   

11.
Control of ammonium concentration in Escherichia coli fermentations   总被引:1,自引:0,他引:1  
A control system has been devised for the maintenance of stable ammonium concentrations throughout a fedbatch fermentation. The control system is based on an ammonia gas-sensing electrode that monitors a pH-adjusted effluent stream from the fermentor. To overcome the time lag between the fermentor and the electrode, feedback control included metered flows of ammonium to both the fermentor and the electrode vessel. The system was used to study the growth of Escherichia coli B (ATCC 11303) at controlled ammonium concentrations of 5 to 200mM. Apparent specific growth rates, biomass and protein production, and glucose yields were essentially constant from 5 to 170mM. Above 170mM ammonium growth was inhibited. As ammonium concentration decreased from 170 to 5mM, ammonium yields increased from 1 to 24 g cell dry wt/g ammonium utilized. The results demonstrate that control of ammonium concentrations at levels so low that ammonium would be exhausted in batch fermentations can significantly increase overall ammonium yields.  相似文献   

12.
In Escherichia coli, one of the main molecular chaperones is DnaJ (hsp40), which mediates in a variety of highly conserved cellular processes including protein-folding reactions and the assembly/disassembly of protein complexes. DnaJ is characterised by the presence of four distinct domains: the J-domain, glycine/phenylalanine-rich (G/F), cysteine-rich (Zn-finger) and C-terminal regions. Truncated DnaJ polypeptides (DnaJ 1-108, DnaJ Delta1-108, DnaJ Delta1-199) representing these domains were over-produced and used as a source of immunogens for the generation of sequence-specific polyclonal antibodies. Epitope mapping was achieved by Western blotting, which demonstrated the presence of antibodies directed against these domains. These characterised affinity-purified antibodies were then used to assess the role of DnaJ in the protection of firefly luciferase from irreversible heat-inactivation. In this study we have demonstrated the involvement of J-, G/F and Zn-finger domains in the protection of luciferase from heat-inactivation. The C-terminal region had only partial involvement in luciferase protection.  相似文献   

13.
Two pathways of ammonium assimilation are known in bacteria, one mediated by glutamate dehydrogenase, the other by glutamine synthetase and glutamate synthase. The activities of these three enzymes were measured in crude extracts from four Rhizobium meliloti wild-type strains, 2011, M15S, 444 and 12. All the strains had active glutamine synthetase and NADP-linked glutamate synthase. Assimilatory glutamate dehydrogenase activity was present in strains 2011, M15S, 444, but not in strain 12. Three glutamate synthase deficient mutants were isolated from strain 2011. They were unable to use 1 mM ammonium as a sole nitrogen source. However, increased ammonium concentration allowed these mutants to assimilate ammonium via glutamate dehydrogenase. It was found that the sole mode of ammonium assimilation in strain 12 is the glutamine synthetase-glutamate synthase route; whereas the two pathways are functional in strain 2011.Abbreviations GS glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase  相似文献   

14.
The Escherichia coli mazEF system is a chromosomal "addiction module" that, under starvation conditions in which guanosine-3',5'-bispyrophosphate (ppGpp) is produced, is responsible for programmed cell death. This module specifies for the toxic stable protein MazF and the labile antitoxic protein MazE. Upstream from the mazEF module are two promoters, P(2) and P(3) that are strongly negatively autoregulated by MazE and MazF. We show that the expression of this module is positively regulated by the factor for inversion stimulation. What seems to be responsible for the negative autoregulation of mazEF is an unusual DNA structure, which we have called an "alternating palindrome." The middle part, "a," of this structure may complement either the downstream fragment, "b," or the upstream fragment, "c". When the MazE.MazF complex binds either of these arms of the alternating palindrome, strong negative autoregulation results. We suggest that the combined presence of the two promoters, the alternating palindrome structure and the factor for inversion stimulation-binding site, all permit the expression of the mazEF module to be sensitively regulated under various growth conditions.  相似文献   

15.
16.
17.
18.
19.
The activities of citrate synthase (EC 4.1.3.7) and NADP+-dependent glutamate dehydrogenase (GDH) (EC 1.4.1.4) of Saccharomyces cerevisiae were inhibited in vitro by glyoxylate. In the presence of glyoxylate, pyruvate and glyoxylate pools increased, suggesting that glyoxylate was efficiently transported and catabolized. Pyruvate accumulation also indicates that citrate synthase was inhibited. A decrease in the glutamate pool was also observed under these conditions. This can be attributed to an increased transamination rate and to the inhibitory effect of glyoxylate on NADP+-dependent GDH. Furthermore, the increase in the ammonium pool in the presence of glyoxylate suggests that NADP+-dependent GDH was being inhibited in vivo, since the activity of glutamine synthetase did not decrease under these conditions. We propose that the inhibition of both citrate synthase and NADP+-dependent GDH could form part of a mechanism that regulates the internal 2-oxoglutarate concentration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号