首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
We previously reported that PLA(2) activity in the gills is higher than that in other tissues in red sea bream and purified PLA(2) from the gills belongs to the group IB PLA(2) as well as other red sea bream PLA(2)s. In this study, we reconfirmed that the level of PLA(2) activity is extremely high in the gills compared with other tissues, and gill PLA(2) was detected only in the gills by immunoblotting and inhibition test using anti-gill PLA(2) monoclonal antibody. The level of PLA(2) activity and protein expression in the gills are well correlated. Fish can be roughly divided into high and low groups based on the level of PLA(2) activity. Gill PLA(2) was detected in the gills of the high group, but not the low group by immunoblotting. In the gills of the high group, gill PLA(2) was detected in the mucous cells and pavement cells located on the surface of gill epithelia by immunohistochemistry. On the other hand, positive signals were observed only in the mucous cells by in situ hybridization. We also isolated inactive proPLA(2), having AR propeptide, preceding the mature enzyme from the gill extract. These results suggest that gill PLA(2) is synthesized as an inactive proPLA(2) in the mucous cells and is secreted to the surface of gill epithelia.  相似文献   

2.
Venomous snakes have various types of phospholipase A(2) inhibitory proteins (PLIs) in their circulatory system to protect them from attack by their own phospholipase A(2)s (PLA(2)s). Here we show the first evidence for the existence of circulating PLI against secretory PLA(2)s (sPLA(2)s) in mammals. In mouse serum, we detected specific binding activities of group IB and X sPLA(2)s, which was in contrast with the absence of binding activities in serum prepared from mice deficient in PLA(2) receptor (PLA(2)R), a type I transmembrane glycoprotein related to the C-type animal lectin family. Western blot analysis after partial purification with group IB sPLA(2) affinity column confirmed the identity of serum sPLA(2)-binding protein as a soluble form of PLA(2)R (sPLA(2)R) that retained all of the extracellular domains of the membrane-bound receptor. Both purified sPLA(2)R and the recombinant soluble receptor having all of the extracellular portions blocked the biological functions of group X sPLA(2), including its potent enzymatic activity and its binding to the membrane-bound receptor. Protease inhibitor tests with PLA(2)R-overexpressing Chinese hamster ovary cells suggested that sPLA(2)R is produced by cleavage of the membrane-bound receptor by metalloproteinases. Thus, sPLA(2)R is the first example of circulating PLI that acts as an endogenous inhibitor for enzymatic activities and receptor-mediated functions of sPLA(2)s in mice.  相似文献   

3.
This study tested the hypothesis that certain secretory phospholipase A(2) (sPLA(2)) isotypes act in a cytokine-like fashion through cell surface receptors to influence mast cell survival. Initial experiments revealed that sPLA(2) activity and sPLA(2) receptor expression are increased, and mast cells lost their capacity to maintain membrane asymmetry upon cytokine depletion. Groups IB and III, but not group IIA PLA(2), prevented the loss of membrane asymmetry. Similarly, group IB prevented nucleosomal DNA fragmentation in mast cells. Providing putative products of sPLA(2) hydrolysis to cytokine-depleted mast cells did not influence survival. Furthermore, catalytic inactivation of sPLA(2) did not alter its capacity to prevent apoptosis. Inhibition of protein synthesis using cycloheximide or actinomycin reversed the antiapoptotic effect of sPLA(2). Additionally, both wild-type and catalytically inactive group IB PLA(2) induced IL-3 synthesis in mast cells. However, adding IL-3-neutralizing Ab did not change Annexin V(FITC) binding and only partially inhibited thymidine incorporation in sPLA(2)-supplemented mast cells. In contrast, IL-3-neutralizing Ab inhibited both Annexin V(FITC) binding and thymidine incorporation in mast cells maintained with IL-3. sPLA(2) enhanced phosphoinositide 3'-kinase activity, and a specific inhibitor of phosphoinositide 3'-kinase reversed the antiapoptotic effects of sPLA(2). Likewise, sPLA(2) increased the degradation of I-kappaBalpha, and specific inhibitors of nuclear factor kappa activation (NF-kappaB) reversed the antiapoptotic effects of sPLA(2). Together, these experiments reveal that certain isotypes of sPLA(2) enhance the survival of mast cells in a cytokine-like fashion by activating antiapoptotic signaling pathways independent of IL-3 and probably via sPLA(2) receptors rather than sPLA(2) catalytic products.  相似文献   

4.
Hemostasis is a defense mechanism which protects the organism in the event of injury to stop bleeding. Recently, we established that all the known major mammalian hemostatic factors are conserved in early vertebrates. However, since their highly vascularized gills experience high blood pressure and are exposed to the environment, even very small injuries could be fatal to fish. Since trypsins are forerunners for coagulation proteases and are expressed by many extrapancreatic cells such as endothelial cells and epithelial cells, we hypothesized that trypsin or trypsin-like proteases from gill epithelial cells may protect these animals from gill bleeding following injuries. In this paper we identified the release of three different trypsins from fish gills into water under stress or injury, which have tenfold greater serine protease activity compared to bovine trypsin. We found that these trypsins activate the thrombocytes and protect the fish from gill bleeding. We found 27 protease-activated receptors (PARs) by analyzing zebrafish genome and classified them into five groups, based on tethering peptides, and two families, PAR1 and PAR2, based on homologies. We also found a canonical member of PAR2 family, PAR2-21A which is activated more readily by trypsin, and PAR2-21A tethering peptide stops gill bleeding just as trypsin. This finding provides evidence that trypsin cleaves a PAR2 member on thrombocyte surface. In conclusion, we believe that the gills are evolutionarily selected to produce trypsin to activate PAR2 on thrombocyte surface and protect the gills from bleeding. We also speculate that trypsin may also protect the fish from bleeding from other body injuries due to quick contact with the thrombocytes. Thus, this finding provides evidence for the role of trypsins in primary hemostasis in early vertebrates.  相似文献   

5.
Secreted phospholipases A(2) (sPLA(2)) are enzymes released in plasma and extracellular fluids during inflammatory diseases. Because human group IB and X sPLA(2)s are expressed in the lung, we examined their effects on primary human lung macrophages (HLM). Both sPLA(2)s induced TNF-alpha and IL-6 release in a concentration-dependent manner by increasing their mRNA expression. This effect was independent of their enzymatic activity because 1) the capacity of sPLA(2)s to mobilize arachidonic acid from HLM was unrelated to their ability to induce cytokine production; and 2) two catalytically inactive isoforms of group IB sPLA(2) (bromophenacyl bromide-inactivated human sPLA(2) and the H48Q mutant of the porcine sPLA(2)) were as effective as the catalytically active sPLA(2)s in inducing cytokine production. HLM expressed the M-type receptor for sPLA(2)s at both mRNA and protein levels, as determined by RT-PCR, immunoblotting, immunoprecipitation, and flow cytometry. Me-indoxam, which decreases sPLA(2) activity as well as binding to the M-type receptor, suppressed sPLA(2)-induced cytokine production. Incubation of HLM with the sPLA(2)s was associated with phosphorylation of ERK1/2, and a specific inhibitor of this pathway, PD98059, significantly reduced the production of IL-6 elicited by sPLA(2)s. In conclusion, two distinct sPLA(2)s produced in the human lung stimulate cytokine production by HLM via a mechanism that is independent of their enzymatic activity and involves activation of the ERK1/2 pathway. HLM express the M-type receptor, but its involvement in eliciting cytokine production deserves further investigation.  相似文献   

6.
Secreted phospholipases A(2) (sPLA(2)s) form a large family of structurally related enzymes which are widespread in nature. Snake venoms are known for decades to contain a tremendous molecular diversity of sPLA(2)s which can exert a myriad of toxic and pharmacological effects. Recent studies indicate that mammalian cells also express a variety of sPLA(2)s with ten distinct members identified so far, in addition to the various other intracellular PLA(2)s. Furthermore, scanning of nucleic acid databases fueled by the different genome projects indicates that several sPLA(2)s are also present in invertebrate animals like Drosophila melanogaster as well as in plants. All of these sPLA(2)s catalyze the hydrolysis of glycerophospholipids at the sn-2 position to release free fatty acids and lysophospholipids, and thus could be important for the biosynthesis of biologically active lipid mediators. However, the recent identification of a variety of membrane and soluble proteins that bind to sPLA(2)s suggests that the sPLA(2) enzymes could also function as high affinity ligands. So far, most of the binding data have been accumulated with venom sPLA(2)s and group IB and IIA mammalian sPLA(2)s. Collectively, venom sPLA(2)s have been shown to bind to membrane and soluble mammalian proteins of the C-type lectin superfamily (M-type sPLA(2) receptor and lung surfactant proteins), to pentraxin and reticulocalbin proteins, to factor Xa and to N-type receptors. Venom sPLA(2)s also associate with three distinct types of sPLA(2) inhibitors purified from snake serum that belong to the C-type lectin superfamily, to the three-finger protein superfamily and to proteins containing leucine-rich repeats. On the other hand, mammalian group IB and IIA sPLA(2)s can bind to the M-type receptor, and group IIA sPLA(2)s can associate with lung surfactant proteins, factor Xa and proteoglycans including glypican and decorin, a mammalian protein containing a leucine-rich repeat.  相似文献   

7.
The pancreatic secretory phospholipase A(2) (sPLA(2)IB) is considered to be a digestive enzyme, although it has several important receptor-mediated functions. In this study, using the newly isolated murine sPLA(2)IB cDNA clone as a probe, we demonstrate that in addition to the pancreas, the sPLA(2)IB mRNA was expressed in extrapancreatic organs such as the liver, spleen, duodenum, colon, and lungs. We also demonstrate that sPLA(2)IB mRNA expression was detectable from the 17(th) day of gestation in the developing mouse fetus, coinciding with the time of completion of differentiation of the pancreas. Furthermore, the mRNA expression pattern of sPLA(2)IB was distinct from those of sPLA(2)IIA and cPLA(2) in various tissues examined. The murine sPLA(2)IB gene structure is well conserved, consistent with findings in other mammalian species, and this gene mapped to the region of mouse chromosome 5F1-G1.1. Taken together, our results suggest that sPLA(2)IB plays important roles both in the pancreas and in extrapancreatic tissues and that in the mouse, its expression is developmentally regulated.  相似文献   

8.
A non-radioactive spectrometric assay for the evaluation of inhibitors of pancreatic group IB and non-pancreatic group IIA secretory phospholipase A(2) (sPLA(2)) is described. Mixed-micelles consisting of 1 mM of a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol and 6 mM of sodium deoxycholate were used as substrate. The enzyme activity was determined directly without any sample clean-up by measuring the sPLA(2)-mediated oleic acid release with reversed-phase HPLC and UV-detection at 200 nm. The known sPLA(2) inhibitors MJ33 and AR-C 67047MI were analyzed in this assay for their inhibitory potency. While MJ33 revealed only a very weak inhibition of group IB and IIA sPLA(2) at the highest test concentration (33 microM), AR-C 67047MI proved to be a potent inhibitor of both enzymes with IC(50)-values of 0.36 and 0.14 microM, respectively.  相似文献   

9.
Snake venom and mammalian secreted phospholipases A2 (sPLA2s) have been associated with toxic (neurotoxicity, myotoxicity, etc.), pathological (inflammation, cancer, etc.), and physiological (proliferation, contraction, secretion, etc.) processes. Specific membrane receptors (M and N types) for sPLA2s have been initially identified with snake venom sPLA2s as ligands, and the M-type 180-kDa receptor was cloned from different animal species. This paper addresses the problem of the endogenous ligands of the M-type receptor. Recombinant group IB and group IIA sPLA2s from human and mouse species have been prepared and analyzed for their binding properties to M-type receptors from different animal species. Both mouse group IB and group IIA sPLA2s are high affinity ligands (in the 1-10 nM range) for the mouse M-type receptor. These two sPLA2s are expressed in the mouse tissues where the M-type receptor is also expressed, making it likely that both types of sPLA2s are physiological ligands of the mouse M-type receptor. This conclusion does not hold for human group IB and IIA sPLA2s and the cloned human M-type receptor. The two mouse sPLA2s have relatively high affinities for the mouse M-type receptor, but they can have much lower affinities for receptors from other animal species, indicating that species specificity exists for sPLA2 binding to M-type receptors. Caution should thus be exerted in avoiding mixing sPLA2s, cells, or tissues from different animal species in studies of the biological roles of mammalian sPLA2s associated with an action through their membrane receptors.  相似文献   

10.
Mammalian secreted phospholipases A(2) (sPLA2s) comprise a group of at least eight enzymes, including the recently identified group X sPLA2. A bacterial expression system was developed to produce human group X sPLA2 (hGX). Inhibition studies show that the sPLA2 inhibitor LY311727 binds modestly more tightly to human group IIA sPLA2 than to hGX and that a pyrazole-based inhibitor of group IIA sPLA2 is much less active against hGX. The phospholipid head group preference of vesicle-bound hGX was determined. hGX binds tightly to phosphatidylcholine vesicles, which is thought to be required to act efficiently on cells. Tryptophan 67 hGX makes a significant contribution to interfacial binding to zwitterionic vesicles. As little as 10 ng/ml hGX releases arachidonic acid for cyclooxygenase-2- dependent prostaglandin E(2) generation when added exogenously to adherent mammalian cells. In contrast, human group IIA, rat group V, and mouse group IB sPLA2s are virtually inactive at releasing arachidonate when added exogenously to adherent cells. Dislodging cells from the growth surface enhances the ability of all the sPLA2s to release fatty acids. Studies with CHO-K1 cell mutants show that binding of sPLA2s to glycosaminoglycans is not the basis for poor plasma membrane hydrolysis by group IB, IIA, and V sPLA2s.  相似文献   

11.
Bacterial infection triggers an acute inflammatory response that might alter phospholipid metabolism. We have investigated the acute-phase response of murine lung epithelia to Pseudomonas aeruginosa infection. Ps. aeruginosa triggered secretion of the pro-inflammatory lipase, sPLA2 IB (phospholipase A2 IB), from lung epithelium. Ps. aeruginosa and sPLA2 IB each stimulated basolateral PtdCho (phosphatidylcholine) efflux in lung epithelial cells. Pre-treatment of cells with glyburide, an inhibitor of the lipid-export pump, ABCA1 (ATP-binding cassette transporter A1), attenuated Ps. aeruginosa and sPLA2 IB stimulation of PtdCho efflux. Effects of Ps. aeruginosa and sPLA2 IB were completely abolished in human Tangier disease fibroblasts, cells that harbour an ABCA1 genetic defect. Ps. aeruginosa and sPLA2 IB induced the heterodimeric receptors, PPARa (peroxisome-proliferator-activated receptor-a) and RXR (retinoid X receptor), factors known to modulate ABCA1 gene expression. Ps. aeruginosa and sPLA2 IB stimulation of PtdCho efflux was blocked with PD98059, a p44/42 kinase inhibitor. Transfection with MEK1 (mitogen-activated protein kinase/extracellular-signal-regulated kinase kinase 1), a kinase upstream of p44/42, increased PPARa and RXR expression co-ordinately with increased ABCA1 protein. These results suggest that pro-inflammatory effects of Ps. aeruginosa involve release of an sPLA2 of epithelial origin that, in part, via distinct signalling molecules, transactivates the ABCA1 gene, leading to export of phospholipid.  相似文献   

12.
Phospholipase A(2) receptor (PLA(2)R) mediates various biological responses elicited by group IB secretory phospholipase A(2) (sPLA(2)-IB). The recently cloned group X sPLA(2) (sPLA(2)-X) possesses several structural features characteristic of sPLA(2)-IB. Here, we detected a specific binding site of sPLA(2)-X in mouse osteoblastic MC3T3-E(1) cells. Cross-linking experiments demonstrated its molecular weight (180 kDa) to be similar to that of PLA(2)R. In fact, sPLA(2)-X was found to bind the recombinant PLA(2)R expressed in COS-7 cells, and its specific binding detected in mouse lung membranes was abolished by the deficiency of PLA(2)R. These findings demonstrate sPLA(2)-X to be one of the high-affinity ligands for mouse PLA(2)R.  相似文献   

13.
Secretory phospholipase A(2) (sPLA(2)), abundantly expressed in various cells including fibroblasts, is able to promote proliferation and migration. Degradation of collagenous extracellular matrix by matrix metalloproteinase (MMP) plays a role in the pathogenesis of various destructive disorders, such as rheumatoid arthritis, tumor invasion, and metastasis. Here we show that group IB PLA(2) increased pro-MMP-2 activation in NIH3T3 fibroblasts. MMP-2 activity was stimulated by group IB PLA(2) in a dose- and time-dependent manner. Consistent with MMP-2 activation, sPLA(2) decreased expression of type IV collagen. These effects are due to the reduction of tissue inhibitor of metalloproteinase-2 (TIMP-2) and the activation of the membrane type1-MMP (MT1-MMP). The decrease of TIMP-2 levels in conditioned media and the increase of MT1-MMP levels in plasma membrane were observed. In addition, treatment of cells with decanoyl Arg-Val-Lys-Arg-chloromethyl ketone, an inhibitor of pro-MT1-MMP, suppressed sPLA(2)-mediated MMP-2 activation, whereas treatment with bafilomycin A1, an inhibitor of H(+)-ATPase, sustained MMP-2 activation by sPLA(2). The involvement of phosphatidylinositol 3-kinase (PI3K) and Akt in the regulation of MMP-2 activity was further suggested by the findings that PI3K and Akt were phosphorylated by sPLA(2). Expression of p85alpha and Akt mutants, or pretreatment of cells with LY294002, a PI3K inhibitor, attenuated sPLA(2)-induced MMP-2 activation and migration. Taken together, these results suggest that sPLA(2) increases the pro-MMP-2 activation and migration of fibroblasts via the PI3K and Akt-dependent pathway. Because MMP-2 is an important factor directly involved in the control of cell migration and the turnover of extracellular matrix, our study may provide a mechanism for sPLA(2)-promoted fibroblasts migration.  相似文献   

14.
Summary (1) Scanning electron microscopy and vascular casting were used to study the morphology and vascular anatomy of the fully developed internal gills of Litoria ewingii tadpoles. — (2) The four pairs of gills were located in two branchial baskets on either side of the heart. Each gill consisted of a branchial arch with gill tufts projecting ventrally and gill filters running dorsally. The gills bore a variable number of gill tufts in which a complex three-dimensional array of capillary loops, of varying lengths and diameters, was trailed in the path of the ventilatory current. — (3) The evidence presented in this paper suggests that the gill tufts have greater potential as gas exchangers than either the gill filters or skin. — (4) The study revealed structural and functional evidence for the existence of branchial shunts between afferent and efferent branchial arteries.  相似文献   

15.
Group IIA secreted phospholipase A(2) (sPLA2) is known to display potent Gram-positive bactericidal activity in vitro and in vivo. We have analyzed the bactericidal activity of the full set of recombinant murine and human groups I, II, V, X, and XII sPLA2s on Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli. The rank order potency among human sPLA2s against Gram-positive bacteria is group IIA > X > V > XII > IIE > IB, IIF (for murine sPLA2s: IIA > IID > V > IIE > IIC, X > IB, IIF), and only human group XII displays detectable bactericidal activity against the Gram-negative bacterium E. coli. These studies show that highly basic sPLA2s display potent bactericidal activity with the exception of the ability of the acidic human group X sPLA2 to kill Gram-positive bacteria. By studying the Bacillus subtilis and S. aureus bactericidal potencies of a large panel of human group IIA mutants in which basic residues were mutated to acidic residues, it was found that: 1) the overall positive charge of the sPLA2 is the dominant factor in dictating bactericidal potency; 2) basic residues on the putative membrane binding surface of the sPLA2 are modestly more important for bactericidal activity than are other basic residues; 3) relative bactericidal potency tracks well with the ability of these mutants to degrade phospholipids in the bacterial membrane; and 4) exposure of the bacterial membrane of Gram-positive bacteria by disruption of the cell wall dramatically reduces the negative effect of charge reversal mutagenesis on bactericidal potency.  相似文献   

16.
The crystal structure of human group X (hGX) secreted phospholipase A2 (sPLA2) has been solved to a resolution of 1.97 A. As expected the protein fold is similar to previously reported sPLA2 structures. The active site architecture, including the positions of the catalytic residues and the first and second shell water around the Ca2+ cofactor, are highly conserved and remarkably similar to the group IB and group IIA enzymes. Differences are seen in the structures following the (1-12)-N-terminal helix and at the C terminus. These regions are proposed to interact with the substrate membrane surface. The opening to the active site slot is considerably larger in hGX than in human group IIA sPLA2. Furthermore, the electrostatic surface potential of the hGX interfacial-binding surface does not resemble that of the human group IIA sPLA2; the former is highly neutral, whereas the latter is highly cationic. The cationic residues on this face of group IB and IIA enzymes have been implicated in membrane binding and in k(cat*) allostery. In contrast, hGX does not show activation by the anionic charge at the lipid interface when acting on phospholipid vesicles or short-chain phospholipid micelles. Together, the crystal structure and kinetic results of hGX supports the conclusion that it is as active on zwitterionic as on anionic interfaces, and thus it is predicted to target the zwitterionic membrane surfaces of mammalian cells.  相似文献   

17.
Group X secretory phospholipase A(2) (sPLA(2)-X) possesses several structural features characteristic of both group IB and IIA sPLA(2)s (sPLA(2)-IB and -IIA) and is postulated to be involved in inflammatory responses owing to its restricted expression in the spleen and thymus. Here, we report the purification of human recombinant COOH-terminal His-tagged sPLA(2)-X, the preparation of its antibody, and the purification of native sPLA(2)-X. The affinity-purified sPLA(2)-X protein migrated as various molecular species of 13-18 kDa on SDS-polyacrylamide gels, and N-glycosidase F treatment caused shifts to the 13- and 14-kDa bands. NH(2)-terminal amino acid sequencing analysis revealed that the 13-kDa form is a putative mature sPLA(2)-X and the 14-kDa protein possesses a propeptide of 11 amino acid residues attached at the NH(2) termini of the mature protein. Separation with reverse-phase high performance liquid chromatography revealed that N-linked carbohydrates are not required for the enzymatic activity and pro-sPLA(2)-X has a relatively weak potency compared with the mature protein. The mature sPLA(2)-X induced the release of arachidonic acid from phosphatidylcholine more efficiently than other human sPLA(2) groups (IB, IIA, IID, and V) and elicited a prompt and marked release of arachidonic acid from human monocytic THP-1 cells compared with sPLA(2)-IB and -IIA with concomitant production of prostaglandin E(2). A prominent release of arachidonic acid was also observed in sPLA(2)-X-treated human U937 and HL60 cells. Immunohistochemical analysis of human lung preparations revealed its expression in alveolar epithelial cells. These results indicate that human sPLA(2)-X is a unique N-glycosylated sPLA(2) that releases arachidonic acid from human myeloid leukemia cells more efficiently than sPLA(2)-IB and -IIA.  相似文献   

18.
Pulmonary surfactant's complex mixture of phospholipids and proteins reduces the work of breathing by lowering alveolar surface tension during respiration. One mechanism of surfactant damage appears to be the hydrolysis of phospholipid by phospholipases activated in the inflamed lung. Humans have several candidate secretory phospholipase A(2) (sPLA(2)) enzymes in lung cells and infiltrating leukocytes that could damage extracellular surfactant. We considered two mechanisms of surfactant disruption by five human sPLA(2)s, including generation of lysophospholipids and the depletion of specific phospholipids. All five sPLA(2)s studied ultimately caused surfactant dysfunction. Each enzyme exhibited a different pattern of hydrolysis of surfactant phospholipids. Phosphatidylcholine, the major phospholipid in surfactant and the greatest potential source for generation of lysophospholipids, was susceptible to hydrolysis by group IB, group V, and group X sPLA(2)s, but not group IIA or IID. Group IIA hydrolyzed both phosphatidylethanolamine and phosphatidylglycerol, whereas group IID was active against only phosphatidylglycerol. Thus, with groups IB and X, the generation of lysophospholipids corresponded with surfactant dysfunction. However, hydrolysis of and depletion of phosphatidylglycerol had a greater correlation with surfactant dysfunction for groups IIA and IID. Surfactant dysfunction caused by group V sPLA(2) is less clear and may be the combined result of both mechanisms.  相似文献   

19.
We previously demonstrated that secretory phospholipase A2 (sPLA2) and lysophosphatidylcholine (LPC) exhibit neurotrophin-like neuritogenic activity in the rat pheochromocytoma cell line PC12. In this study, we further analyzed the mechanism whereby sPLA2 displays neurite-inducing activity. Exogenously added mammalian group X sPLA2 (sPLA2-X), but not group IB and IIA sPLA2s, induced neuritogenesis, which correlated with the ability of sPLA2-X to liberate LPC into the culture media. In accordance, blocking the effect of LPC by supplementation of bovine serum albumin or phospholipase B attenuated neuritogenesis by sPLA2 or LPC. Overproduction or suppression of G2A, a G-protein-coupled receptor involved in LPC signaling, resulted in the enhancement or reduction of neuritogenesis induced by sPLA2 treatment. These results indicate that the neuritogenic effect of sPLA2 is mediated by generation of LPC and subsequent activation of G2A.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号