共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of a novel bacterial adenylyltransferase reveals half of sites reactivity
下载免费PDF全文

Phosphopantetheine adenylyltransferase (PPAT) is an essential enzyme in bacteria that catalyses a rate-limiting step in coenzyme A (CoA) biosynthesis, by transferring an adenylyl group from ATP to 4'-phosphopantetheine, yielding dephospho-CoA (dPCoA). Each phosphopantetheine adenylyltransferase (PPAT) subunit displays a dinucleotide-binding fold that is structurally similar to that in class I aminoacyl-tRNA synthetases. Superposition of bound adenylyl moieties from dPCoA in PPAT and ATP in aminoacyl-tRNA synthetases suggests nucleophilic attack by the 4'-phosphopantetheine on the alpha-phosphate of ATP. The proposed catalytic mechanism implicates transition state stabilization by PPAT without involving functional groups of the enzyme in a chemical sense in the reaction. The crystal structure of the enzyme from Escherichia coli in complex with dPCoA shows that binding at one site causes a vice-like movement of active site residues lining the active site surface. The mode of enzyme product formation is highly concerted, with only one trimer of the PPAT hexamer showing evidence of dPCoA binding. The homologous active site attachment of ATP and the structural distribution of predicted sequence-binding motifs in PPAT classify the enzyme as belonging to the nucleotidyltransferase superfamily. 相似文献
2.
Kondo T Nekado T Sugimoto I Ochi K Takai S Kinoshita A Hatayama A Yamamoto S Kishikawa K Nakai H Toda M 《Bioorganic & medicinal chemistry》2008,16(4):1613-1631
A series of (4beta-substituted)-L-prolylpyrrolidine analogs lacking the electrophilic nitrile function were synthesized and their dipeptidyl peptidase IV (DPP-IV) inhibitory activity and duration of ex vivo activity were evaluated. Structural optimization of a N-(3-phenyl-1,2,4-thiadiazol-5-yl)piperazine analog 8, which was found by high-speed analog synthesis, was carried out to improve the potency and duration of action. A representative compound 26 was evaluated to assess its effect on the plasma glucose level after the oGTT (oral glucose tolerance test) in normal rats. Structure-activity relationships (SAR) are also presented. 相似文献
3.
John W. Benbow Kim A. Andrews Jiri Aubrecht David Beebe David Boyer Shawn Doran Michael Homiski Yu Hui Kirk McPherson Janice C. Parker Judith Treadway Maria VanVolkenberg William J. Zembrowski 《Bioorganic & medicinal chemistry letters》2009,19(8):2220-2223
A highly ligand efficient lead molecule was rapidly developed into a DPP-IV selective candidate series using focused small library synthesis. A significant hurdle for series advancement was genetic safety since some agents in this series impaired chromosome division that was detected using the in vitro micronucleus assay. A recently developed high-throughput imaging-based in vitro micronucleus assay enabled the identification of chemical space with a low probability of micronucleus activity. Advanced profiling of a subset within this space identified a compound with a clean safety profile, an acceptable human DPP-IV inhibition profile based on the rat PK/PD model and a projected human dose that was suitable for clinical development. 相似文献
4.
While the majority of the ribosomal RNA structure is conserved in the three major domains of life--archaea, bacteria, and eukaryotes, specific regions of the rRNA structure are unique to at least one of these three primary forms of life. In particular, the comparative secondary structure for the eukaryotic SSU rRNA contains several regions that are different from the analogous regions in the bacteria. Our detailed analysis of two recently determined eukaryotic 40S ribosomal crystal structures, Tetrahymena thermophila and Saccharomyces cerevisiae, and the comparison of these results with the bacterial Thermus thermophilus 30S ribosomal crystal structure: (1) revealed that the vast majority of the comparative structure model for the eukaryotic SSU rRNA is substantiated, including the secondary structure that is similar to both bacteria and archaea as well as specific for the eukaryotes, (2) resolved the secondary structure for regions of the eukaryotic SSU rRNA that were not determined with comparative methods, (3) identified eukaryotic helices that are equivalent to the bacterial helices in several of the hypervariable regions, (4) revealed that, while the coaxially stacked compound helix in the 540 region in the central domain maintains the constant length of 10 base pairs, its two constituent helices contain 5+5 bp rather than the 6+4 bp predicted with comparative analysis of archaeal and eukaryotic SSU rRNAs. 相似文献
5.
Yeo HJ Yokoyama T Walkiewicz K Kim Y Grass S Geme JW 《The Journal of biological chemistry》2007,282(42):31076-31084
In pathogenic Gram-negative bacteria, many virulence factors are secreted via the two-partner secretion pathway, which consists of an exoprotein called TpsA and a cognate outer membrane translocator called TpsB. The HMW1 and HMW2 adhesins are major virulence factors in nontypeable Haemophilus influenzae and are prototype two-partner secretion pathway exoproteins. A key step in the delivery of HMW1 and HMW2 to the bacterial surface involves targeting to the HMW1B and HMW2B outer membrane translocators by an N-terminal region called the secretion domain. Here we present the crystal structure at 1.92 A of the HMW1 pro-piece (HMW1-PP), a region that contains the HMW1 secretion domain and is cleaved and released during HMW1 secretion. Structural analysis of HMW1-PP revealed a right-handed beta-helix fold containing 12 complete parallel coils and one large extra-helical domain. Comparison of HMW1-PP and the Bordetella pertussis FHA secretion domain (Fha30) reveals limited amino acid homology but shared structural features, suggesting that diverse TpsA proteins have a common structural domain required for targeting to cognate TpsB proteins. Further comparison of HMW1-PP and Fha30 structures may provide insights into the keen specificity of TpsA-TpsB interactions. 相似文献
6.
Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives 总被引:104,自引:0,他引:104
F Ellouz A Adam R Ciorbaru E Lederer 《Biochemical and biophysical research communications》1974,59(4):1317-1325
We have recently shown that the monomeric subunit of mesodiaminopimelic acid containing bacterial peptidoglycans, i. e. the disaccharide tetrapeptide N-acetyl glucosaminyl-N-acetyl muramyl-L-alanyl-D-isoglutaminyl-meso-diaminopimelyl-D-alanine can replace whole killed mycobacteria in Freund's adjuvant. We now report further structural simplifications of the active molecule; natural N-acetyl-muramyl-tripeptides have been found active; the smallest adjuvant molecule found is a synthetic N-acetyl muramyl-dipeptide prepared by Sinaÿ (1). 相似文献
7.
Ahn JH Shin MS Jun MA Jung SH Kang SK Kim KR Rhee SD Kang NS Kim SY Sohn SK Kim SG Jin MS Lee JO Cheon HG Kim SS 《Bioorganic & medicinal chemistry letters》2007,17(9):2622-2628
Inhibitors of dipeptidyl peptidase IV (DPP-IV) have been shown to be effective treatments for type 2 diabetes. A series of beta-aminoacyl-containing cyclic hydrazine derivatives were synthesized and evaluated as DPP-IV inhibitors. One member of this series, (R)-3-amino-1-(2-benzoyl-1,2-diazepan-1-yl)-4-(2,4,5-trifluorophenyl)butan-1-one (10f), showed potent in vitro activity, good selectivity and in vivo efficacy in mouse models. Also, the binding mode of compound 10f was determined by X-ray crystallography. 相似文献
8.
Katsuhiro Imaki Takanori Okada Yoshisuke Nakayama Yuuki Nagao Kaoru Kobayashi Yasuhiro Sakai Tetsuya Mohri Takaaki Amino Hisao Nakai Masanori Kawamura 《Bioorganic & medicinal chemistry》1996,4(12):2115-2134
A novel series of pivaloyloxy benzene derivatives has been identified as potent and selective human neutrophil elastase (HNE) inhibitors. Convergent syntheses were developed in order to identify the inhibitors which are intravenously effective in an animal model. A compound of particular interest is the sulfonanilide-containing analogues. Structure-activity relationships are discussed. Structural requirements for metabolic stabilization are also discussed. 相似文献
9.
Inhibition of urokinase has been shown to slow tumor growth and metastasis. To utilize structure-based drug design, human urokinase was re-engineered to provide a more optimal crystal form. The redesigned protein consists of residues Ile(16)-Lys(243) (in the chymotrypsin numbering system; for the urokinase numbering system it is Ile(159)-Lys(404)) and two point mutations, C122A and N145Q (C279A and N302Q). The protein yields crystals that diffract to ultra-high resolution at a synchrotron source. The native structure has been refined to 1.5 A resolution. This new crystal form contains an accessible active site that facilitates compound soaking, which was used to determine the co-crystal structures of urokinase in complex with the small molecule inhibitors amiloride, 4-iodo-benzo(b)thiophene-2-carboxamidine and phenylguanidine at 2. 0-2.2 A resolution. All three inhibitors bind at the primary binding pocket of urokinase. The structures of amiloride and 4-iodo-benzo(b)thiophene-2-carboxamidine also reveal that each of their halogen atoms are bound at a novel structural subsite adjacent to the primary binding pocket. This site consists of residues Gly(218), Ser(146), and Cys(191)-Cys(220) and the side chain of Lys(143). This pocket could be utilized in future drug design efforts. Crystal structures of these three inhibitors in complex with urokinase reveal strategies for the design of more potent nonpeptidic urokinase inhibitors. 相似文献
10.
Ciliberti N Manfredini S Angusti A Durini E Solaroli N Vertuani S Buzzoni L Bonache MC Ben-Shalom E Karlsson A Saada A Balzarini J 《Bioorganic & medicinal chemistry》2007,15(8):3065-3081
Selective and effective TK2 inhibitors can be obtained by introduction of bulky lipophilic chains (acyl or alkyl entities) at the 2' position of araT and BVaraU, nucleoside analogues naturally endowed with a low TK2 affinity. These derivatives showed a competitive inhibitory activity against TK2 in micromolar range. BVaraU nucleoside analogues, modified on the 2'-O-acyl chain with a terminal N-Boc amino-group, conserved or increased the inhibitory activity against TK2 (7l and 7m IC(50): 6.4 and 3.8 microM, respectively). The substitution of an ester for a carboxamide moiety at the 2' position of araT afforded a consistent reduction of the inhibitory activity (25, IC(50): 480 microM). On the contrary, modifications at 2'-OH position of araC and araG, have provided inactive derivatives against TK2 and dGK, respectively. The biological activity of a representative compound, 2'-O-decanoyl-BVaraU, was also investigated in normal human fibroblasts and was found to impair mitochondrial function due to TK2 inhibition. 相似文献
11.
Aldose reductase (ALR2) plays a vital role in the etiology of long-term diabetic microvascular complications (DMCs) such as
retinopathy, nephropathy and neuropathy. It initializes the polyol pathway and under hyperglycemic conditions, catalyzes the
conversion of glucose into sorbitol in the presence of NADPH. Many ALR2 inhibitors have been withdrawn from clinical trial
studies due to their cross reactivity with other analogues enzymes or due to impairment with detoxification role of ALR2.
To address these issues we characterized the possible rationalities behind the selectivity problem associated with the enzyme-inhibitor
interactions. Novel molecules were designed for the induce fit cavity region of ALR2. Docking studies were carried out using
Glide to analyze the binding affinity of the designed molecules for ALR2. The analysis showed that the designed ALR2 inhibitors
are selective for ALR2 over its close analogs. These inhibitors are also specific for the induced cavity region of ALR2 and
do not interfere with the detoxification role of ALR2. 相似文献
12.
《Bioorganic & medicinal chemistry letters》2014,24(8):1918-1922
A series of novel aminomethyl-piperidones were designed and evaluated as potential DPP-IV inhibitors. Optimized analogue 12v ((4S,5S)-5-(aminomethyl)-1-(2-(benzo[d][1,3]dioxol-5-yl)ethyl)-4-(2,5-difluorophenyl)piperidin-2-one) showed excellent in vitro potency and selectivity for DPP-IV over other serine proteases. The lead compound 12v showed potent and long acting antihyperglycemic effects (in vivo), along with improved pharmacokinetic profile. 相似文献
13.
Parasites have developed a variety of strategies for invading hosts and escaping their immune response. A common mechanism by which parasites escape nitric oxide (NO) toxicity is the activation of host arginase. This activation leads to a depletion of l-arginine, which is the substrate for NO synthase, resulting in lower levels of NO and increased production of polyamines that are necessary for parasite growth and differentiation. For this reason, small molecule inhibitors for arginase show promise as new anti-parasitic chemotherapeutics. However, few arginase inhibitors have been reported. Here, we describe the discovery of novel irreversible arginase inhibitors, and their characterization using biochemical, kinetic, and structural studies. Importantly, we determined the site on human arginase that is labeled by one of the small molecule inhibitors. The tandem mass spectra data show that the inhibitor occupies the enzyme active site and forms a covalent bond with Thr135 of arginase. These findings pave the way for the development of more potent and selective irreversible arginase inhibitors. 相似文献
14.
Pérez-Cañadillas JM Santoro J Campos-Olivas R Lacadena J Martínez del Pozo A Gavilanes JG Rico M Bruix M 《Journal of molecular biology》2000,299(4):1061-1073
alpha-Sarcin selectively cleaves a single phosphodiester bond in a universally conserved sequence of the major rRNA, that inactivates the ribosome. The elucidation of the three-dimensional solution structure of this 150 residue enzyme is a crucial step towards understanding alpha-sarcin's conformational stability, ribonucleolytic activity, and its exceptionally high level of specificity. Here, the solution structure has been determined on the basis of 2658 conformationally relevant distances restraints (including stereoespecific assignments) and 119 torsional angular restraints, by nuclear magnetic resonance spectroscopy methods. A total of 60 converged structures have been computed using the program DYANA. The 47 best DYANA structures, following restrained energy minimization by GROMOS, represent the solution structure of alpha-sarcin. The resulting average pairwise root-mean-square-deviation is 0.86 A for backbone atoms and 1.47 A for all heavy atoms. When the more variable regions are excluded from the analysis, the pairwise root-mean-square deviation drops to 0.50 A and 1.00 A, for backbone and heavy atoms, respectively. The alpha-sarcin structure is similar to that reported for restrictocin, although some differences are clearly evident, especially in the loop regions. The average rmsd between the structurally aligned backbones of the 47 final alpha-sarcin structures and the crystal structure of restrictocin is 1.46 A. On the basis of a docking model constructed with alpha-sarcin solution structure and the crystal structure of a 29-nt RNA containing the sarcin/ricin domain, the regions in the protein that could interact specifically with the substrate have been identified. The structural elements that account for the specificity of RNA recognition are located in two separate regions of the protein. One is composed by residues 51 to 55 and loop 5, and the other region, located more than 11 A away in the structure, is the positively charged segment formed by residues 110 to 114. 相似文献
15.
Fernández-Montalván A Bouwmeester T Joberty G Mader R Mahnke M Pierrat B Schlaeppi JM Worpenberg S Gerhartz B 《The FEBS journal》2007,274(16):4256-4270
Ubiquitin specific protease 7 (USP7) belongs to the family of deubiquitinating enzymes. Among other functions, USP7 is involved in the regulation of stress response pathways, epigenetic silencing and the progress of infections by DNA viruses. USP7 is a 130-kDa protein with a cysteine peptidase core, N- and C-terminal domains required for protein-protein interactions. In the present study, recombinant USP7 full length, along with several variants corresponding to domain deletions, were expressed in different hosts in order to analyze post-translational modifications, oligomerization state, enzymatic properties and subcellular localization patterns of the enzyme. USP7 is phosphorylated at S18 and S963, and ubiquitinated at K869 in mammalian cells. In in vitro activity assays, N- and C-terminal truncations affected the catalytic efficiency of the enzyme different. Both the protease core alone and in combination with the N-terminal domain are over 100-fold less active than the full length enzyme, whereas a construct including the C-terminal region displays a rather small decrease in catalytic efficiency. Limited proteolysis experiments revealed that USP7 variants containing the C-terminal domain interact more tightly with ubiquitin. Besides playing an important role in substrate recognition and processing, this region might be involved in enzyme dimerization. USP7 constructs lacking the N-terminal domain failed to localize in the cell nucleus, but no nuclear localization signal could be mapped within the enzyme's first 70 amino acids. Instead, the tumor necrosis factor receptor associated factor-like region (amino acids 70-205) was sufficient to achieve the nuclear localization of the enzyme, suggesting that interaction partners might be required for USP7 nuclear import. 相似文献
16.
The transferrins are a family of proteins that bind free iron in the blood and bodily fluids. Serum transferrins function to deliver iron to cells via a receptor-mediated endocytotic process as well as to remove toxic free iron from the blood and to provide an anti-bacterial, low-iron environment. Lactoferrins (found in bodily secretions such as milk) are only known to have an anti-bacterial function, via their ability to tightly bind free iron even at low pH, and have no known transport function. Though these proteins keep the level of free iron low, pathogenic bacteria are able to thrive by obtaining iron from their host via expression of outer membrane proteins that can bind to and remove iron from host proteins, including both serum transferrin and lactoferrin. Furthermore, even though human serum transferrin and lactoferrin are quite similar in sequence and structure, and coordinate iron in the same manner, they differ in their affinities for iron as well as their receptor binding properties: the human transferrin receptor only binds serum transferrin, and two distinct bacterial transport systems are used to capture iron from serum transferrin and lactoferrin. Comparison of the recently solved crystal structure of iron-free human serum transferrin to that of human lactoferrin provides insight into these differences. 相似文献
17.
Thiolases belong to a superfamily of condensing enzymes that includes also beta-ketoacyl acyl carrier protein synthases (KAS enzymes), involved in fatty acid synthesis. Here, we describe the high resolution structure of human cytosolic acetoacetyl-CoA thiolase (CT), both unliganded (at 2.3 angstroms resolution) and in complex with CoA (at 1.6 angstroms resolution). CT catalyses the condensation of two molecules of acetyl-CoA to acetoacetyl-CoA, which is the first reaction of the metabolic pathway leading to the synthesis of cholesterol. CT is a homotetramer of exact 222 symmetry. There is an excess of positively charged residues at the interdimer surface leading towards the CoA-binding pocket, possibly important for the efficient capture of substrates. The geometry of the catalytic site, including the three catalytic residues Cys92, His 353, Cys383, and the two oxyanion holes, is highly conserved between the human and bacterial Zoogloea ramigera thiolase. In human CT, the first oxyanion hole is formed by Wat38 (stabilised by Asn321) and NE2(His353), and the second by N(Cys92) and N(Gly385). The active site of this superfamily is constructed on top of four active site loops, near Cys92, Asn321, His353, and Cys383, respectively. These loops were used for the superpositioning of CT on the bacterial thiolase and on the Escherichia coli KAS I. This comparison indicates that the two thiolase oxyanion holes also exist in KAS I at topologically equivalent positions. Interestingly, the hydrogen bonding interactions at the first oxyanion hole are different in thiolase and KAS I. In KAS I, the hydrogen bonding partners are two histidine NE2 atoms, instead of a water and a NE2 side-chain atom in thiolase. The second oxyanion hole is in both structures shaped by corresponding main chain peptide NH-groups. The possible importance of bound water molecules at the catalytic site of thiolase for the reaction mechanism is discussed. 相似文献
18.
Sanders NN Eijsink VG van den Pangaart PS Joost van Neerven RJ Simons PJ De Smedt SC Demeester J 《Biochimica et biophysica acta》2007,1770(5):839-846
Several pulmonary pathologies, like cystic fibrosis (CF), are characterized by hypersecretion and stasis of tenacious mucus. Bacterial glycosidases are known to degrade mucins but their use as mucolytic agents is questionable. The observation that bacterial chitinases degrade mucins and the recent discovery of human chitinases, which have been proposed to be involved in the genesis of asthma, prompted us to evaluate the mucolytic properties of human derived chitinases. The effect of these human chitinases, and bacterial chitinases (positive control), on the viscoelasticity of CF sputa and on the electrophoretic mobility of human mucins was tested. Commercial bacterial chitinase drastically degraded CF sputum, while human derived chitinases did not. Accordingly, the commercial bacterial chitinase was found to degrade mucins, whereas recombinant human chitinases did not. A thorough analysis of the commercial chitinase elucidated that contaminating proteases and also nucleases assisted in the mucolytic effect. Indeed, recombinant bacterial chitinases very slightly reduced the viscoelasticity of CF sputum, but they caused a significant degradation of the CF sputum when they were combined with proteases. In conclusion, this work shows that recombinant human and recombinant bacterial chitinases have no or very low mucolytic activities, respectively. The observed mucolytic properties of commercial bacterial chitinase are due to a synergistic effect between chitinolytic and proteolytic enzymes at one hand and at the other hand also due to the presence of contaminating nucleases. 相似文献
19.
Silverman Ian M Li Fan Alexander Anissa Goff Loyal Trapnell Cole Rinn John L Gregory Brian D 《Genome biology》2014,15(1):1-16