首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the interaction of six 18-residue peptides derived from amphipathic helical segments of globular proteins with model membranes. The net charge of the peptides at neutral pH varies from −1 to +6. Circular dichroism spectra indicate that peptides with a high net positive charge tend to fold into a helical conformation in the presence of negatively charged lipid vesicles. In helical conformation, their average hydrophobic moment and hydrophobicity would render them surface-active. The composition of amino acids on the polar face of the helix in the peptides is considerably different. The peptides show variations in their ability to permeabilise zwitterionic and anionic lipid vesicles. Whereas increased net positive charge favours greater permeabilisation, the distribution of charged residues in the polar face also plays a role in determining membrane activity. The distribution of amino acids in the polar face of the helix in the peptides that were investigated do not fall into the canonical classes described. Amphipathic helices, which are part of proteins, with a pattern of amino acid distribution different from those observed in class L, A and others, could help in providing newer insights into peptide-membrane interactions.  相似文献   

2.
A statistical survey of polyproline II (PPII) helices extracted from protein crystal structures is here reported. The average hydrophobicity of these helices is intermediate between those displayed by beta-strands and coil regions and is similar to that of alpha-helices. PPII helices with amphipathic properties have been identified and classified. Amino acid propensities for PPII helices derived in this study differ significantly from those previously reported. They show a little albeit significant correlation with propensities for alpha-helices whereas they are fully non-correlated to propensities for beta-sheets. Finally, PPII propensities have been correlated with amino acid frequencies in structural proteins, such as collagen and extensins.  相似文献   

3.
Several types of lipid-associating helices exist: transmembrane helices such as in receptor proteins, pore-forming helices in ion channel proteins, fusion-inducing peptides in viral proteins, and amphipathic helices such as in plasma apolipoproteins. In order to propose a classification of these helices according to their molecular properties, we introduce the concept of molecular hydrophobicity potential for such helical segments. The calculation of this parameter for alpha-helices enables the visualization of the hydrophobic and hydrophilic envelopes around the peptide and their three-dimensional representation by molecular graphics. We have used this parameter to differentiate between pore-forming helices with a hydrophobic envelope larger than the hydrophilic component, membrane-spanning helices surrounded almost entirely by an hydrophobic envelope, fusiogenic peptides with an hydrophobicity gradient both around the helix and along the axis, and finally, amphipathic helices with a predominantly hydrophilic envelope. The structure of the lipid-protein complexes is determined by a number of different interactions: the hydrophobic interaction of the apolar faces of the helices with lipids, the polar interaction of the hydrophilic sides of different helices with each other, and the interaction of hydrophilic residues with the aqueous solvent. The relative magnitude of the hydrophobic and hydrophilic envelopes accounts for the differences in the structure of the lipid-protein complexes. Purely hydrophobic interactions stabilize transmembrane helical segments, while hydrophobic interactions with the lipid phase and with each other are involved in the stabilization of the pore-forming helices. In contrast, both hydrophobic interactions with the lipids and hydrophilic interactions with the aqueous phase contribute to the arrangement of amphipathic helices around the edges of the discoidal lipid-apoprotein complexes.  相似文献   

4.
We designed a library of short peptides using standard rules for coiled-coil assembly. Depending on the composition of amino acids in the non-interacting region of the coiled coil (positions b, c, and f) these peptides are able to convert from alpha-helical to beta-sheet secondary structure. This type of transition is observed in amyloid-like proteins and is a key feature associated with many types of neurodegenerative diseases. Studies on peptides that are 14 amino acids in length indicated that positioning hydrophobic amino acids at an f position within a heptad repeat accelerated the rate of conformational conversion as compared to that at a c position. We believe that this occurs because of the formation of a hydrophobic pocket that preferentially stabilizes beta-sheets over alpha-helices. This effect was also observed in longer 21 amino acid peptides. Our study shows that the relative rates of structural conversion correlate with the formation of a continuous three-amino-acid hydrophobic patch consisting of amino acids in the d, f, and a positions and not on the secondary structure propensities of the individual amino acids. The sequence-structure relationship observed in this study will be used to help understand the mechanism of amyloid fiber formation and design future coiled-coil and beta-sheet-forming peptide systems.  相似文献   

5.
The interaction of many lytic cationic antimicrobial peptides with their target cells involves electrostatic interactions, hydrophobic effects, and the formation of amphipathic secondary structures, such as alpha helices or beta sheets. We have shown in previous studies that incorporating approximately 30%d-amino acids into a short alpha helical lytic peptide composed of leucine and lysine preserved the antimicrobial activity of the parent peptide, while the hemolytic activity was abolished. However, the mechanisms underlying the unique structural features induced by incorporating d-amino acids that enable short diastereomeric antimicrobial peptides to preserve membrane binding and lytic capabilities remain unknown. In this study, we analyze in detail the structures of a model amphipathic alpha helical cytolytic peptide KLLLKWLL KLLK-NH2 and its diastereomeric analog and their interactions with zwitterionic and negatively charged membranes. Calculations based on high-resolution NMR experiments in dodecylphosphocholine (DPCho) and sodium dodecyl sulfate (SDS) micelles yield three-dimensional structures of both peptides. Structural analysis reveals that the peptides have an amphipathic organization within both membranes. Specifically, the alpha helical structure of the L-type peptide causes orientation of the hydrophobic and polar amino acids onto separate surfaces, allowing interactions with both the hydrophobic core of the membrane and the polar head group region. Significantly, despite the absence of helical structures, the diastereomer peptide analog exhibits similar segregation between the polar and hydrophobic surfaces. Further insight into the membrane-binding properties of the peptides and their depth of penetration into the lipid bilayer has been obtained through tryptophan quenching experiments using brominated phospholipids and the recently developed lipid/polydiacetylene (PDA) colorimetric assay. The combined NMR, FTIR, fluorescence, and colorimetric studies shed light on the importance of segregation between the positive charges and the hydrophobic moieties on opposite surfaces within the peptides for facilitating membrane binding and disruption, compared to the formation of alpha helical or beta sheet structures.  相似文献   

6.
To examine the relationship between peptide sequence and the interaction of amphipathic alpha-helical peptides with phosphatidylcholines, various methods of mixing the peptide and lipid were explored. A series of amphipathic alpha-helical peptides containing from 10 to 18 residues were synthesized by solid-phase techniques. An 18-residue peptide and two relatively hydrophobic 10-residue peptides did not disrupt dimyristoylphosphatidylcholine liposomes when added to the lipid in buffer. However, when the peptides were premixed with lipid in a suitable organic solvent and then reconstituted with aqueous buffer, clear micelles were formed, indicating association of the amphipathic alpha-helical peptide with lipid. In general, the best solvent for this purpose was trifluoroethanol. The circular dichroic and fluorescence spectra of peptides which readily formed clear mixtures when mixed in buffer with dimyristoylphosphatidylcholine liposomes were similar when prepared either by the alternative pathway technique using trifluoroethanol or by a cholate removal technique. For the peptides which did not clear liposomes in buffer, first mixing with dimyristoylphosphatidylcholine in trifluoroethanol resulted in an increase in the alpha-helicity of the peptides as judged by circular dichroic spectra and a blue-shift in the fluorescence emission maxima of the single tryptophan residue in each peptide. These data are consistent with formation of an amphipathic alpha-helix in lipid by peptides which based on mixing experiments with dimyristoylphosphatidylcholine liposomes in buffer at the phase transition temperature of the lipid would be considered ineffective in lipid binding. Thus, simple mixing of peptides with liposomes may give misleading results concerning the intrinsic affinity of a particular peptide sequence for lipid. In addition, the data demonstrate that relatively hydrophobic amphipathic alpha-helical peptides which do not form small micelles with dimyristoylphosphatidylcholine spontaneously in aqueous solution may interact with lipid as typical amphipathic alpha-helices when mixed by an alternative pathway.  相似文献   

7.
The 20 commonly occurring amino acids have been shown to have distinct position-dependent, helix-forming propensities near the ends of alpha-helices. Here, we show that the amino acids also have very strong position-dependent propensities throughout the length of a helix. Most helices are amphiphilic, and they have a strong tendency to both begin and end on the solvent-inaccessible face of the helix. These position-specific propensities should provide valuable parameters to guide de novo protein design, and should allow more precise prediction of helical topology in natural proteins.  相似文献   

8.
H Vogel  J K Wright    F Jhnig 《The EMBO journal》1985,4(13A):3625-3631
The secondary structure of the lactose permease of Escherichia coli reconstituted in lipid membranes was determined by Raman spectroscopy. The alpha-helix content is approximately 70%, the beta-strand content below 10% and beta-turns contribute 15%. About 1/3 of the residues in alpha-helices and most other residues are exposed to water. Employing a method for structural prediction which accounts for amphipathic helices, 10 membrane-spanning helices are predicted which are either hydrophobic or amphipathic. They are expected to form an outer ring of helices in the membrane. The interior of the ring would be made of residues which are predominantly hydrophilic and, evoking the analogy to sugar-binding proteins, suited to provide the sugar binding site.  相似文献   

9.
Strong conformational propensities enhance T cell antigenicity   总被引:9,自引:0,他引:9  
The ability to predict T cell antigenic peptides would have important implications for the development of artificial vaccines. As a first step towards prediction, this report uses a new statistical technique to discover and evaluate peptide properties correlating with T cell antigenicity. This technique employs Monte Carlo computer experiments and is applicable to many problems involving protein or DNA. The technique is used to evaluate the contribution of various peptide properties to helper T cell antigenicity. The properties investigated include amphipathicities (alpha and beta), conformational propensities (alpha, beta, turn and coil), and the correlates of alpha-helices, such as the absence of helix-breakers and the positioning of the residues which stabilize alpha-helical dipoles. We also investigate segmental amphipathicity. (A peptide has this property when it contains at least two disjoint subpeptides, one hydrophobic, one hydrophilic.) Statistical correlations and stratifications assessed independent contributions to T cell antigenicity. The findings presented here have important implications for the manufacture of peptide vaccines. These implications are as follows: if possible, peptide vaccines should probably be those protein segments which have a propensity to form amphipathic alpha-helices, which do not have regions with a propensity to coil conformations, and which have a lysine at their COOH-terminus. The last two observations are of particular use in manufacturing peptides vaccines: they indicate where the synthetic peptides should be terminated. These implications are supported by the findings given below. The significances (p values) support the following statistical generalites about antigenic conformations: most helper T cell antigenic sites are amphipathic alpha-helices; alpha-helical amphipathicity and propensity to an alpha-helical conformation contribute independently to T cell antigenicity; there is evidence that some T cell antigenic sites are beta conformations instead of alpha-helices; T cell antigenic sites avoid random coiled conformations; and T cell antigenic sites are usually not segmentally amphipathic. alpha-Helical amphipathicity was significant, but segmental amphipathicity was not. This has implications for the dimensions of the structure interacting with the hydrophobic portion of an amphipathic T cell antigenic site. Lysines are unusually frequent at the COOH-terminal of T cell antigenic sites, even after accounting for tryptic digests. These lysines can stabilize alpha-helical peptides by a favorable interaction with alpha-helical dipoles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Helix formation in folding proteins is stabilized by binding of recurrent hydrophobic side chains in one longitudinal quadrant against the locally most hydrophobic region of the protein. To test this hypothesis, we fitted sequences of 247 alpha-helices of 55 proteins to the circular (infinite) template (symbol; see text) to maximize the strip-of-helix hydrophobicity index (the mean hydrophobicity of residues in (symbol; see text) positions). These template-predicted configurations closely matched crystallographic structures in 87% of four- or five-turn helices compared. We determined the longitudinal quadrant distributions of amino acids in the template-fitted, sheet projections of alpha-helices with respect to the best longitudinal, hydrophobic strip on each helix and to the N and C termini, interiors, and entire helices. Amino acids Leu, Ile, Val, and Phe were concentrated in one longitudinal quadrant (p less than 0.001). Lys, Arg, Asp, and Glu were not in the quadrant of Leu, Ile, Val, and Phe (p less than 0.001). Significant quadrant distributions for other amino acids and for termini of the helices were also found.  相似文献   

11.
The sensitivity of bacteriophage T4 lysozyme function to amino acid substitutions at defined positions in and around the longitudinal, hydrophobic strips of 9 alpha-helices was assessed after systematic replacement of each residue in the protein with a series of 13 amino acids. The hydrophobic strips were defined by identifying the longitudinal sectors in the helices with the highest mean residue hydrophobicities. Sensitivity to mutation (the percentage of replacements leading to loss of function) was calculated for each residue in the following positions: whole protein, helices, hydrophobic strips, other positions within the helices, and various positions within the hydrophobic strips as well as their extensions beyond the helices. Substitutions at positions in the hydrophobic strips led more frequently to loss of function than substitutions in the protein as a whole. One subset, the COOH-terminal hydrophobic strip residues, is apparently critical; substitutions of these residues (but not of their NH2-terminal counterparts) led at least as frequently to loss of function as substitutions of solvent-inaccessible residues, and nearly as frequently as substitutions of the most highly conserved residues.  相似文献   

12.
High amphiphilicity is a hallmark of interfacial helices in membrane proteins and membrane-active peptides, such as toxins and antimicrobial peptides. Although there is general agreement that amphiphilicity is important for membrane-interface binding, an unanswered question is its importance relative to simple hydrophobicity-driven partitioning. We have examined this fundamental question using measurements of the interfacial partitioning of a family of 17-residue amidated-acetylated peptides into both neutral and anionic lipid vesicles. Composed only of Ala, Leu, and Gln residues, the amino acid sequences of the peptides were varied to change peptide amphiphilicity without changing total hydrophobicity. We found that peptide helicity in water and interface increased linearly with hydrophobic moment, as did the favorable peptide partitioning free energy. This observation provides simple tools for designing amphipathic helical peptides. Finally, our results show that helical amphiphilicity is far more important for interfacial binding than simple hydrophobicity.  相似文献   

13.
The dermaseptins S are closely related peptides with broad-spectrum antibacterial activity that are produced by the skin of the South American hylid frog, Phyllomedusa sauvagei. These peptides are polycationic (Lys-rich), alpha-helical, and amphipathic, with their polar/charged and apolar amino acids on opposing faces along the long axis of the helix cylinder. The amphipathic alpha-helical structure is believed to enable the peptides to interact with membrane bilayers, leading to permeation and disruption of the target cell. We have identified new members of the dermaseptin S family that do not resemble any of the naturally occurring antimicrobial peptides characterized to date. One of these peptides, designated dermaseptin S9, GLRSKIWLWVLLMIWQESNKFKKM, has a tripartite structure that includes a hydrophobic core sequence encompassing residues 6-15 (mean hydrophobicity, +4.40, determined by the Liu-Deber scale) flanked at both termini by cationic and polar residues. This structure is reminiscent of that of synthetic peptides originally designed as transmembrane mimetic models and that spontaneously become inserted into membranes [Liu, L., and Deber, C. M. (1998) Biopolymers 47, 41-62]. Dermaseptin S9 is a potent antibacterial, acting on gram-positive and gram-negative bacteria. The structure of dermaseptin S9 in aqueous solution and in TFE/water mixtures was analyzed by circular dichroism and two-dimensional NMR spectroscopy combined with molecular dynamics calculations. Dermaseptin S9 is aggregated in water, but a monomeric nonamphipathic alpha-helical conformation, mostly in residues 6-21, is stabilized by the addition of TFE. These results, combined with membrane permeabilization assays and surface plasmon resonance analysis of the peptide binding to zwitterionic and anionic phospholipid bilayers, demonstrate that spatial segregation of hydrophobic and hydrophilic/charged residues on opposing faces along the long axis of a helix is not essential for the antimicrobial activity of cationic alpha-helical peptides.  相似文献   

14.
A peptide derived from apomyoglobin by cyanogen bromide cleavage was found to be an active emulsifier. This molecule, peptide 1-55, has two potential amphipathic alpha-helices and a hydrophilic C-terminal domain. The importance of each of these domains to the emulsifying properties of this molecule was investigated by testing the products of gene constructs based on the sequence of peptide 1-55, but lacking one of the three domains. The emulsifying activity of the peptides lacking either of the alpha-helices was correlated with the hydrophobic moments of their respective helices. The hydrophobic moment is a measure of the amphipathicity of alpha-helices; a hydrophobic moment analysis of other emulsifying peptides supports the hypothesis that a high hydrophobic moment contributes to good emulsifying properties in a molecule which contains alpha-helices.  相似文献   

15.
16.
17.
Synthetic peptides were used in this study to identify a structural element of apolipoprotein (apo) A-I that stimulates cellular cholesterol efflux and stabilizes the ATP binding cassette transporter A1 (ABCA1). Peptides (22-mers) based on helices 1 (amino acids 44-65) and 10 (amino acids 220-241) of apoA-I had high lipid binding affinity but failed to mediate ABCA1-dependent cholesterol efflux, and they lacked the ability to stabilize ABCA1. The addition of helix 9 (amino acids 209-219) to either helix 1 (creates a 1/9 chimera) or 10 (9/10 peptide) endowed cholesterol efflux capability and ABCA1 stabilization activity similar to full-length apoA-I. Adding helix 9 to helix 1 or 10 had only a small effect on lipid binding affinity compared with the 22-mer peptides, indicating that helix length and/or determinants on the polar surface of the amphipathic alpha-helices is important for cholesterol efflux. Cholesterol efflux was specific for the structure created by the 1/9 and 9/10 helical combinations, as 33-mers composed of helices 1 and 3 (1/3), 2/9, and 4/9 failed to mediate cholesterol efflux in an ABCA1-dependent manner. Transposing helices 9 and 10 (10/9 peptide) did not change the class Y structure, hydrophobicity, or amphiphilicity of the helical combination, but the topography of negatively charged amino acids on the polar surface was altered, and the 10/9 peptide neither mediated ABCA1-dependent cholesterol efflux nor stabilized ABCA1 protein. These results suggest that a specific structural element possessing a linear array of acidic residues spanning two apoA-I amphipathic alpha-helices is required to mediate cholesterol efflux and stabilize ABCA1.  相似文献   

18.
Eisenberg's helical hydrophobic moment (less than mu H greater than) algorithm was applied to the analysis of the primary structure of amphipathic alpha-helical peptide hormones and an optimal method for identifying other peptides of this class determined. We quantitate and compare known amphipathic helical peptide hormones with a second group of peptides with proven nonamphipathic properties and determine the best method of distinguishing between them. The respective means of the maximum 11 residue less than mu H greater than for the amphipathic helical and control peptides were 0.46 (+/-/-0.07) and 0.33 (0.07) (P + 0.004). To better reflect the amphipathic potential of the entire peptide, the percent of 11 residue segments in each peptide above a particular less than mu H greater than was plotted vs less than mu H greater than. The resulting curves are referred to as HM-C. The mean HM-C (of the two groups) was highly significantly different such that the HM-C method was superior to others in its ability to distinguish amphipathic from nonamphipathic peptides. Several potential new members of this structural class were identified using this approach. Molecular modeling of a portion of one of these, prolactin inhibitory factor, reveals a strongly amphipathic alpha helix at residues 4-21. This computer-based method may enable rapid identification of peptides of the amphipathic alpha-helix class.  相似文献   

19.
In a previous work, we predicted and demonstrated that the 29-42-residue fragment of beta-amyloid peptide (Abeta peptide) has in vitro capacities close to those of the tilted fragment of viral fusion proteins. We further demonstrated that apolipoprotein E2 and E3 but not apolipoprotein E4 can decrease the fusogenic activity of Abeta(29-42) via a direct interaction. Therefore, we suggested that this fragment is implicated in the neurotoxicity of Abeta and in the protective effects of apolipoprotein E in Alzheimer's disease. Because structurally related apolipoproteins do not interact with the Abeta C-terminal domain but inhibit viral fusion, we suggested that interactions existing between fusogenic peptides and apolipoproteins are selective and responsible for the inhibition of fusion. In this study, we simulated interactions of all amphipathic helices of apolipoproteins E and A-I with Abeta and simian immunodeficiency virus (SIV) fusogenic fragments by molecular modeling. We further calculated cross-interactions that do not inhibit fusion in vitro. The results suggest that interactions of hydrophobic residues are the major event to inhibit the fusogenic capacities of Abeta(29-42) and SIV peptides. Selectivity of those interactions is due to the steric complementarity between bulky hydrophobic residues in the fusogenic fragments and hydrophobic residues in the apolipoprotein C-terminal amphipathic helices.  相似文献   

20.
The interactions of a series of histidine-containing peptides with biological model membranes have been investigated by attenuated total reflection Fourier transform infra red (ATR-FTIR) spectroscopy. Related peptides have previously been shown to exhibit antibiotic and DNA transfection activities. The 26-residue LAH4X4 peptides were designed in such a manner to form amphipathic helical structures in membrane environments. Four histidines and four variable amino acids X constitute one face of the helix whereas leucines and alanines characterize the opposite hydrophobic surface. The dichroic ratio of ATR-FTIR spectra has been used to follow the pH-dependent transition from in-plane to transmembrane alignments upon increase in pH. A theoretical model of the topological modulations is presented and the experimental transition curves analysed in order to reveal the Gibbs free energy of transition. The novel concept provides access to the free energy changes associated with the amino acids X incorporated into an extended alpha-helix and in the context of phospholipid bilayers. For the peptides of the series the Gibbs free energies associated with the transition from the membrane interface to the bilayer interior follow the sequence of amino acids: L相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号