首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asparagine (Asn) deamidation and aspartic acid (Asp) isomerization are spontaneous and common alterations occurring in pharmaceutical protein drugs in solution. Because those reactions may cause functional changes, it is important to identify the product-related substances, especially when biopharmaceuticals are under development. In this study, we used H(2)(18)O to identify Asn deamidation and Asp isomerization sites on a recombinant humanized monoclonal antibody (mAb) by using high-performance liquid chromatography-mass spectrometry (HPLC-MS). This strategy takes advantage of reactions whereby (18)O is incorporated into the protein molecule. The mAb was lyophilized and reconstituted in H(2)O or H(2)(18)O, followed by incubation at 50 degrees C for 1 month. Samples were reduced/carboxymethylated and digested by trypsin and then subjected to HPLC-MS and HPLC-tandem mass spectrometry (MS/MS) analysis. Among all of the peptide fragments analyzed, there were two in which deamidation and/or isomerization was observed. In one peptide fragment, an obvious mass shift ( approximately 3Da) at Asn was observed in the newly produced peptide when the mAb was incubated in H(2)(18)O, whereas it was barely feasible to identify this mass shift in H(2)O. In the other peptide fragment, isomerization of Asp was identified after incubation in H(2)(18)O, although it was impossible to distinguish when using H(2)O. By means of this procedure, identification of deamidation and isomerization sites can be accomplished easily even when they are difficult or impossible to detect by the usual peptide mapping.  相似文献   

2.
The reactions of RO(2)* radicals with Fe(H(2)O)(6)(2+) were studied, R[double bond]H; CH(3); CH(2)COOH; CH(2)CN; CH(2)C(CH(3))(2)OH; CH(2)OH; CHCl(2)/CCl(3). All these processes involve the following reactions: Fe(H(2)O)(6)(2+)+RO(2)*<==>(H(2)O)(5)Fe(III)[bond]OOR(2+) K(1) approximately 250 M(-1); (H(2)O)(5)Fe(III)[bond]OOR(2+)+H(3)O(+)/H(2)O-->Fe(H(2)O)(6)(3+)+ROOH+H(2)O/OH(-); (H(2)O)(5)Fe(III)[bond]OOR(2+)+2Fe(H(2)O)(6)(2+)-->3Fe(H(2)O)(6)(3+)+ROH; 2 RO(2)*-->Products; RO(2)*+(H(2)O)(5)Fe(III)[bond]OOR(2+)-->Fe(H(2)O)(6)(2+)+products. The values of k(1) and k(3) [reaction is clearly not an elementary reaction] approach the ligand exchange rate of Fe(H(2)O)(6)(2+), i.e. these reactions follow an inner sphere mechanism and the rate determining step is the ligand exchange step. The rate of reaction is several orders of magnitude faster than that of the Fenton reaction. Surprisingly enough the K(1) values are nearly independent of the redox potential of the radical and are considerably higher than calculated from the relevant redox potentials. These results indicate that the ROO(-) ligands considerably stabilise the Fe(III) complex, this stabilisation is smaller for radicals with electron withdrawing groups which raise the redox potential of the radical but decrease the basicity of the ROO(-) ligands, two effects which seem to nearly cancel each other. Finally, the results clearly indicate that reaction (5) is relatively fast and affects the nature of the final products. The contribution of these reactions to oxidation processes involving 'Fenton-like' processes is discussed.  相似文献   

3.
Two Cu(II) complexes with cyanoguanidine (cnge) and o-phenanthroline, [Cu(o-phen)(2)(cnge)](NO(3))(2).2H(2)O (1) and [Cu(o-phen)(cnge)(H(2)O)(NO(3))(2)] (2), have been synthesized using different experimental techniques and characterized by elemental analyses, FTIR, diffuse and UV-vis spectra and EPR and magnetic moment measurements techniques. The crystal structures of both complexes were solved by X-ray diffraction methods. Complex (1) crystallizes in the monoclinic space group C2/c with a=12.621(5), b=31.968(3), c=15.39(1)A, beta=111.68(4) degrees, and Z=8 and complex (2) in the monoclinic space group P2(1)/n with a=10.245(1), b=13.923(2), c=12.391(2)A, beta=98.07(1) degrees, and Z=4. The environments of the copper(II) center are trigonal bipyramidal (TBP) for [Cu(o-phen)(2)(cnge)](2+) and an elongated octahedron for [Cu(o-phen)(cnge)(H(2)O)(NO(3))(2)]. Solution studies have been performed to determine the species distribution. The superoxide dismutase (SOD) activities of both complexes have also been tested in order to determine if these compounds mimic the enzymatic action of the enzyme SOD that protects cells against peroxide radicals.  相似文献   

4.
The reaction of Re(CO)(3)(H(2)O)(3)(+) with hen egg white lysozyme in aqueous solution results in a single covalent adduct. Both NMR spectroscopy and single crystal X-ray diffraction show that the rhenium tricarbonyl cation binds to His15 via replacement of one of the coordinated water molecules. The formation of this adduct does not greatly affect the structure of the protein.  相似文献   

5.
DNA stable isotope probing (DNA-SIP) with H(2)(18)O was used to identify a toluene-degrading bacterium in soil amended with 48 ppm toluene. After quantification of toluene degradation rates in soil, DNA was extracted from soil incubated with H(2)(18)O, H(2)(16)O, H(2)(16)O and 48 ppm toluene, or H(2)(18)O and 48 ppm toluene. A single DNA band formed along a cesium chloride gradient after isopycnic centrifugation of extracts from soils incubated with H(2)(16)O. With extracts from soils to which only H(2)(18)O was added, two distinct DNA bands formed, while three bands formed when DNA extracted from soil incubated with both H(2)(18)O and toluene was analyzed. We suggest that this third band formed because toluene does not contain any oxygen atoms and toluene-degrading organisms had to transfer oxygen atoms from H(2)(18)O into metabolic intermediates to form nucleic acids de novo. We extracted the third DNA band and amplified a large fraction of the bacterial 16S rRNA gene. Direct sequencing of the PCR product obtained from the labeled DNA, as well as cloned 16S rRNA amplicons, identified a known toluene degrader, Rhodococcus jostii RHA1. A toluene-degrading bacterial strain was subsequently isolated from soil and shown to be Rhodococcus jostii RHA1. Finally, quantitative real-time PCR analysis showed that the abundance of the 16S rRNA gene of Rhodococcus jostii RHA1 increased in soil after toluene exposure but not in soils from which toluene was withheld. This study indicates that H(2)(18)O DNA-SIP can be a useful method for identifying pollutant-degrading bacteria in soil.  相似文献   

6.
This is a study of the effect of total and partial deuteration of solvent on critical temperatures and profiles of all four reactions occurring in poly(A) x n poly(U) (n = 1 or 2) aqueous systems. The study was done at observational times not longer than hydrogen exchange times at base pairs in helically ordered structures, and it was extended to a wide range of salt concentrations at neutral pH. The dependence of stability of polymer helical order on hydrogen mass does not appear to be merely attributable to the stronger intrahelical deuterium bonding. Substituting Deuterium for Hydrogen implies a probably predominant modulation of the entrophy term of polymer-solvent interactions. Effects of deuteration on the width of the 2(poly(A) x poly (U)) leads to poly(A) x 2poly(U)+poly(A) interconversion reaction were also observed. They bear on the role of polymer-solvent interaction on pattern recognition leading to formation of ordered structures. They also bear on the role of the same interaction on the "breathing" of ordered structures of this type.  相似文献   

7.
A spectroscopic method employing pulsed dye laser instrumentation is described for the determination of the 1H2O/2H2O composition of aqueous solutions by the measurement of reciprocal excited state lifetimes of EuEDTA-. The reciprocal lifetimes, gamma-1, of the 1H2O/2H2O mixtures increase linearly with the mole fraction of 1H2O. For EuEDTA- the relationship between gamma-1 and the mole fraction, chi H, of 1H2O in 1H2O/2H2O mixtures is expressed by the equation chi H = 0.37 gamma-1-0.152, with a sensitivity in chi H of +/- 0.02. The reciprocal lifetimes are independent of pH in the range 5.1 to 10.5, changes in ionic strength, and the type of buffer used in EuEDTA- containing solutions.  相似文献   

8.
An overview of structurally characterized alpha-hydroxycarboxylatodioxo- and alpha-hydroxycarboxylatooxoperoxovanadates(V) is presented and the geometric parameters of the V2O2 bridging core are discussed. The first case of a stereospecific formation of oxoperoxovanadates(V) is reported: The crystal structures of the isomeric compounds (NBu4)2[V2O2(O2)2(L-lact)2] x 2H2O and (NBu4)2[V2O2(O2)2(D-lact)(L-lact)] x 2H2O (lact = C3H4O3(2-), the anion of the lactic acid) differ mainly in the arrangement of the V2O2 core and in mutual orientation of the V=O bonds. The complexes with achiral ligands adopt the same structural type as the complexes formed from a racemic mixture of a chiral ligand, while the structure obtained using an enantiopure L,L-hydroxycarboxylate is different.  相似文献   

9.
10.
Using vanadate, poly(1H-pyrazol-1-yl)borate and pyrazole as starting materials, two new neutral peroxovanadium(V) complexes with poly(1H-pyrazol-1-yl)borate, VO(O(2))(pzH)(HB(pz)(3))(1) and VO(O(2))(pzH)(B(pz)(4))(2), were synthesized successfully. Both complexes were characterized by elemental analysis, IR, UV-vis and NMR spectra. And the structure of complex 1 was determined by X-ray diffraction, which is somewhat relevant for haloperoxidase enzymes. Cytotoxic effects also are discussed on 3T3 cell proliferation. In the concentration range (0.1-100mumol), both complexes have an inhibiting cellular proliferation effect. When the cells cultivated with the complexes at high dose, the toxicity effect of both complexes is more and more predominant.  相似文献   

11.
Nitric oxide (NO) has been shown to both enhance hydrogen peroxide (H(2)O(2)) toxicity and protect cells against H(2)O(2) toxicity. In order to resolve this apparent contradiction, we here studied the effects of NO on H(2)O(2) toxicity in cultured liver endothelial cells over a wide range of NO and H(2)O(2) concentrations. NO was generated by spermine NONOate (SpNO, 0.001-1 mM), H(2)O(2) was generated continuously by glucose/glucose oxidase (GOD, 20-300 U/l), or added as a bolus (200 microM). SpNO concentrations between 0.01 and 0.1 mM provided protection against H(2)O(2)-induced cell death. SpNO concentrations >0.1 mM were injurious with low H(2)O(2) concentrations, but protective at high H(2)O(2) concentrations. Protection appeared to be mainly due to inhibition of lipid peroxidation, for which SpNO concentrations as low as 0.01 mM were sufficient. SpNO in high concentration (1 mM) consistently raised H(2)O(2) steady-state levels in line with inhibition of H(2)O(2) degradation. Thus, the overall effect of NO on H(2)O(2) toxicity can be switched within the same cellular model, with protection being predominant at low NO and high H(2)O(2) levels and enhancement being predominant with high NO and low H(2)O(2) levels.  相似文献   

12.
The reaction of chromium(III) chloride, salicylic acid (SA) and ethylenediamine (en) led to the formation of chromium complex [Cr(SA)(en)(2)]Clx2H(2)O(1). The crystal structure belongs to monoclinic system with the space group P2(1), R(1)=0.0358. In this compound, Cr(III) atom is six-coordinated in octahedral coordination geometry by one phenolic hydroxyl oxygen, one carboxylate oxygen from the salicylic acid and four nitrogen atoms from two ethylenediamine molecules, respectively. The transfer manners of Cr(III) from the title compound to the low-molecular-mass chelator, ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA) and the iron-binding protein apoovotransferrin (apoOTf) were followed by a combination of UV-visible (UV-Vis) and fluorescence spectra in 0.01M Hepes at pH 7.4. The results show that Cr(III) can be transferred from the complex to apoovotransferrin with the retention of the salicylate acted as a synergistic anion.  相似文献   

13.
Intracellular proteins are in a state of flux, continually being degraded into amino acids and resynthesized into new proteins. The rate of this biochemical recycling process varies across proteins and is emerging as an important consideration in drug discovery and development. Here, we developed a triple-stage quadrupole mass spectrometry assay based on product ion measurements at unit resolution and H(2)(18)O stable tracer incorporation to measure relative protein synthesis rates. As proof of concept, we selected to measure the relative in vivo synthesis rate of ApoB100, an apolipoprotein where elevated levels are associated with an increased risk of coronary heart disease, in plasma-isolated very low density lipoprotein (VLDL) and low density lipoprotein (LDL) in a mouse in vivo model. In addition, serial time points were acquired to measure the relative in vivo synthesis rate of mouse LDL ApoB100 in response to vehicle, microsomal triacylglycerol transfer protein (MTP) inhibitor, and site-1 protease inhibitor, two potential therapeutic targets to reduce plasma ApoB100 levels at 2 and 6 h post-tracer-injection. The combination of H(2)(18)O tracer with the triple quadrupole mass spectrometry platform creates an assay that is relatively quick and inexpensive to transfer across different biological model systems, serving as an ideal rapid screening tool for relative protein synthesis in response to treatment.  相似文献   

14.
Factors affecting struvite (MgNH4PO4.6H2O) crystallization in feline urine   总被引:2,自引:0,他引:2  
Factors affecting struvite, a magnesium-ammonium-phosphate complex (MgNH(4)PO(4).6H(2)O), in feline urine were evaluated. Incubation of just "urine mineral (UM)" solution, in which mineral concentrations are compatible with those in feline urine, for 4 h at 37 degrees C did not induce the formation of crystals. Similarly, incubation of urine alone did not produce crystals. However, struvite crystals were formed by the addition of urine to UM solution. Mg, NH(3) and P were all required for urine-induced struvite crystallization. The lower molecular weight (LMW) fraction of urine was essential for struvite crystal formation, and the higher molecular weight (HMW) fraction enhanced formation of LMW-induced struvite crystals. The effects of urine proteins further fractionated by column chromatography were examined. A protein at >250 kDa and cauxin, a major urine protein recently identified as a regulator of felinine production, potentiated struvite crystal formation induced by the LMW fraction. In contrast, Tamm-Horsfall glycoprotein, a urine protein thought to promote struvite crystallization, did not have this activity. The present study reveals a novel mechanism of feline struvite crystallization.  相似文献   

15.
Toxic reactive oxygen species (ROS) such as hydrogen peroxide, nitric oxide, superoxide, and the hydroxyl radical are generated in a variety of neuropathological conditions and cause significant DNA damage. We determined the effects of 3-aminobenzamide (AB), an inhibitor of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP), on cell death in differentiated PC12 cells, a model of sympathetic neurons, after H(2) O(2) injury. Exposure to 0.5 mm H(2) O(2) resulted in a significant decrease in intracellular NAD(H), NADP(H), and ATP levels. This injury resulted in the death of 90% of the cells with significant necrosis early (2 h) after injury and increased apoptosis (12-24 h after injury), as measured by PS exposure and the presence of cytoplasmic oligonucleosomal fragments. Treatment with 2.5 mm AB restored pyridine nucleotide and ATP levels and ameliorated cell death (65% versus 90%) by decreasing the extent of both necrosis and apoptosis. Interestingly, we observed that H(2) O(2) -induced injury caused a delayed cell death exhibiting features of apoptosis but in which caspase-3 like activity was absent. Moreover, pretreatment with AB restored caspase-3-like activity. Our results suggest that apoptosis and necrosis are both triggered by PARP overactivation, and that maintenance of cellular energy levels after injury by inhibiting PARP shifts cell death from necrosis to apoptosis.  相似文献   

16.
We investigated how salicylic acid (SA) enhances H2O2 and the relative significance of SA-enhanced H2O2 in Arabidopsis thaliana. SA treatments enhanced H2O2 production, lipid peroxidation, and oxidative damage to proteins, and resulted in the formation of chlorophyll and carotene isomers. SA-enhanced H2O2 levels were related to increased activities of Cu,Zn-superoxide dismutase and were independent of changes in catalase and ascorbate peroxidase activities. Prolonging SA treatments inactivated catalase and ascorbate peroxidase and resulted in phytotoxic symptoms, suggesting that inactivation of H2O2-degrading enzymes serves as an indicator of hypersensitive cell death. Treatment of leaves with H2O2 alone failed to invoke SA-mediated events. Although leaves treated with H2O2 accumulated in vivo H2O2 by 2-fold compared with leaves treated with SA, the damage to membranes and proteins was significantly less, indicating that SA can cause greater damage than H2O2. However, pretreatment of leaves with dimethylthiourea, a trap for H2O2, reduced SA-induced lipid peroxidation, indicating that SA requires H2O2 to initiate oxidative damage. The relative significance of the interaction among SA, H2O2, and H2O2-metabolizing enzymes with oxidative damage and cell death is discussed.  相似文献   

17.
The ternary complex [Cu(5′-IMP)(dpa)(H2O)]2 has been prepared and its structure analyzed by x-ray diffraction. It has a dimeric structure in which the 5′-IMP ligands coordinate solely through their phosphate groups. This geometry is in marked contrast to that of another Cu5′-IMP ternary complex, [Cu(5′-IMPH)(bipy)(H2O)2]+, which shows metal binding through the purine base rather than the phosphate group.  相似文献   

18.
L-Histidine (L-His) enhances the clastogenic effects of hydrogen peroxide (H(2)O(2)). We previously suggested the involvement of active transport in the efficient influx of an L-His--H(2)O(2) adduct into cells (Oya-Ohta et al. [1]). In this study, we detected intracellular H(2)O(2) by monitoring formation of 2',7'-dichlorofluorescein (DCF) from its precursor. More fluoroproduct accumulated dose-dependently in cells treated with a mixture of L-His and H(2)O(2) (mixture) than with H(2)O(2) alone. This observation supports our hypothesis that active transport is involved in the enhanced incorporation of H(2)O(2) into cells. Moreover, both mixture and the L-His--H(2)O(2) adduct were less active in the generation of hydroxyl radicals (*OH) upon addition of FeCl(2) than was H(2)O(2) alone in a cell-free system. This result suggests that the Fenton reaction might occur more effectively around the nucleus in cells. An immunohistochemical assay using 8-oxodG-specific monoclonal antibodies did not reveal whether the accumulation of H(2)O(2) generates 8-oxodeoxyguanosine (8-oxodG). No 8-oxodG was evident in cells treated with mixture or with H(2)O(2) alone, or even in cells treated with H(2)O(2) at high doses up to 20 mM and, in some cases, pre-treated with catalase inhibitors. It appears, therefore, that *OH and, specifically, *OH derived from intracellular Fenton reactions, might not play a role in the formation of 8-oxodG. However, exposure to UV-C of cells treated with H(2)O(2) yielded more 8-oxodG in the presence of L-His than in the absence of L-His. Thus, the previously observed enhancing effects of L-His were also noted during the induction of formation of 8-oxodG by UV-C plus H(2)O(2). The formation of 8-oxodG in response to UV-C alone was very limited and, hence, H(2)O(2) seemed to be an effective source of *OH only in the presence of UV-C. It is suggested that the *OH that induces formation of 8-oxodG is not *OH formed via intracellular Fenton reactions but is *OH formed via the dissociation of H(2)O(2) under UV-C.  相似文献   

19.
During autoxidation of the pentachlorophenol (PCP) metabolite tetrachlorohydroquinone (TCHQ) the semiquinone is formed as well as reactive oxygen species (ROS). It was examined if *OH or the semiquinone are the cause of TCHQ-induced genotoxicity by direct comparison of TCHQ- and H(2)O(2)-induced DNA damage in human cells. All endpoints tested (DNA damage, DNA repair, and mutagenicity) revealed a greater genotoxic potential for TCHQ than for H(2)O(2). In the comet assay, TCHQ induced DNA damage at lower concentrations than H(2)O(2). The damaging rate by TCHQ (tail moment (tm)/concentration) was 10-fold greater than by H(2)O(2). DNA repair was lower for TCHQ than for H(2)O(2) treatment. This was shown by measuring DNA repair in the unscheduled DNA synthesis (UDS) assay and the persistence of the DNA damage in the comet assay. In contrast to H(2)O(2), TCHQ in non-toxic concentrations was mutagenic in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus of V79 cells. Finally, there were also differences observed in cytotoxicity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay) of TCHQ and H(2)O(2). Whereas the TCHQ cytotoxicity was enhanced during a 21h recovery phase, the H(2)O(2) cytotoxicity did not change. The results demonstrated that the pronounced genotoxic properties of TCHQ in human cells were not caused by *OH radicals but more likely by the tetrachlorosemiquinone (TCSQ) radical.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号