首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Location of epitopes on Campylobacter jejuni flagella.   总被引:18,自引:9,他引:9       下载免费PDF全文
Flagella were isolated from strains of Campylobacter jejuni belonging to different heat-labile serogroups and from a strain of Campylobacter fetus, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the flagellin molecular weights (Mr) were approximately 62,000. The flagellins were cleaved by hydrolysis with cyanogen bromide, and sodium dodecyl sulfate-urea peptide gel electrophoresis showed that the C. jejuni flagellins were structurally similar, and differed from C. fetus flagellin. Immunochemical analysis by Western blotting, enzyme-linked immunosorbent assay, immune electron microscopy, and immunoprecipitation with polyclonal and monoclonal antibodies revealed the presence of both internal and surface-exposed epitopes. The internal epitopes were antigenically cross-reactive and linear, and in the case of C. jejuni flagellin were located on cyanogen bromide peptides of apparent Mr 22,400 and 11,000. Antigenically cross-reactive epitopes were also present on an Mr 43,000 cyanogen bromide peptide of C. fetus flagellin. The Mr 22,400 peptide of C. jejuni VC74 flagellin also carried closely positioned internal linear epitopes for two monoclonal antibodies. One epitope was strain specific, while the other was shared by some but not all Campylobacter flagellins. The flagella of C. jejuni VC74 also displayed both surface-exposed antigenically cross-reactive and surface-exposed serospecific epitopes. Both linear and conformational epitopes contributed to the serospecificity of C. jejuni VC74 flagella, and a linear serospecific epitope was located on a cyanogen bromide peptide of apparent Mr 4,000.  相似文献   

2.
The outer membrane proteins of five clinical isolates of Campylobacter jejuni were identified by 125I-surface labelling and SDS-PAGE of outer membrane preparations. All isolates expressed a major outer membrane protein of variable molecular weight (43 000-46 000: 43K-46K). Several constant surface proteins were also identified including a 27K protein which was surface-exposed and acid-extractable but was not present in the outer membrane preparations. Isolated flagella comprised a major 62K protein and a minor 87K protein. Both proteins were absent in an aflagellate variant. The 62K protein was immunoblotted and immunoprecipitated by rabbit anti-flagella antisera.  相似文献   

3.
Campylobacter jejuni and Campylobacter coli are the most common bacterial cause for acute diarrheal illnesses in developed countries. The aim of this study was to evaluate the antigenic properties of Campylobacterjejuni and Campylobacter coli proteins in western-blot assay. Whole-cell components of Campulobacter jejuni and Campylobacter coli were separated by sodium dodecyl sulfate-polyacrylamide gel electroforesis. Using this method we detected in all seven C. jejuni strains 21 peptides migrating between 180-29 kDa. All three Ccoli strains had a 17 bands migrating with the same molecular weight range. Proteins were transferred electrophoretically to nitrocellulose paper for immunoblotting experiments. The 74 kDa protein reacted strongly in all classes ofimmmunoglobulin with all tested human serum samples. We observed that this protein reacted also with human immunoglobulins for Salmonella and Yersinia sp. This cross-reaction observed for this protein could give false positive results in routine diagnosis of C. jejuni infections. The proteins with molecular weight of: 92, 62, 56, 52, 45-43, 29 kDa were most recognized in the 20 human serum samples. The other proteins of Cljejuni and C. coli, particularly in the 68-50 kDa and 45-31 kDa regions, were recognized occasionally and the response to these in reconvalescent sera was usually weak. The result of this study showed that the proteins with molecular weight: 92, 62, 56, 52, 45-43 and 29 kDa can be use in routine serological diagnostic of campylobacteriosis.  相似文献   

4.
Campylobacter jejuni, an important cause of human gastrointestinal infection, is a major food-borne pathogen in the United States and worldwide. Since poultry becomes colonized and/or contaminated during the early stages of production and is a major food-borne source for this organism, we studied the role of C. jejuni flagella on the ability of the bacterium to colonize the chicken gastrointestinal tract. Three-day-old chicks were orally challenged with a motile wild-type strain of C. jejuni IN9 or with flagellar mutants created from IN9 by disrupting the flagellin genes with a kanamycin resistance cassette by using shuttle mutagenesis (A. Labigne-Roussel, P. Courcoux, and L. Tompkins, J. Bacteriol. 170:1704-1708, 1988). One mutant, IN9-N3, lacked flagella and was nonmotile. The other, IN9-N7, produced a truncated flagellum and was partially motile. Three-day-old chicks were orally challenged with different doses of the wild-type strain and the two mutants. At challenge doses ranging from 3.0 x 10(4) to 6.6 x 10(8) CFU per chick, only the fully motile, wild-type strain colonized the chick ceca. Our results show that intact and motile flagella are important colonization factors for C. jejuni in chicks.  相似文献   

5.
6.
7.
Evidence from developing countries and volunteer studies indicates that immunity to Campylobacter jejuni and Campylobacter coli may be acquired, but the antigenic basis for this protection is poorly defined. We have purified to homogeneity four proteins with molecular weights of 28,000 (PEB1), 29,000 (PEB2), 30,000 (PEB3), and 31,000 (PEB4) from epidemic C. jejuni strain 81-176 using acid extraction and sequential ion-exchange, hydrophobic interaction, and gel filtration chromatography. The relative amino acid compositions of these four proteins are similar. NH2-terminal sequence analysis indicates that all four proteins are different, although the first 35 amino acids of PEB2 and PEB3 are 51.4% homologous. Isoelectric focusing showed that all four are basic proteins with pI of 8.5 for PEB1 protein and greater than 9.3 for the others. Use of the purified proteins as antigens in an IgG enzyme-linked immunosorbent assay (ELISA) found that seroconversion to the PEB1 or PEB3 proteins occurred in 15 of 19 patients with sporadic C. jejuni or C. coli infection. In comparison, only two, six, and 14 of these patients seroconverted to PEB2, PEB4, or the acid extract antigen. In an ELISA with whole bacterial cells as antigens, antiserum to the acid-extracted antigens showed broad recognition of C. jejuni, C. coli, C. fetus, C. lari, and Helicobacter pylori. Antiserum to PEB1 recognized all 35 C. jejuni and all 15 C. coli strains but none of the isolates of the other three bacterial species. The PEB1 and PEB3 proteins appear to be candidate antigens for both a Campylobacter vaccine and for serological assays for the pathogen.  相似文献   

8.
Campylobacter jejuni   总被引:3,自引:0,他引:3  
This review describes characteristics of the family Campylobacteraceae and traits of Campylobacter jejuni. The review then focuses on the worldwide problem of C. jejuni antimicrobial resistance and mechanisms of pathogenesis and virulence. Unravelling these areas will help with the development of new therapeutic agents and ultimately decrease illness caused by this important human pathogen.  相似文献   

9.
Conformational analysis of the Campylobacter jejuni porin.   总被引:1,自引:0,他引:1       下载免费PDF全文
The major outer membrane protein (MOMP) of Campylobacter jejuni was purified to homogeneity by selective solubilization and fast protein liquid chromatography. The amino acid composition of the MOMP indicates the presence of cysteine residues. The amino-terminal sequence, determined over 31 residues, shows no significant homology with any other porin from gram-negative bacteria except in a discrete region. Immunocross-reactivity between Escherichia coli OmpC and the MOMP was analyzed, and a common antigenic site between these two porins was identified with an anti-peptide antibody. From circular dichroism and immunological investigations, the existence of a stable folded monomer, containing a high level of beta-sheet secondary structure, is evident. Conformational analyses show the presence of a native trimeric state generated by association of the three folded monomers; the stability of this trimer is reduced compared with that of E. coli porins. This study clearly reveals that the C. jejuni MOMP is related to the family of trimeric bacterial porins.  相似文献   

10.
The global significance of Campylobacter jejuni and Campylobacter coli as gastrointestinal human pathogens has motivated numerous studies to characterize their population biology and evolution. These bacteria are a common component of the intestinal microbiota of numerous bird and mammal species and cause disease in humans, typically via consumption of contaminated meat products, especially poultry meat. Sequence-based molecular typing methods, such as multilocus sequence typing (MLST) and whole genome sequencing (WGS), have been instructive for understanding the epidemiology and evolution of these bacteria and how phenotypic variation relates to the high degree of genetic structuring in C. coli and C. jejuni populations. Here, we describe aspects of the relatively short history of coevolution between humans and pathogenic Campylobacter, by reviewing research investigating how mutation and lateral or horizontal gene transfer (LGT or HGT, respectively) interact to create the observed population structure. These genetic changes occur in a complex fitness landscape with divergent ecologies, including multiple host species, which can lead to rapid adaptation, for example, through frame-shift mutations that alter gene expression or the acquisition of novel genetic elements by HGT. Recombination is a particularly strong evolutionary force in Campylobacter, leading to the emergence of new lineages and even large-scale genome-wide interspecies introgression between C. jejuni and C. coli. The increasing availability of large genome datasets is enhancing understanding of Campylobacter evolution through the application of methods, such as genome-wide association studies, but MLST-derived clonal complex designations remain a useful method for describing population structure.Campylobacter jejuni and Campylobacter coli remain among the most common causes of human bacterial gastroenteritis worldwide (Friedman et al. 2000). In high-income countries, Campylobacteriosis is much more common than gastroenteritis caused by Escherichia coli, Listeria, and Salmonella, and accounts for an estimated 2.5 million annual cases of gastrointestinal disease in the United States alone (Kessel et al. 2001). Infection with these bacteria is also a major cause of morbidity and mortality in low- and middle-income countries, although it is almost certainly underreported in these settings, especially as culture confirmation remains challenging. Poor understanding of the transmission of these food-borne pathogens to humans in all income settings has contributed to the failure of public health systems to adequately address this problem. As a consequence, over the past 20 years, much investment has been directed at understanding how these bacteria are transmitted from reservoir hosts to humans through the food chain.Although the disease was first recognized by Theodor Escherich in 1886, who described the symptoms of intestinal Campylobacter infections in children as “cholera infantum” (Samie et al. 2007) or “summer complaint” (Condran and Murphy 2008), difficulties in the culture and characterization of these organisms precluded their recognition as major causes of disease until the 1970s. Campylobacteriosis is usually nonfatal and self-limiting; however, the symptoms of diarrhea, fever, abdominal pain, and nausea can be severe (Allos 2001), and sequelae, including Guillain–Barre syndrome and reactive arthritis, can have serious long-term consequences. Subsequently, recognition of the very high disease burden of human Campylobacter infection stimulated research on these bacteria and their relatives. Since the 1970s, C. coli and C. jejuni have been isolated from a wide range of wild and domesticated bird and mammal species, in which, typically, they are thought to cause few if any disease symptoms. Humans are usually infected by the consumption of contaminated food (especially poultry meat), water, milk, or contact with animals or animal feces (Niemann et al. 2003).Most of what is known about these species comes from isolates obtained from humans with disease, the food chain, and the agricultural environment. It is, however, important to note that such isolates are by no means representative of natural Campylobacter populations, and it is becoming increasingly apparent that much of the diversity present among the Campylobacters is in strains that colonize wild animals. Increasing numbers of novel genotypes are being found as Campylobacter populations are analyzed in different animal species, especially wild birds (Carter et al. 2009; French et al. 2009); these populations undoubtedly contain many as-yet-undescribed lineages. Most human disease isolates from cases of gastroenteritis in countries, such as the United Kingdom and the United States, are C. jejuni, which typically accounts for 90% of cases in these settings, with the remaining ∼10% of cases mostly caused by C. coli. The majority of the genotypes isolated from human disease have also been isolated as commensal gastrointestinal inhabitants of domesticated and, especially, food animals. Furthermore, clinical isolates are a nonrandom subset of these strains. Asymptomatic carriage of C. jejuni and C. coli is thought to be rare in humans, especially among people in industrialized countries, suggesting that humans are not a primary host for these organisms in these settings and that people are sporadically, and frequently pathologically, infected via the food chain from animal reservoir hosts.An understanding of the relatively short history of coevolution between humans and pathogenic Campylobacters can be obtained by examining their population structure and ecology. This approach has formed the basis of many recent investigations of the cryptic epidemiology of these organisms (Lang et al. 2010; Müllner et al. 2010; Thakur et al. 2010; Hastings et al. 2011; Jorgensen et al. 2011; Kittl et al. 2011; Magnússon et al. 2011; Sheppard et al. 2011a,b; Sproston et al. 2011; Read et al. 2013) and will be the focus of this review. Such studies have included molecular epidemiological and evolutionary analyses and, in the past 15 years or so, the application of high-throughput DNA sequencing technologies of increasing capacity has enhanced the integration of these two areas of investigation to their mutual benefit.  相似文献   

11.
From plate cultures of Campylobacter jejuni grown in room air a particulate protein of 62 kDa was isolated by ion-exchange chromatography. The protein had a square shape from the side view but when viewed from the top it had a star-shaped structure. The molecular size of the whole particle determined by gel filtration was 850 kDa which suggested the presence of 14 subunits of 62 kDa in each particle. The N-terminal 37 amino residues showed more than 80% homology with the sequence of these heat shock protein (HSP) 60 homologs of Chlamydia trachomatis, Helicobacter pylori, and Escherichia coli (GroEL). This protein is immunologically cross-reactive with the antiserum for the 60-kDa HSP of Yersinia enterocolitica. Production of the 62-kDa protein increased under heat stress and growth in an aerobic atmospheric environment. From these observations we concluded that the 62-kDa protein is a Campylobacter stress protein (Cj62) which belongs to the HSP 60 family.  相似文献   

12.
13.
An attempt was made to elucidate in Campylobacter spp. some of the physiologic characteristics that are reflected in the kinetics of CO2 formation from four 14C-labeled substrates. Campylobacter jejuni and C. coli were grown in a biphasic medium, and highly motile spiral cells were harvested at 12 h. Of the media evaluated for use in the metabolic tests, minimal essential medium without glutamine, diluted with an equal volume of potassium sodium phosphate buffer (pH 7.2), provided the greatest stability and least competition with the substrates to be tested. The cells were incubated with 0.02 M glutamate, glutamine, alpha-ketoglutarate, or formate, or with concentrations of these substrates ranging from 0.0032 to 0.125 M. All four substrates were metabolized very rapidly by both species. A feature of many of these reactions, particularly obvious with alpha-ketoglutarate, was an immediate burst of CO2 production followed by CO2 evolution at a more moderate rate. These diphasic kinetics of substrate utilization were not seen in comparable experiments with Escherichia coli grown and tested under identical conditions. With C. jejuni, CO2 production from formate proceeded rapidly for the entire period of incubation. The rate of metabolism of glutamate, glutamine, and alpha-ketoglutarate by both species was greatly enhanced by increased substrate concentration. The approach to the study of the metabolism of campylobacters here described may be useful in detecting subtle changes in the physiology of cells as they are maintained past their logarithmic growth phase.  相似文献   

14.
空肠弯曲菌(Campylobacter jejuni)是最常见的食源性病原菌之一。本研究采用微量肉汤稀释法对分离得到的139株空肠弯曲菌(117株为禽源样本分离株,22株为人源样本分离株)进行耐药性检测。通过对最小抑菌浓度(MIC)的判定结果得出:120株(86. 33%)空肠弯曲菌分离株对6类9组临床常用的抗生素表现出不同程度的耐药,其中禽源空肠弯曲菌耐药率为83. 76%,22株人源空肠弯曲菌均表现出耐药性。对喹诺酮类抗生素表现出高度耐药(环丙沙星80. 58%,萘啶酸77. 70%);对四环素类表现为中等耐药(四环素53. 24%);对部分大环内酯类、氨基糖苷类、林可酰胺类表现为低耐药(庆大霉素7. 19%,阿奇霉素5. 76%,克林霉素6. 47%);对酰胺醇类、部分大环内酯类表现为敏感(氟苯尼考0%,红霉素0%、泰利霉素0%)。139株空肠弯曲菌共产生14种耐药谱型,以TET-CIP-NAL谱型最多,占比38. 13%,耐三重及以上抗生素的多重耐药菌株占比53. 24%。禽源菌株中多重耐药占比46. 15%,人源菌株中多重耐药占比90. 91%。研究结果显示空肠弯曲菌耐药现状不容乐观,尤其对喹诺酮类与四环素类抗生素耐药性较为突出,且过半数菌株为多重耐药。本研究为食源性空肠弯曲菌的防控及临床用药提供参考。  相似文献   

15.
Genome maps of Campylobacter jejuni and Campylobacter coli.   总被引:1,自引:0,他引:1       下载免费PDF全文
D E Taylor  M Eaton  W Yan    N Chang 《Journal of bacteriology》1992,174(7):2332-2337
Little information concerning the genome of either Campylobacter jejuni or Campylobacter coli is available. Therefore, we constructed genomic maps of C. jejuni UA580 and C. coli UA417 by using pulsed-field gel electrophoresis. The genome sizes of C. jejuni and C. coli strains are approximately 1.7 Mb, as determined by SalI and SmaI digestion (N. Chang and D. E. Taylor, J. Bacteriol. 172:5211-5217, 1990). The genomes of both species are represented by single circular DNA molecules, and maps were constructed by partial restriction digestion and hybridization of DNA fragments extracted from low-melting-point agarose gels. Homologous DNA probes, encoding the flaAB and 16S rRNA genes, as well as heterologous DNA probes from Escherichia coli, Bacillus subtilis, and Haemophilus influenzae, were used to identify the locations of particular genes. C. jejuni and C. coli contain three copies of the 16S and 23S rRNA genes. However, they are not located together within an operon but show a distinct split in at least two of their three copies. The positions of various housekeeping genes in both C. jejuni UA580 and C. coli UA417 have been determined, and there appears to be some conservation of gene arrangement between the two species.  相似文献   

16.
Antigenic variation of Campylobacter flagella.   总被引:33,自引:14,他引:19       下载免费PDF全文
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of flagella dissociated from strains of Campylobacter coli and Campylobacter jejuni belonging to the heat-labile serogroup LIO 8 showed that some strains were capable of producing flagellin subunits of two different molecular weights (MrS), 59,500 and 61,500. Immunoelectron microscopy of cultures of the type strain of this serogroup, C. coli VC167, showed the presence of two flagellum filaments of different antigenic specificity. Epitopes on the surface of one of these flagella bound antibodies in LIO 8 typing antiserum, and Western blotting (immunoblotting) and immunoprecipitation showed that the flagellum was composed of flagellin of Mr 61,500. The other flagellum antigenic type did not bind LIO 8 antibodies but did possess serospecific epitopes which bound a second polyclonal antiserum, LAH2. This second antigenic flagellum type was composed of the Mr 59,500 flagellin. Cells producing either of the flagellum antigenic types serotyped as LIO 8, indicating that flagella composed of the Mr 61,500 flagellin do not carry the serological determinants for this serogroup. The ability of C. coli VC167 to produce these flagella of different subunit MrS was shown to represent a bidirectional antigenic variation. When measured in culture medium, the phase 1-to-phase 2 transition occurred at a rate of approximately 2.0 x 10(-5) per cell per generation, and the phase 2-to-phase 1 transition occurred at a rate of 1.2 x 10(-6) per cell per generation.  相似文献   

17.
Microbial cell surface glycans in the form of glycolipids and glycoproteins frequently play important roles in cell-cell interaction and host immune responses. Given the likely importance of these surface structures in the survival and pathogenesis of Campylobacter jejuni, a concerted effort has been made to characterise these determinants genetically and structurally since the genome was sequenced in 2000. We review the considerable progress made in characterising the Campylobacter glycome including the lipooligosaccharide (LOS), the capsule and O- and N-linked protein glycosylation systems, and speculate on the roles played by glycan surface structures in the life-cycle of C. jejuni.  相似文献   

18.
An attempt was made to elucidate in Campylobacter spp. some of the physiologic characteristics that are reflected in the kinetics of CO2 formation from four 14C-labeled substrates. Campylobacter jejuni and C. coli were grown in a biphasic medium, and highly motile spiral cells were harvested at 12 h. Of the media evaluated for use in the metabolic tests, minimal essential medium without glutamine, diluted with an equal volume of potassium sodium phosphate buffer (pH 7.2), provided the greatest stability and least competition with the substrates to be tested. The cells were incubated with 0.02 M glutamate, glutamine, alpha-ketoglutarate, or formate, or with concentrations of these substrates ranging from 0.0032 to 0.125 M. All four substrates were metabolized very rapidly by both species. A feature of many of these reactions, particularly obvious with alpha-ketoglutarate, was an immediate burst of CO2 production followed by CO2 evolution at a more moderate rate. These diphasic kinetics of substrate utilization were not seen in comparable experiments with Escherichia coli grown and tested under identical conditions. With C. jejuni, CO2 production from formate proceeded rapidly for the entire period of incubation. The rate of metabolism of glutamate, glutamine, and alpha-ketoglutarate by both species was greatly enhanced by increased substrate concentration. The approach to the study of the metabolism of campylobacters here described may be useful in detecting subtle changes in the physiology of cells as they are maintained past their logarithmic growth phase.  相似文献   

19.
The location and abundance of Campylobacter jejuni and Campylobacter lanienae in the intestines of beef cattle were investigated using real-time quantitative PCR in two studies. In an initial study, digesta and tissue samples were obtained along the digestive tract of two beef steers known to shed C. jejuni and C. lanienae (steers A and B). At the time of slaughter, steer B weighed 540 kg, compared to 600 kg for steer A, yet the intestine of steer B (40.5 m) was 36% longer than the intestine of steer A (26.1 m). In total, 323 digesta samples (20-cm intervals) and 998 tissue samples (3.3- to 6.7-cm intervals) were processed. Campylobacter DNA was detected in the digesta and in association with tissues throughout the small and large intestines of both animals. Although C. jejuni and C. lanienae DNA were detected in both animals, only steer A contained substantial quantities of C. jejuni DNA. In both digesta and tissues of steer A, C. jejuni was present in the duodenum and jejunum. Considerable quantities of C. jejuni DNA also were observed in the digesta obtained from the cecum and ascending colon, but minimal DNA was associated with tissues of these regions. In contrast, steer B contained substantial quantities of C. lanienae DNA, and DNA of this bacterium was limited to the large intestine (i.e., the cecum, proximal ascending colon, descending colon, and rectum); the majority of tissue-associated C. lanienae DNA was present in the cecum, descending colon, and rectum. In a second study, the location and abundance of C. jejuni and C. lanienae DNA were confirmed in the intestines of 20 arbitrarily selected beef cattle. DNA of C. jejuni and C. lanienae were detected in the digesta of 57% and 95% of the animals, respectively. C. jejuni associated with intestinal tissues was most abundant in the duodenum, ileum, and rectum. However, one animal contributed disproportionately to the abundance of C. jejuni DNA in the ileum and rectum. C. lanienae was most abundant in the large intestine, and the highest density of DNA of this bacterium was found in the cecum. Therefore, C. jejuni colonized the proximal small intestine of asymptomatic beef cattle, whereas C. lanienae primarily resided in the cecum, descending colon, and rectum. This information could be instrumental in developing efficacious strategies to manage the release of these bacteria from the gastrointestinal tracts of cattle.  相似文献   

20.
The location and abundance of Campylobacter jejuni and Campylobacter lanienae in the intestines of beef cattle were investigated using real-time quantitative PCR in two studies. In an initial study, digesta and tissue samples were obtained along the digestive tract of two beef steers known to shed C. jejuni and C. lanienae (steers A and B). At the time of slaughter, steer B weighed 540 kg, compared to 600 kg for steer A, yet the intestine of steer B (40.5 m) was 36% longer than the intestine of steer A (26.1 m). In total, 323 digesta samples (20-cm intervals) and 998 tissue samples (3.3- to 6.7-cm intervals) were processed. Campylobacter DNA was detected in the digesta and in association with tissues throughout the small and large intestines of both animals. Although C. jejuni and C. lanienae DNA were detected in both animals, only steer A contained substantial quantities of C. jejuni DNA. In both digesta and tissues of steer A, C. jejuni was present in the duodenum and jejunum. Considerable quantities of C. jejuni DNA also were observed in the digesta obtained from the cecum and ascending colon, but minimal DNA was associated with tissues of these regions. In contrast, steer B contained substantial quantities of C. lanienae DNA, and DNA of this bacterium was limited to the large intestine (i.e., the cecum, proximal ascending colon, descending colon, and rectum); the majority of tissue-associated C. lanienae DNA was present in the cecum, descending colon, and rectum. In a second study, the location and abundance of C. jejuni and C. lanienae DNA were confirmed in the intestines of 20 arbitrarily selected beef cattle. DNA of C. jejuni and C. lanienae were detected in the digesta of 57% and 95% of the animals, respectively. C. jejuni associated with intestinal tissues was most abundant in the duodenum, ileum, and rectum. However, one animal contributed disproportionately to the abundance of C. jejuni DNA in the ileum and rectum. C. lanienae was most abundant in the large intestine, and the highest density of DNA of this bacterium was found in the cecum. Therefore, C. jejuni colonized the proximal small intestine of asymptomatic beef cattle, whereas C. lanienae primarily resided in the cecum, descending colon, and rectum. This information could be instrumental in developing efficacious strategies to manage the release of these bacteria from the gastrointestinal tracts of cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号