首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PurposeOne of the challenges of cardiac MR imaging is the compensation of respiratory motion, which causes the heart and the surrounding tissues to move. Commonly-used methods to overcome this effect, breath-holding and MR navigation, present shortcomings in terms of available acquisition time or need to periodically interrupt the acquisition, respectively. In this work, an implementation of respiratory motion compensation that obtains information from abdominal ultrasound and continuously adapts the imaged slice position in real time is presented.MethodsA custom workflow was developed, comprising an MR-compatible ultrasound acquisition system, a feature-motion-tracking system with polynomial predictive capability, and a custom MR sequence that continuously adapts the position of the acquired slice according to the tracked position. The system was evaluated on a moving phantom by comparing sharpness and image blurring between static and moving conditions, and in vivo by tracking the motion of the blood vessels of the liver to estimate the cardiac motion. Cine images of the heart were acquired during free breathing.ResultsIn vitro, the predictive motion correction yielded significantly better results than non-predictive or non-corrected acquisitions (p ≪ 0.01). In vivo, the predictive correction resulted in an image quality very similar to the breath-hold acquisition, whereas the uncorrected images show noticeable blurring artifacts.ConclusionIn this work, the possibility of using ultrasound navigation with tracking for the real-time adaptation of MR imaging slices was demonstrated. The implemented technique enabled efficient imaging of the heart with resolutions that would not be feasible in a single breath-hold.  相似文献   

2.
Registration markers affixed to rigid bodies (fixed to bone as opposed to skin) are commonly used when tracking 3D rigid body motion. The measured positions of registration markers are subject to unavoidable errors, both systematic and non-systematic. Prior studies have investigated the error propagated to such derived properties as rigid body positions and helical axes, while others have focused on the error associated with a specific position tracking system under restricted conditions. Theoretical and simulation-based error propagation requires knowledge of the variation due to individual registration markers; however, the variation in registration marker position measurement has previously been either assumed or determined from static cases. The objective of this paper is the introduction of a method for determining individual marker variation irrespective of change in rigid body position or motion by utilizing the distances between the markers (edge lengths), which are invariant under rotation and translation. Simulations were used to validate and characterize the introduced technique, demonstrating that the predictions improve with greater edge length and additional markers, converge on reference values where the edge length is at least 4 times the magnitude of the maximum vertex variation, and that under ideal conditions the confidence interval about the predicted variation is within 7% of the maximum variation associated with that marker set. The introduced technique was tested on the results of a motion tracking experiment to demonstrate the wide disparity in vertex variation between static and non-static measurements of the same registration markers, where the non-static variation exceeded the static variation by an average factor of 12.7.  相似文献   

3.
Traditional techniques of human motion analysis use markers located on body articulations. The position of each marker is extracted from each image. Temporal and kinematic analysis is given by matching these data with a reference model of the human body. However, as human skin is not rigidly linked with the skeleton, each movement causes displacements of the markers and induces uncertainty in results. Moreover, the experiments are mostly conducted in restricted laboratory conditions. The aim of our project was to develop a new method for human motion analysis which needs non-sophisticated recording devices, avoids constraints to the subject studied, and can be used in various surroundings such as stadiums or gymnasiums. Our approach consisted of identifying and locating body parts in image, without markers, by using a multi-sensory sensor. This sensor exploits both data given by a video camera delivering intensity images, and data given by a 3D sensor delivering in-depth images. Our goal, in this design, was to show up the feasibility of our approach. In any case the hardware we used could facilitate an automated motion analysis. We used a linked segment model which referred to Winter's model, and we applied our method not on a human subject but on a life size articulated locomotion model. Our approach consists of finding the posture of this articulated locomotion model in the image. By performing a telemetric image segmentation, we obtained an approximate correspondence between linked segment model position and locomotion model position. This posture was then improved by injecting segmentation results in an intensity image segmentation algorithm. Several tests were conducted with video/telemetric images taken in an outdoor surrounding with the articulated model. This real life-size model was equipped with movable joints which, in static positions, described two strides of a runner. With our fusion method, we obtained relevant limbs identification and location for most postures.  相似文献   

4.
The aim of this study is to determine the errors of scapular localisation due to skin relative to bone motion with an optoelectronic tracking system. We compared three-dimensional (3D) scapular positions obtained with skin markers to those obtained through palpation of three scapular anatomical landmarks. The scapular kinematics of nine subjects were collected. Static positions of the scapula were recorded with the right arm elevated at 0°, 40°, 80°, 120° and 160° in the sagittal plane. Palpation and subsequent digitisation of anatomical landmarks on scapula and thorax were done at the same positions. Scapular 3D orientation was also computed during 10 repeated movements of arm elevation between 0° and 180°. Significant differences in scapular kinematics were seen between static positions and palpation when considering anterior/posterior tilt and upward/downward rotation at angles over 120° of humeral elevation and only at 120° for internal/external rotation. There was no significant difference between positions computed during static positions and during the movement for the three scapular orientations. A rotation correction model is presented in order to reduce the errors between static position and palpation measurement.  相似文献   

5.
Cao L  Kobayakawa S  Yoshiki A  Abe K 《PloS one》2012,7(3):e33876
Intravital imaging of brain and bone marrow cells in the skull with subcellular resolution has revolutionized neurobiology, immunology and hematology. However, the application of this powerful technology in studies of abdominal organs has long been impeded by organ motion caused by breathing and heartbeat. Here we describe for the first time a simple device designated 'microstage' that effectively reduces organ motions without causing tissue lesions. Combining this microstage device with an upright intravital laser scanning microscope equipped with a unique stick-type objective lens, the system enables subcellular-level imaging of abdominal organs in live mice. We demonstrate that this technique allows for the quantitative analysis of subcellular structures and gene expressions in cells, the tracking of intracellular processes in real-time as well as three-dimensional image construction in the pancreas and liver of the live mouse. As the aforementioned analyses based on subcellular imaging could be extended to other intraperitoneal organs, the technique should offer great potential for investigation of physiological and disease-specific events of abdominal organs. The microstage approach adds an exciting new technique to the in vivo imaging toolbox.  相似文献   

6.
The purpose of this study was to determine the influence of posture on the expiratory activity of the abdominal muscles. Fifteen young adult men participated in the study. Activities of the external oblique abdominis, internal oblique abdominis, and rectus abdominis muscles were measured electromyographically in various postures. We used a pressure threshold in order to activate the abdominal muscles as these muscles are silent at rest. A spirometer was used to measure the lung volume in various postures. Subjects were placed in the supine, standing, sitting, and sitting-with-elbow-on-the-knee (SEK) positions. Electromyographic activity and mouth pressure were measured during spontaneous breathing and maximal voluntary ventilation under the respiratory load. We observed that the lung volume changed with posture; however, the breathing pattern under respiratory load did not change. During maximal voluntary ventilation, internal oblique abdominis muscle expiratory activity was lower in the SEK position than in any other position, external oblique abdominis muscle inspiratory activity was lower in the supine position than in any other position, and internal oblique abdominis muscle activity was higher in the standing position than in any other position. During spontaneous breathing, external oblique abdominis muscle activity was higher during expiration and inspiration in the SEK position than in any other position. The internal oblique abdominis muscle activity was higher during both inspiration and expiration in the standing position than in any other position. The rectus abdominis muscle activity did not change with changes in posture during both inspiration and expiration. Increase in the external oblique abdominis activity in the SEK position was due to anatomical muscle arrangement that was consistent with the direction of lower rib movement. On the other hand, increase in the internal oblique abdominis activity in the standing position was due to stretching of the abdominal wall by the viscera. We concluded that differences in activity were due to differences in the anatomy of the abdominal muscles and the influence of gravity.  相似文献   

7.
8.
We evaluated the effects of the different patterns of chest wall deformation that occur with different body positions and modes of breathing on regional lung deformation and ventilation. Using the parenchymal marker technique, we determined regional lung behavior during mechanical ventilation and spontaneous breathing in five anesthetized recumbent dogs. Regional lung behavior was related to the patterns of diaphragm motion estimated from X-ray projection images obtained at functional residual capacity (FRC) and end inspiration. Our results indicate that 1) in the prone and supine positions, FRC was larger during mechanical ventilation than during spontaneous breathing; 2) there were significant differences in the patterns of diaphragm motion and regional ventilation between mechanical ventilation and spontaneous breathing in both body positions; 3) in the supine position only, there was a vertical gradient in lung volume at FRC; 4) in both positions and for both modes of breathing, regional ventilation was nonlinearly related to changes in lobar and overall lung volumes; and 5) different patterns of diaphragm motion caused different sliding motions and differential rotations of upper and lower lobes. Our results are inconsistent with the classic model of regional ventilation, and we conclude that the distribution of ventilation is determined by a complex interaction of lung and chest wall shapes and by the motion of the lobes relative to each other, all of which help to minimize distortion of the lung parenchyma.  相似文献   

9.
In this paper, an image processing algorithm is presented for the interpretation of the American Sign Language (ASL), which is one of the sign languages used by the majority of the deaf community. The process involves detection of hand motion, tracking the hand location based on the motion and classification of signs using adaptive clustering of stop positions, simple shape of the trajectory, and matching of the hand shape at the stop position.  相似文献   

10.
Motion capture for biomechanical applications involves in almost all cases sensors or markers that are applied to the skin of the body segments of interest. This paper deals with the problem of estimating the movement of connected skeletal segments from 3D position data of markers attached to the skin. The use of kinematic constraints has been shown previously to reduce the error in estimated segment movement that are due to skin and muscles moving with respect to the underlying segment. A kinematic constraint reduces the number of degrees of freedom between two articulating segments. Moreover, kinematic constraints can help reveal the movement of some segments when the 3D marker data otherwise are insufficient. Important cases include the human ankle complex and the phalangeal segments of the horse, where the movement of small segments is almost completely hidden from external observation by joint capsules and ligaments. This paper discusses the use of an extended Kalman filter for tracking a system of connected segments. The system is modeled using rigid segments connected by simplified joint models. The position and orientation of the mechanism are specified by a set of generalized coordinates corresponding to the mechanism's degrees of motion. The generalized coordinates together with their first time derivatives can be used as the state vector of a state space model governing the kinematics of the mechanism. The data collected are marker trajectories from skin-mounted markers, and the state vector is related to the position of the markers through a nonlinear function. The Jacobian of this function is derived. The practical use of the method is demonstrated on a model of the distal part of the limb of the horse. Monte Carlo simulations of marker data for a two-segment system connected by a joint with three degrees of freedom indicate that the proposed method gives significant improvement over a method, which does not make use of the joint constraint, but the method requires that the model is a good approximation of the true mechanism. Applying the method to data on the movement of the four distal-most segments of the horse's limb shows good between trial consistency and small differences between measured marker positions and marker positions predicted by the model.  相似文献   

11.
12.
Tracking facilitates 3-D motion estimation   总被引:1,自引:0,他引:1  
The recently emerging paradigm of Active Vision advocates studying visual problems in form of modules that are directly related to a visual task for observers that are active. Along these lines, we are arguing that in many cases when an object is moving in an unrestricted manner (translation and rotation) in the 3D world, we are just interested in the motion's translational components. For a monocular observer, using only the normal flow — the spatio-temporal derivatives of the image intensity function — we solve the problem of computing the direction of translation and the time to collision. We do not use optical flow since its computation is an ill-posed problem, and in the general case it is not the same as the motion field — the projection of 3D motion on the image plane. The basic idea of our motion parameter estimation strategy lies in the employment of fixation and tracking. Fixation simplifies much of the computation by placing the object at the center of the visual field, and the main advantage of tracking is the accumulation of information over time. We show how tracking is accomplished using normal flow measurements and use it for two different tasks in the solution process. First it serves as a tool to compensate for the lack of existence of an optical flow field and thus to estimate the translation parallel to the image plane; and second it gathers information about the motion component perpendicular to the image plane.  相似文献   

13.
BackgroundWith 4DCT the risk of introducing positional systematic errors in lung cancer radiotherapy can be minimised. A common approach is to plan on the phase bin of the 4DCT best representing the tumour's time-weighted mean position also called the midventilation scan. However breathing irregularities can introduce uncertainties and potentially misrepresent both the tumour trajectory and the determination of the midventilation phase. In this study we evaluated the robustness of the midventilation approach in the presence of irregular breathing patterns.MethodsA LEGO Mindstorms® phantom with compact balls simulating lung tumours was constructed. The breathing curves loaded in the phantom were either acquired from a human volunteer or constructed with various magnitudes (ranging from 12 to 29 mm) as well as various irregularities of motion pattern. Repeated 4DCT scans were performed while tumour trajectories were recorded with two motion tracking systems.ResultsThe time-weighted mean tumour position is accurately represented in 4DCT scans, even for irregular breathing patterns: the position presentation in the midventilation scan was always within in one standard deviation of the global position presentation (3 mm and 2 mm for regular and irregular breathing patterns, respectively). The displacement representation tended to be underestimated in 4DCT scans.ConclusionThe midventilation approach is robust even in the presence of breathing irregularity. The representation of the tumour trajectory in 4DCT scans is affected by breathing irregularity and the extent of tumour motion can be underestimated, which will affect the calculation of patient-individualised margins based on the 4DCT scan.  相似文献   

14.

Purpose

To evaluate the use of 3D optical surface imaging as a surrogate for respiratory gated deep-inspiration breath-hold (DIBH) for left breast irradiation.

Material and Methods

Patients with left-sided breast cancer treated with lumpectomy or mastectomy were selected as candidates for DIBH treatment for their external beam radiation therapy. Treatment plans were created on both free breathing (FB) and DIBH computed tomography (CT) simulation scans to determine dosimetric benefits from DIBH. The Real-time Position Management (RPM) system was used to acquire patient''s breathing trace during DIBH CT acquisition and treatment delivery. The reference 3D surface models from FB and DIBH CT scans were generated and transferred to the “AlignRT” system for patient positioning and real-time treatment monitoring. MV Cine images were acquired during treatment for each beam as quality assurance for intra-fractional position verification. The chest wall excursions measured on these images were used to define the actual target position during treatment, and to investigate the accuracy and reproducibility of RPM and AlignRT.

Results

Reduction in heart dose can be achieved using DIBH for left breast/chest wall radiation. RPM was shown to have inferior correlation with the actual target position, as determined by the MV Cine imaging. Therefore, RPM alone may not be an adequate surrogate in defining the breath-hold level. Alternatively, the AlignRT surface imaging demonstrated a superior correlation with the actual target positioning during DIBH. Both the vertical and magnitude real-time deltas (RTDs) reported by AlignRT can be used as the gating parameter, with a recommended threshold of ±3 mm and 5 mm, respectively.

Conclusion

The RPM system alone may not be sufficient for the required level of accuracy in left-sided breast/CW DIBH treatments. The 3D surface imaging can be used to ensure patient setup and monitor inter- and intra- fractional motions. Furthermore, the target position accuracy during DIBH treatment can be improved by AlignRT as a superior surrogate, in addition to the RPM system.  相似文献   

15.
Tracking single particles: a user-friendly quantitative evaluation   总被引:1,自引:0,他引:1  
As our knowledge of biological processes advances, we are increasingly aware that cells actively position sub-cellular organelles and other constituents to control a wide range of biological processes. Many studies quantify the position and motion of, for example, fluorescently labeled proteins, protein aggregates, mRNA particles or virus particles. Both differential interference contrast (DIC) and fluorescence microscopy can visualize vesicles, nuclei or other small organelles moving inside cells. While such studies are increasingly important, there has been no complete analysis of the different tracking methods in use, especially from the practical point of view. Here we investigate these methods and clarify how well different algorithms work and also which factors play a role in assessing how accurately the position of an object can be determined. Specifically, we consider how ultimate performance is affected by magnification, by camera type (analog versus digital), by recording medium (VHS and SVHS tape versus direct tracking from camera), by image compression, by type of imaging used (fluorescence versus DIC images) and by a variety of sources of noise. We show that most methods are capable of nanometer scale accuracy under realistic conditions; tracking accuracy decreases with increasing noise. Surprisingly, accuracy is found to be insensitive to the numerical aperture, but, as expected, it scales with magnification, with higher magnification yielding improved accuracy (within limits of signal-to-noise). When noise is present at reasonable levels, the effect of image compression is in most cases small. Finally, we provide a free, robust implementation of a tracking algorithm that is easily downloaded and installed.  相似文献   

16.
BackgroundRespiratory gated CT simulation (4D-simulation) has been evolved to estimate the internal body motion. This study aimed to evaluate the impact of tumor volume and location on the planning target volume (PTV) for primary lung tumor when 4D simulation is used.MethodsPatients who underwent CT simulation for primary lung cancer radiotherapy between 2012 and 2016 using a 3D- (free breathing) and 4D- (respiratory gated) technique were reviewed. For each patient, gross tumor volume (GTV) was contoured in a free breathing scan (3D-GTV), and 4D-simulation scans (4D-GTV). Margins were added to account for the clinical target volume (CTV) and internal target motion (ITV) in 3D and 4D simulation scans. Additional margins were added to account for planned target volume (PTV). Univariate and multivariate analyses were performed to test the impact of the volume of the GTV and location of the tumor (relative to the bronchial tree and lung lobes) on PTV changes by more than 10% between the 3D and 4D scans.ResultsA total of 10 patients were identified. 3D-PTV was significantly larger than the 4D-PTV; median volumes were 182.79 vs. 158.21 cc, p = 0.0068). On multivariate analysis, neither the volume of the GTV (p = 0.5027) nor the location of the tumor (peripheral, p = 0.5027 or lower location, p = 0.5802) had an impact on PTV differences between 3D-simulation and 4D-simluation.ConclusionThe use of 4D-simulation reduces the PTV for the primary tumor in lung cancer cases. Further studies with larger samples are required to confirm the benefit of 4D-simulation in decreasing PTV in lung cancer.  相似文献   

17.
Breathing pattern, thoracoabdominal motion, and separate end-expiratory positions of the rib cage and abdomen were measured noninvasively in eight healthy subjects before and after intravenous administration of either placebo or midazolam, a short-acting benzodiazepine. Compared with placebo, midazolam produced a significant (P less than 0.01) decrease in mean inspiratory flow of 29% from preinjection values, resulting in a 39% reduction in tidal volume (VT). This ventilatory depression was partly compensated by a 35% decrease in expiratory time producing an increase in respiratory rate (+39%). The fall in VT was almost entirely (91%) mediated by a reduction of the abdominal contribution to tidal breathing while sparing rib cage motion. This fact contrasts with the effects of inhalational anesthetics or morphine, which preferentially depress rib cage expansion, indicating that thoracoabdominal motion may selectively be depressed by different pharmacological agents. In addition, continuous recording of end-expiratory levels showed a significant transient fall in the rib cage's end-tidal position 2 min after midazolam administration associated with the occurrence of central apneas.  相似文献   

18.
19.
The role of arm swing in jumping has been examined in numerous studies of standing jumps for height and forward distance, but no prior studies have explored its effect on lateral jumping. The purpose of the present study was to investigate the effect of arm motion on standing lateral jump performance and to examine the biomechanical mechanisms that may explain differences in jump distance. Six participants executed a series of jumps for maximum lateral distance from two in-ground force platforms for two jump cases (free and restricted arms) while an eight-camera, passive-reflector, motion capture system collected 3D position data throughout the movements. Inverse kinematics and dynamics analyses were performed for all jumps using three-dimensional (3D) link models to calculate segment angular velocities, joint moments, joint powers, and joint work. Free arm motion improved standing lateral jump performance by 29% on average. This improvement was due to increased takeoff velocity and improved lateral and vertical positions of the center of gravity (CG) at takeoff and touchdown. Improved velocity and position of the CG at takeoff resulted from a 33% increase in the work done by the body. This increase in work in free arm jumps compared to restricted arm jumps was found in both upper and lower body joints with the largest improvements (>30 J) occurring at the lower back, right hip, and right shoulder.  相似文献   

20.
In this paper a complete design of a high speed optical motion analyzer system has been described. The main core of the image processing unit has been implemented by the differential algorithm procedure. Some intelligent and conservative procedures that facilitate the search algorithm have also been proposed and implemented for the processing of human motions. Moreover, an optimized modified direct linear transformation (MDLT) method has been used to reconstruct 3D markers positions which are used for deriving kinematic characteristics of the motion. Consequently, a set of complete tests using some simple mechanical devices were conducted to verify the system outputs. Considering the system verification for human motion analysis, we used the system for gait analysis and the results including joint angles showed good compatibility with other investigations. Furthermore, a sport application example of the system has been quantitatively presented and discussed for Iranian National Karate-kas. The low computational cost, the high precision in detecting and reconstructing marker position with 2.39 mm error, and the capability of capturing from any number of cameras to increase the domain of operation of the subject, has made the proposed method a reliable approach for real-time human motion analysis. No special environment limitation, portability, low cost hardware and built in units for simulations and kinematic analysis are the other significant specifications of this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号