首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive oxygen species (ROS) constantly attack DNA. One of the best-characterized oxidative DNA lesions is 7,8-dihydro-8-oxoguanine (8-oxo-G). Many human diseases, such as cancer and neurodegenerative disorders, have been correlated with oxidative DNA damage. In the last few years, DNA polymerase (Pol) λ, one of the 15 cellular Pols, has been identified to play an important role in performing accurate translesion synthesis over 8-oxo-G. This is eminently important, since normally faithful replicative Pols α, δ and ε, with their tight active center, often wrongly incorporate adenine (A) opposite the 8-oxo-G lesion. A:8- oxo-G mispairs are accurately repaired by the pathway identified in our laboratory involving MutY DNA glycosylase homolog (MutYH) and Pol λ. Until now, very little was known about the spatial and temporal regulation of Pol λ and MutYH in active repair complexes. We now showed in our latest publication that the E3 ligase Mule can ubiquitinate and degrade Pol λ, and that the control of Pol λ levels by Mule has functional consequences for the ability of mammalian cells to deal with 8-oxo-G lesions. In contrast, phosphorylation of Pol λ by Cdk2/cyclinA counteracts this degradation by recruiting it to MutYH on chromatin to form active 8-oxo-G repair complexes.  相似文献   

2.
MutY DNA glycosylase homologs (MYH or MUTYH) reduce G:C to T:A mutations by removing misincorporated adenines or 2-hydroxyadenines paired with guanine or 8-oxo-7,8-dihydroguanine (8-oxo-G). Mutations in the human MYH (hMYH) gene are associated with the colorectal cancer predisposition syndrome MYH-associated polyposis. To examine the function of MYH in human cells, we regulated MYH gene expression by knockdown or overproduction. MYH knockdown human HeLa cells are more sensitive to the killing effects of H2O2 than the control cells. In addition, hMYH knockdown cells have altered cell morphology, display enhanced susceptibility to apoptosis, and have altered DNA signaling activation in response to oxidative stress. The cell cycle progression of hMYH knockdown cells is also different from that of the control cells following oxidative stress. Moreover, hMYH knockdown cells contain higher levels of 8-oxo-G lesions than the control cells following H2O2 treatment. Although MYH does not directly remove 8-oxo-G, MYH may generate favorable substrates for other repair enzymes. Overexpression of mouse Myh (mMyh) in human mismatch repair defective HCT15 cells makes the cells more resistant to killing and refractory to apoptosis by oxidative stress than the cells transfected with vector. In conclusion, MYH is a vital DNA repair enzyme that protects cells from oxidative DNA damage and is critical for a proper cellular response to DNA damage.  相似文献   

3.
Reactive oxygen species constantly generated as by-products of cellular metabolism readily attack genomic DNA creating mutagenic lesions such as 7,8-dihydro-8-oxo-guanine (8-oxo-G) that promote aging. 8-oxo-G:A mispairs arising during DNA replication are eliminated by base excision repair initiated by the MutY DNA glycosylase homologue (MUTYH). Here, by using formaldehyde crosslinking in mammalian cell extracts, we demonstrate that the WRN helicase/exonuclease defective in the premature aging disorder Werner syndrome (WS) is recruited to DNA duplex containing an 8-oxo-G:A mispair in a manner dependent on DNA polymerase λ (Polλ) that catalyzes accurate DNA synthesis over 8-oxo-G. Similarly, by immunofluorescence, we show that Polλ is required for accumulation of WRN at sites of 8-oxo-G lesions in human cells. Moreover, we show that nuclear focus formation of WRN and Polλ induced by oxidative stress is dependent on ongoing DNA replication and on the presence of MUTYH. Cell viability assays reveal that depletion of MUTYH suppresses the hypersensitivity of cells lacking WRN and/or Polλ to oxidative stress. Biochemical studies demonstrate that WRN binds to the catalytic domain of Polλ and specifically stimulates DNA gap filling by Polλ over 8-oxo-G followed by strand displacement synthesis. Our results suggest that WRN promotes long-patch DNA repair synthesis by Polλ during MUTYH-initiated repair of 8-oxo-G:A mispairs.  相似文献   

4.
The maintenance of genetic stability is of crucial importance for any form of life. Prior to cell division in each mammalian cell, the process of DNA replication must faithfully duplicate the three billion bases with an absolute minimum of mistakes. Various environmental and endogenous agents, such as reactive oxygen species (ROS), can modify the structural properties of DNA bases and thus damage the DNA. Upon exposure of cells to oxidative stress, an often generated and highly mutagenic DNA damage is 7,8-dihydro-8-oxo-guanine (8-oxo-G). The estimated steady-state level of 8-oxo-G lesions is about 103 per cell/per day in normal tissues and up to 105 lesions per cell/per day in cancer tissues. The presence of 8-oxo-G on the replicating strand leads to frequent (10–75%) misincorporations of adenine opposite the lesion (formation of A:8-oxo-G mispairs), subsequently resulting in C:G to A:T transversion mutations. These mutations are among the most predominant somatic mutations in lung, breast, ovarian, gastric and colorectal cancers. Thus, in order to reduce the mutational burden of ROS, human cells have evolved base excision repair (BER) pathways ensuring (i) the correct and efficient repair of A:8-oxo-G mispairs and (ii) the removal of 8-oxo-G lesions from the genome. Very recently it was shown that MutY glycosylase homologue (MUTYH) and DNA polymerase λ play a crucial role in the accurate repair of A:8-oxo-G mispairs. Here we review the importance of accurate BER of 8-oxo-G damage and its regulation in prevention of cancer.  相似文献   

5.
Eutsey R  Wang G  Maier RJ 《DNA Repair》2007,6(1):19-26
MutY is an adenine glycosylase that has the ability to efficiently remove adenines from adenine/7,8-dihydro-8-oxoguanine (8-oxo-G) or adenine/guanine mismatches, and plays an important role in oxidative DNA damage repair. The human gastric pathogen Helicobacter pylori has a homolog of the MutY enzyme. To investigate the physiological roles of MutY in H. pylori, we constructed and characterized a mutY mutant. H. pylori mutY mutants incubated at 5% O2 have a 325-fold higher spontaneous mutation rate than its parent. The mutation rate is further increased by exposing the mutant to atmospheric levels of oxygen, an effect that is not seen in an E. coli mutY mutant. Most of the mutations that occurred in H. pylori mutY mutants, as examined by rpoB sequence changes that confer rifampicin resistance, are GC to TA transversions. The H. pylori enzyme has the ability to complement an E. coli mutY mutant, restoring its mutation frequency to the wild-type level. Pure H. pylori MutY has the ability to remove adenines from A/8-oxo-G mismatches, but strikingly no ability to cleave A/G mismatches. This is surprising because E. coli MutY can more rapidly turnover A/G than A/8-oxo-G. Thus, H. pylori MutY is an adenine glycosylase involved in the repair of oxidative DNA damage with a specificity for detecting 8-oxo-G. In addition, H. pylori mutY mutants are only 30% as efficient as wild-type in colonizing the stomach of mice, indicating that H. pylori MutY plays a significant role in oxidative DNA damage repair in vivo.  相似文献   

6.
Chromium pollution is potentially detrimental to bacterial soil communities, compromising carbon and nitrogen cycles that are essential for life on earth. It has been proposed that intracellular reduction of hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] may cause bacterial death by a mechanism that involves reactive oxygen species (ROS)-induced DNA damage; the molecular basis of the phenomenon was investigated in this work. Here, we report that Bacillus subtilis cells lacking a functional error prevention oxidized guanine (GO) system were significantly more sensitive to Cr(VI) treatment than cells of the wild-type (WT) strain, suggesting that oxidative damage to DNA is involved in the deleterious effects of the oxyanion. In agreement with this suggestion, Cr(VI) dramatically increased the ROS concentration and induced mutagenesis in a GO-deficient B. subtilis strain. Alkaline gel electrophoresis (AGE) analysis of chromosomal DNA of WT and ΔGO mutant strains subjected to Cr(VI) treatment revealed that the DNA of the ΔGO strain was more susceptible to DNA glycosylase Fpg attack, suggesting that chromium genotoxicity is associated with 7,8-dihydro-8-oxodeoxyguanosine (8-oxo-G) lesions. In support of this notion, specific monoclonal antibodies detected the accumulation of 8-oxo-G lesions in the chromosomes of B. subtilis cells subjected to Cr(VI) treatment. We conclude that Cr(VI) promotes mutagenesis and cell death in B. subtilis by a mechanism that involves radical oxygen attack of DNA, generating 8-oxo-G, and that such effects are counteracted by the prevention and repair GO system.  相似文献   

7.
8.
The persistence of Porphyromonas gingivalis in the inflammatory environment of the periodontal pocket requires an ability to overcome oxidative stress. DNA damage is a major consequence of oxidative stress. Unlike the case for other organisms, our previous report suggests a role for a non-base excision repair mechanism for the removal of 8-oxo-7,8-dihydroguanine (8-oxo-G) in P. gingivalis. Because the uvrB gene is known to be important in nucleotide excision repair, the role of this gene in the repair of oxidative stress-induced DNA damage was investigated. A 3.1-kb fragment containing the uvrB gene was PCR amplified from the chromosomal DNA of P. gingivalis W83. This gene was insertionally inactivated using the ermF-ermAM antibiotic cassette and used to create a uvrB-deficient mutant by allelic exchange. When plated on brucella blood agar, the mutant strain, designated P. gingivalis FLL144, was similar in black pigmentation and beta-hemolysis to the parent strain. In addition, P. gingivalis FLL144 demonstrated no significant difference in growth rate, proteolytic activity, or sensitivity to hydrogen peroxide from that of the parent strain. However, in contrast to the wild type, P. gingivalis FLL144 was significantly sensitive to UV irradiation. The enzymatic removal of 8-oxo-G from duplex DNA was unaffected by the inactivation of the uvrB gene. DNA affinity fractionation identified unique proteins that preferentially bound to the oligonucleotide fragment carrying the 8-oxo-G lesion. Collectively, these results suggest that the repair of oxidative stress-induced DNA damage involving 8-oxo-G may occur by a still undescribed mechanism in P. gingivalis.  相似文献   

9.
Kim JE  Choi S  Yoo JA  Chung MH 《FEBS letters》2004,556(1-3):104-110
7,8-Dihydro-8-oxoguanine (8-oxoguanine; 8-oxo-G), one of the major oxidative DNA adducts, is highly susceptible to further oxidation by radicals. We confirmed the higher reactivity of 8-oxo-G toward reactive oxygen (singlet oxygen and hydroxyl radical) or nitrogen (peroxynitrite) species as compared to unmodified base. In this study, we raised the question about the effect of this high reactivity toward radicals on intramolecular and intermolecular DNA damage. We found that the amount of intact nucleoside in oligodeoxynucleotide containing 8-oxo-G decreased more by various radicals at higher levels of 8-oxo-G incorporation, and that the oligodeoxynucleotide damage and plasmid cleavage by hydroxyl radical were inhibited in the presence of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG). We conclude that 8-oxo-G within DNA induces intramolecular DNA base damage, but that free 8-oxo-G protects intermolecular DNA from oxidative stress. These results suggest that 8-oxo-G within DNA must be rapidly released to protect DNA from overall oxidative damage.  相似文献   

10.
Liu M  Gong X  Alluri RK  Wu J  Sablo T  Li Z 《Biological chemistry》2012,393(3):123-132
We have examined the level of 8-hydroxyguanosine (8-oxo-G), an oxidized form of guanosine, in RNA in Escherichia coli under normal and oxidative stress conditions. The level of 8-oxo-G in RNA rises rapidly and remains high for hours in response to hydrogen peroxide (H?O?) challenge in a dose-dependent manner. H?O? induced elevation of 8-oxo-G content is much higher in RNA than that of 8-hydroxydeoxyguanosine (8-oxo-dG) in DNA. Under normal conditions, the 8-oxo-G level is low in RNA isolated from the ribosome and it is nearly three times higher in non-ribosomal RNAs. In contrast, 8-oxo-G generated by a short exposure to H?O? is almost equally distributed in various RNA species, suggesting that although ribosomal RNAs are normally less oxidized, they are not protected against exogenous H?O?. Interestingly, highly folded RNA is not protected from oxidation because 8-oxo-G generated by H?O? treatment in vitro increases to approximately the same levels in tRNA and rRNA in both native and denatured forms. Lastly, increased RNA oxidation is closely associated with cell death by oxidative stress. Our data suggests that RNA is a primary target for reactive oxygen species and RNA oxidation is part of the paradox that cells have to deal with under oxidative stress.  相似文献   

11.
DNA is subject to a multitude of oxidative damages generated by oxidizing agents from metabolism and exogenous sources and by ionizing radiation. Guanine is particularly vulnerable to oxidation, and the most common oxidative product 8-oxoguanine (8-oxoG) is the most prevalent lesion observed in DNA molecules. 8-OxoG can form a normal Watson-Crick pair with cytosine (8-oxoG:C), but it can also form a stable Hoogsteen pair with adenine (8-oxoG:A), leading to a G:C → T:A transversion after replication. Fortunately, 8-oxoG is recognized and excised by either of two DNA glycosylases of the base excision repair pathway: formamidopyrimidine-DNA glycosylase and 8-oxoguanine DNA glycosylase (Ogg). While Clostridium acetobutylicum Ogg (CacOgg) DNA glycosylase can specifically recognize and remove 8-oxoG, it displays little preference for the base opposite the lesion, which is unusual for a member of the Ogg1 family. This work describes the crystal structures of CacOgg in its apo form and in complex with 8-oxo-2′-deoxyguanosine. A structural comparison between the apo form and the liganded form of the enzyme reveals a structural reorganization of the C-terminal domain upon binding of 8-oxoG, similar to that reported for human OGG1. A structural comparison of CacOgg with human OGG1, in complex with 8-oxoG containing DNA, provides a structural rationale for the lack of opposite base specificity displayed by CacOgg.  相似文献   

12.
The oxidized base 7,8-oxoguanine (8-oxo-G) is the most common DNA lesion generated by reactive oxygen species. This lesion is highly mutagenic due to the frequent misincorporation of A opposite 8-oxo-G during DNA replication. In mammalian cells, the DNA polymerase (pol) family X enzyme DNA pol λ catalyzes the correct incorporation of C opposite 8-oxo-G, together with the auxiliary factor proliferating cell nuclear antigen (PCNA). Here, we show that Arabidopsis thaliana DNA pol λ, the only member of the X family in plants, is as efficient in performing error-free translesion synthesis past 8-oxo-G as its mammalian homolog. Arabidopsis, in contrast with animal cells, possesses two genes for PCNA. Using in vitro and in vivo approaches, we observed that PCNA2, but not PCNA1, physically interacts with DNA pol λ, enhancing its fidelity and efficiency in translesion synthesis. The levels of DNA pol λ in transgenic plantlets characterized by overexpression or silencing of Arabidopsis POLL correlate with the ability of cell extracts to perform error-free translesion synthesis. The important role of DNA pol λ is corroborated by the observation that the promoter of POLL is activated by UV and that both overexpressing and silenced plants show altered growth phenotypes.  相似文献   

13.
Oxidized bases are common types of DNA modifications. Their accumulation in the genome is linked to aging and degenerative diseases. These modifications are commonly repaired by the base excision repair (BER) pathway. Oxoguanine DNA glycosylase (OGG1) initiates BER of oxidized purine bases. A small number of protein interactions have been identified for OGG1, while very few appear to have functional consequences. We report here that OGG1 interacts with the recombination protein RAD52 in vitro and in vivo. This interaction has reciprocal functional consequences as OGG1 inhibits RAD52 catalytic activities and RAD52 stimulates OGG1 incision activity, likely increasing its turnover rate. RAD52 colocalizes with OGG1 after oxidative stress to cultured cells, but not after the direct induction of double-strand breaks by ionizing radiation. Human cells depleted of RAD52 via small interfering RNA knockdown, and mouse cells lacking the protein via gene knockout showed increased sensitivity to oxidative stress. Moreover, cells depleted of RAD52 show higher accumulation of oxidized bases in their genome than cells with normal levels of RAD52. Our results indicate that RAD52 cooperates with OGG1 to repair oxidative DNA damage and enhances the cellular resistance to oxidative stress. Our observations suggest a coordinated action between these proteins that may be relevant when oxidative lesions positioned close to strand breaks impose a hindrance to RAD52 catalytic activities.Oxidative DNA damage is generated at high levels in mammalian cells, even in cells not exposed to exogenous sources of reactive oxygen species. Several kinds of DNA modifications are formed upon oxidative stress (8). The most prevalent modifications, quantitatively, are single-strand breaks and oxidized bases. Clustered DNA damage, when two or more modifications are closely positioned in opposite strands, is detectable after gamma irradiation and has recently been shown to be generated by normal oxidative metabolism (3, 35). One unique aspect of such clustered lesions is that they can be converted into double-strand breaks (DSB) if a DNA glycosylase removes the two opposite bases and an apurinic/apyrimidinic (AP)-endonuclease cleaves the resulting abasic sites. Thus, although quantitatively minor, DSB are possible outcomes of oxidative DNA damage.Oxidized DNA bases are repaired primarily by the base excision repair pathway (BER) (22, 39). BER is initiated by a lesion-specific DNA N-glycosylase that recognizes and excises the damaged base. Eight-hydroxyguanine (8-oxoG) is one of the most abundant oxidized bases detected in cellular DNA. This adduct is easily bypassed by replicative polymerases; however, it can direct the misincorporation of adenine opposite 8-oxoG, thus leading to G·C-to-T·A transversion mutations (31). 8-oxoG accumulation has been causally associated with carcinogenesis and aging in several experimental models (1, 12). In eukaryotes, oxoguanine DNA glycosylase (OGG1) is the major 8-oxoG DNA glycosylase. OGG1 possesses an associated AP-lyase activity, such that it removes 8-oxoG and cleaves the DNA backbone. Human cells express two distinct OGG1 isoforms, α and β, which share the first 316 amino acids but differ significantly in their C termini (25). While OGG1-α is a bone fide DNA glycosylase (5) and localizes both to nuclei and mitochondria, OGG1-β localizes exclusively to mitochondria. We recently showed that the recombinant OGG1-β protein has no DNA glycosylase activity (13). The high degree of conservation of repair pathways for 8-oxoG, from bacteria to humans, along with epidemiological data correlating OGG1 polymorphisms and activity with predisposition to some cancers (11, 27, 33) attest to the biological importance of the repair of 8-oxoGs and other oxidative DNA lesions.Until recently, distinct classes of DNA lesions were believed to be metabolized by different and independent repair pathways. However, experimental evidence indicates that these pathways can interact and that there is a considerable degree of overlap in their substrate specificity and in the proteins that participate in each pathway. Experiments using yeast strains lacking one or more distinct DNA repair genes suggest that DSB repair pathways may play a role in repair of oxidative DNA damage. Swanson et al. showed that while yeast cells lacking ntg1 and ntg2 (homologues of Escherichia coli endonuclease III, a DNA glycosylase specific for pyrimidine lesions formed by oxidation) and apn1 (the major yeast abasic site endonuclease) are not overtly sensitive to oxidative stress, the additional disruption of the rad52 gene significantly increases sensitivity to H2O2 and menadione (36). Similarly, yeast cells expressing decreased levels of frataxin, which leads to elevated oxidative stress, show accumulation of oxidative damage in nuclear DNA only in a rad52 mutant background (18). RAD52 is a member of the RAD51 epistatic group. These proteins are believed to be involved in the early steps of homologous recombination, contributing to homology search and strand invasion; disruption of the corresponding genes renders cells deficient in DSB repair and hyper-recombinogenic (19).These results suggested a possible role for RAD52 in the repair of oxidative DNA damage. Moreover, an in vitro screening of protein partners that interact physically with OGG1-β performed in our lab (unpublished data) showed that human RAD52 strongly interacted with this glycosylase, again suggesting a possible function for RAD52 in the oxidative DNA damage response. Thus, we investigated whether RAD52 plays a role in the repair of oxidative DNA damage in human cells. We show here that human RAD52 physically interacts with both OGG1-α and -β, in vitro and in cell extracts. We also show that OGG1-α and -β inhibit RAD52 enzymatic activities. Conversely, RAD52 stimulates OGG1-α 8-oxoG incision activity. RAD52 colocalizes with OGG1-α in cells, and this colocalization increases after oxidative stress. Moreover, lower RAD52 expression, via gene knockdown (KD) or disruption of the RAD52 gene, render cells sensitive to oxidative stress. Based on our results, we discuss a model in which OGG1 and RAD52 cooperate to repair 8-oxoG lesions.  相似文献   

14.
The DNA lesion 8-oxo-guanine (8-oxo-G) is a highly mutagenic product of the interaction between reactive oxygen species and DNA. To maintain genomic integrity, cells have evolved mechanisms capable of removing this frequently arising oxidative lesion. Mismatch repair (MMR) appears to be one pathway associated with the repair of 8-oxo-G lesions (DeWeese, T. L., Shipman, J. M., Larrier, N. A., Buckley, N. M., Kidd, L. R., Groopman, J. D., Cutler, R. G., te Riele, H., and Nelson, W. G. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 11915-11920; Ni, T. T., Marsischky, G. T., and Kolodner, R. D. (1999) Mol. Cell 4, 439-444). Here we report the effect of double-stranded DNA oligonucleotides containing a single 8-oxo-G on the DNA binding affinity, ATPase, and ADP right arrow ATP exchange activities of hMSH2-hMSH6 and hMSH2-hMSH3. We found that hMSH2-hMSH6 binds the oligonucleotide DNA substrates with the following affinities: 8-oxo-G/T > 8-oxo-G/G > 8-oxo-G/A > 8-oxo-G/C approximately G/C. A similar trend was observed for DNA-stimulated ATPase and ADP --> ATP exchange activities of hMSH2-hMSH6. In contrast, hMSH2-hMSH3 did not appear to bind any of the 8-oxo-G containing DNA substrates nor was there enhanced ATPase or ADP --> ATP exchange activities. These results suggest that only hMSH2-hMSH6 is activated by recognition of 8-oxo-G lesions. Our data are consistent with the notion that post-replication MMR only participates in the repair of mismatched 8-oxo-G lesions.  相似文献   

15.
The enzyme 8-oxoguanine DNA glycosylase 1 participates in the repair of damaged DNA by excising the oxidized base 8-hydroxy-2'-deoxyguanosine. We have previously demonstrated that enzymatic activity of this enzyme is inversely related to the levels of the damaged base in specific brain regions. We now report that the activity of 8-oxoguanine DNA glycosylase 1 is increased in a region-specific manner following treatment with diethylmaleate, a compound that reduces glutathione levels in the cell. A single treatment with diethylmaleate elicited a significant increase ( approximately 2-fold) in the activity of 8-oxoguanine DNA glycosylase 1 in three brain regions with low basal levels of activity (cerebellum, cortex, and pons/medulla). There was no change in the activity of 8-oxoguanine DNA glycosylase 1 in those regions with high basal levels of activity (hippocampus, caudate/putamen, and midbrain). This is the first report to demonstrate that DNA repair capacity can be upregulated in the CNS, and the increased repair activity correlates with a reduction in the levels of DNA damage. The brain region-specific capacity to deal with increased oxidative damage to DNA may be responsible, in part, for the vulnerability of specific neuronal populations with aging, sources of oxidative stress, and neurodegenerative diseases.  相似文献   

16.
The human Ogg1 glycosylase is responsible for repairing 8-oxo-7,8-dihydroguanine (8-oxoG) in both nuclear and mitochondrial DNA. Two distinct Ogg1 isoforms are present; α-Ogg1, which mainly localizes to the nucleus and β-Ogg1, which localizes only to mitochondria. We recently showed that mitochondria from ρ0 cells, which lack mitochondrial DNA, have similar 8-oxoG DNA glycosylase activity to that of wild-type cells. Here, we show that β-Ogg1 protein levels are ~80% reduced in ρ0 cells, suggesting β-Ogg1 is not responsible for 8-oxoG incision in mitochondria. Thus, we characterized the biochemical properties of recombinant β-Ogg1. Surprisingly, recombinant β-Ogg1 did not show any significant 8-oxoG DNA glycosylase activity in vitro. Since β-Ogg1 lacks the C-terminal αO helix present in α-Ogg1, we generated mutant proteins with various amino acid substitutions in this domain. Of the seven amino acid positions substituted (317–323), we identified Val-317 as a novel critical residue for 8-oxoG binding and incision. Our results suggest that the αO helix is absolutely necessary for 8-oxoG DNA glycosylase activity, and thus its absence may explain why β-Ogg1 does not catalyze 8-oxoG incision in vitro. Western blot analysis revealed the presence of significant amounts of α-Ogg1 in human mitochondria. Together with previous localization studies in vivo, this suggests that α-Ogg1 protein may provide the 8-oxoG DNA glycosylase activity for the repair of these lesions in human mitochondrial DNA. β-Ogg1 may play a novel role in human mitochondria.  相似文献   

17.
CUX1 and CUX2 proteins are characterized by the presence of three highly similar regions called Cut repeats 1, 2, and 3. Although CUX1 is ubiquitously expressed, CUX2 plays an important role in the specification of neuronal cells and continues to be expressed in postmitotic neurons. Cut repeats from the CUX1 protein were recently shown to stimulate 8-oxoguanine DNA glycosylase 1 (OGG1), an enzyme that removes oxidized purines from DNA and introduces a single strand break through its apurinic/apyrimidinic lyase activity to initiate base excision repair. Here, we investigated whether CUX2 plays a similar role in the repair of oxidative DNA damage. Cux2 knockdown in embryonic cortical neurons increased levels of oxidative DNA damage. In vitro, Cut repeats from CUX2 increased the binding of OGG1 to 7,8-dihydro-8-oxoguanine-containing DNA and stimulated both the glycosylase and apurinic/apyrimidinic lyase activities of OGG1. Genetic inactivation in mouse embryo fibroblasts or CUX2 knockdown in HCC38 cells delayed DNA repair and increased DNA damage. Conversely, ectopic expression of Cut repeats from CUX2 accelerated DNA repair and reduced levels of oxidative DNA damage. These results demonstrate that CUX2 functions as an accessory factor that stimulates the repair of oxidative DNA damage. Neurons produce a high level of reactive oxygen species because of their dependence on aerobic oxidation of glucose as their source of energy. Our results suggest that the persistent expression of CUX2 in postmitotic neurons contributes to the maintenance of genome integrity through its stimulation of oxidative DNA damage repair.  相似文献   

18.
The E3 ubiquitin ligase Mule/ARF-BP1 plays an important role in the cellular DNA damage response by controlling base excision repair and p53 protein levels. However, how the activity of Mule is regulated in response to DNA damage is currently unknown. Here, we report that the Ser18-containing isoform of the USP7 deubiquitylation enzyme (USP7S) controls Mule stability by preventing its self-ubiquitylation and subsequent proteasomal degradation. We find that in response to DNA damage, downregulation of USP7S leads to self-ubiquitylation and proteasomal degradation of Mule, which eventually leads to p53 accumulation. Cells that are unable to downregulate Mule show reduced ability to upregulate p53 levels in response to DNA damage. We also find that, as Mule inactivation is required for stabilization of base excision repair enzymes, the failure of cells to downregulate Mule after DNA damage results in deficient DNA repair. Our data describe a novel mechanism by which Mule is regulated in response to DNA damage and coordinates cellular DNA damage responses and DNA repair.  相似文献   

19.
20.
NEIL1, the mammalian homolog of Escherichia coli endonuclease VIII, is a DNA glycosylase that repairs ring-fragmented purines, saturated pyrimidines and several oxidative lesions like 5-hydroxyuracil, 5-hydroxycytosine, etc. Previous studies from our laboratory have shown that Werner Syndrome protein (WRN), one of the five human RecQ helicases, stimulates NEIL1 DNA glycosylase activity on oxidative DNA lesions. The goal of this study was to extend this observation and analyze the interaction between NEIL1 and all five human RecQ helicases. The DNA substrate specificity of the interaction between WRN and NEIL1 was also analyzed. The results indicate that WRN is the only human RecQ helicase that stimulates NEIL1 DNA glycosylase activity, and that this stimulation requires a double-stranded DNA substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号