首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Metabolic reprogramming is a new hallmark of cancer but it remains poorly defined in hepatocellular carcinogenesis (HCC). The fatty acid receptor CD36 is associated with both lipid and glucose metabolism in the liver. However, the role of CD36 in metabolic reprogramming in the progression of HCC still remains to be elucidated. In the present study, we found that CD36 is highly expressed in human HCC as compared with non-tumor hepatic tissue. CD36 overexpression promoted the proliferation, migration, invasion, and in vivo tumor growth of HCC cells, whereas silencing CD36 had the opposite effects. By analysis of cell metabolic phenotype, CD36 expression showed a positive association with extracellular acidification rate, a measure of glycolysis, instead of oxygen consumption rate. Further experiments verified that overexpression of CD36 resulted in increased glycolysis flux and lactic acid production. Mechanistically, CD36 induced mTOR-mediated oncogenic glycolysis via activation of Src/PI3K/AKT signaling axis. Pretreatment of HCC cells with PI3K/AKT/mTOR inhibitors largely blocked the tumor-promoting effect of CD36. Our findings suggest that CD36 exerts a stimulatory effect on HCC growth and metastasis, through mediating aerobic glycolysis by the Src/PI3K/AKT/mTOR signaling pathway.Subject terms: Cancer metabolism, Tumour biomarkers  相似文献   

3.
Cervical cancer is common cancer among women with high morbidity. MicroRNAs (miRs) are involved in the progression and development of cervical cancer. This study aimed to explore the effect of miR-99b-5p (miR-99b) on invasion and migration in cervical cancer through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway. The microarray-based analysis was used to screen out differentially expressed miRNAs. Expression of miR-99b, PI3K, AKT, mTOR, and ribosomal protein S6 kinase (p70S6K) was determined in both cervical cancer tissues and paracancerous tissues. Next, alteration of miR-99b expression in cervical cancer was conducted to evaluate levels of PI3K, AKT, mTOR, p70S6K matrix metallopeptidase 2, epithelial cell adhesion molecule, and intercellular adhesion molecule 1, as well as the effect of miR-99b on cell proliferation, invasion, migration, cell cycle distribution, and apoptosis. The results demonstrated that miR-99b expression was decreased and levels of PI3K, AKT, mTOR, and p70S6K were elevated in cervical cancer tissues. More important, overexpressed miR-99b repressed the PI3K/AKT/mTOR signaling pathway, inhibited cell proliferation, invasion, and migration, blocked cell cycle entry, and promoted apoptosis in cervical cancer. These results indicate that miR-99b attenuates the migration and invasion of human cervical cancer cells through downregulation of the PI3K/AKT/mTOR signaling pathway, which provides a therapeutic approach for cervical cancer treatment.  相似文献   

4.
5.
6.
Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells.  相似文献   

7.
8.
Synovial fibroblasts (SFs) of rheumatoid arthritis (RA) are phenotypically aggressive, typically progressing into arthritic cartilage degradation. Throughout our study, we made explorations into the effects of microRNA-135a (miR-135a) on the SFs involved in RA by mediating the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway via regulation of phosphatidylinositol 3-kinase regulatory subunit 2 (PIK3R2). The expression of PI3K was higher, the expression of PIK3R2 was lower, and AKT was phosphorylated in the RA synovial tissues, relative to the levels found in the normal synovial tissues. We predicted miR-135a to be a candidate miR targeting PIK3R2 using an online website, microRNA.org, which was verified with a dual-luciferase reporter gene assay. Subsequently, high miR-135a expression was observed in RA synovial tissues. To study the effect of the interaction between miR-135a and PIK3R2 in RA, the SFs isolated from RA samples were cultured and transfected with mimic, inhibitor, and small interfering RNA. The proliferation, invasion, and apoptosis of the SFs were detected after the transfection. The cells transfected with miR-135a inhibitor showed inhibited cell proliferation, migration, and invasion, while also displaying promoted cell apoptosis, G0/G1 cell ratio, and decreased S cell ratio, through upregulation of PIK3R2 and inactivation of the PI3K/AKT signaling pathway. These findings provided evidence that downregulation of miR-135a inhibits proliferation, migration, and invasion and promotes apoptosis of SFs in RA by upregulating the PIK3R2 coupled with inactivating the PI3K/AKT signaling pathway. The downregulation of miR-135a might be a potential target in the treatment of RA.  相似文献   

9.
10.
Wnt‐signaling pathway is implicated in pancreatic development and functional regulation of mature beta‐cells. Wnt3a/Wnt pathway activation expands islet cell mass in vitro by increasing proliferation and decreasing apoptosis of beta‐cells, thereby enhancing its function. However, the signaling pathways that mediate these effects remain unknown. By using a clonal beta‐cell line (NIT‐1), we examined the role of IRS2/PI3K in the mediation of Wnt3a‐stimulated beta‐cell growth. Real‐time PCR and Western blot were employed to investigate the activity of Wnt/β‐catenin and IRS2/PI3K signaling. Proliferation of NIT‐1 cells was assessed by BrdU incorporation, and apoptosis was quantitatively determined by TUNEL and flow cytometry (FCM). Dkk1, an inhibitor of Wnt signaling, and wortmannin, an inhibitor of PI3K, were also used. Results showed that Wnt3a rapidly activated Wnt/β‐catenin signaling, promoted IRS2 expression and Akt phosphorylation in NIT‐1 cells. These effects were completely abrogated by Dkk1 or partially eliminated by wortmannin. Wnt3a also promoted NIT‐1 cell proliferation, inhibited cytokine‐induced beta‐cell apoptosis, and increased insulin secretion. Both of these effects were also eliminated by Dkk1 or wortmannin. Our results demonstrated that Wnt3a regulates proliferation, apoptosis and enhances function of pancreatic NIT‐1 beta cells via activation of Wnt/β‐catenin signaling, involving crosstalk with IRS2/PI3K signaling, with the effect of Wnt signaling on beta‐cells also being IRS2/PI3K/AKT dependent. J. Cell. Biochem. 114: 1488–1497, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
本研究检测了40例食管癌组织和40例癌旁组织中的miR-21、PTEN、PI3K和AKT表达,并通过转染miR-21抑制剂来敲低人食管癌细胞系EC9706的miR-21表达,考察了miR-21对食管癌细胞生长的影响。研究发现,食管癌组织中PTEN蛋白的阳性染色评分低于癌旁组织(p<0.05),而PI3K和AKT蛋白的阳性染色评分高于癌旁组织(p<0.05)。miR-21在人食管癌组织中被上调(3.56 vs 1.21,p<0.05)。转染miR-21抑制剂导致PTEN蛋白表达升高,而PI3K和AKT蛋白表达降低(p<0.05)。转染miR-21抑制剂抑制了EC9706细胞的增殖和迁移,但促进了细胞凋亡(p<0.05)。miR-21的上调可通过激活PTEN/PI3K/AKT信号通路来促进食道癌细胞的增殖和迁移,并抑制细胞凋亡。  相似文献   

12.
Purvalanol and roscovitine are cyclin dependent kinase (CDK) inhibitors that induce cell cycle arrest and apoptosis in various cancer cells. We further hypothesized that co-treatment of CDK inhibitors with rapamycin, an mTOR inhibitor, would be an effective combinatory strategy for the inhibition of prostate cancer regard to androgen receptor (AR) status due to inhibition of proliferative pathway, PI3K/AKT/mTOR, and induction of cell death mechanisms. Androgen responsive (AR+), PTEN?/? LNCaP and androgen independent (AR?), PTEN+/? DU145 prostate cancer cells were exposed to purvalanol (20 µM) and roscovitine (30 µM) with or without rapamycin for 24 h. Cell viability assay, immunoblotting, flow cytometry and fluorescence microscopy was used to define the effect of CDK inhibitors with or without rapamycin on proliferative pathway and cell death mechanisms in LNCaP and DU145 prostate cancer cells. Co-treatment of rapamycin modulated CDK inhibitors-induced cytotoxicity and apoptosis that CDK inhibitors were more potent to induce cell death in AR (+) LNCaP cells than AR (?) DU145 cells. CDK inhibitors in the presence or absence of rapamycin induced cell death via modulating upstream PI3K/AKT/mTOR signaling pathway in LNCaP cells, exclusively only treatment of purvalanol have strong potential to inhibit both upstream and downstream targets of mTOR in LNCaP and DU145 cells. However, co-treatment of rapamycin with CDK inhibitors protects DU145 cells from apoptosis via induction of autophagy mechanism. We confirmed that purvalanol and roscovitine were strong apoptotic and autophagy inducers that based on regulation of PI3K/AKT/mTOR signaling pathway. Co-treatment of rapamycin with purvalanol and roscovitine exerted different effects on cell survival and death mechanisms in LNCaP and DU145 cell due to their AR receptor status. Our studies show that co-treatment of rapamycin with CDK inhibitors inhibit prostate cancer cell viability more effectively than either agent alone, in part, by targeting the mTOR signaling cascade in AR (+) LNCaP cells. In this point, mTOR is a fine-tuning player in purvalanol and roscovitine-induced apoptosis and autophagy via regulation of PI3K/AKT and the downstream targets, which related with cell proliferation.  相似文献   

13.
《Cellular signalling》2014,26(12):2782-2792
Angiogenin (ANG), a member of RNase A superfamily, is the only angiogenic factor that possesses ribonucleolytic activity. Recent studies showed that the expression of ANG was elevated in various types of cancers. Accumulating evidence indicates that ANG plays an essential role in cancer progression by stimulating both cancer cell proliferation and tumor angiogenesis. Human ribonuclease inhibitor (RI), a cytoplasmic protein, is constructed almost entirely of leucine rich repeats (LRRs), which are present in a large family of proteins that are distinguished by their display of vast surface areas to foster protein–protein interactions. RI might be involved in unknown biological effects except inhibiting RNase A activity. The experiment demonstrated that RI also could suppress activity of angiogenin (ANG) through closely combining with it in vitro. PI3K/AKT/mTOR signaling pathway exerts a key role in cell growth, survival, proliferation, apoptosis and angiogenesis. We recently reported that up-regulating RI inhibited the growth and induced apoptosis of murine melanoma cells through repression of angiogenin and PI3K/AKT signaling pathway. However, ANG receptors have not yet been identified to date, its related signal transduction pathways are not fully clear and underlying interacting mechanisms between RI and ANG remain largely unknown. Therefore, we hypothesize that RI might combine with intracellular ANG to block its nuclear translocation and regulate PI3K/AKT/mTOR signaling pathway to inhibit biological functions of ANG. Here, we reported for the first time that ANG could interact with RI endogenously and exogenously by using co-immunoprecipitation (Co-IP) and GST pull-down. Furthermore, we observed the colocalization of ANG and RI in cells with immunofluorescence staining under laser confocal microscope. Moreover, through fluorescence resonance energy transfer (FRET) assay, we further confirmed that these two proteins have a physical interaction in living cells. Subsequently, we demonstrated that up-regulating ANG including ANG His37Ala mutant obviously decreased RI expression and activated phosphorylation of key downstream target molecules of PI3K/AKT/mTOR signaling pathway. Finally, up-regulating ANG led to the promotion of tumor angiogenesis, tumorigenesis and metastasis in vivo. Taken together, our data provided a novel mechanism of ANG in regulating PI3K/AKT/mTOR signaling pathway via RI, which suggested a new therapeutic target for cancer therapy.  相似文献   

14.
The regulation of signal transmission and biological processes, such as cell proliferation, apoptosis, metabolism, migration, and angiogenesis are greatly influenced by the PI3K/AKT signaling pathway. Highly conserved endogenous non-protein-coding RNAs known as microRNAs (miRNAs) have the ability to regulate gene expression by inhibiting mRNA translation or mRNA degradation. MiRNAs serve key role in PI3K/AKT pathway as upstream or downstream target, and aberrant activation of this pathway contributes to the development of cancers. A growing body of research shows that miRNAs can control the PI3K/AKT pathway to control the biological processes within cells. The expression of genes linked to cancers can be controlled by the miRNA/PI3K/AKT axis, which in turn controls the development of cancer. There is also a strong correlation between the expression of miRNAs linked to the PI3K/AKT pathway and numerous clinical traits. Moreover, PI3K/AKT pathway-associated miRNAs are potential biomarkers for cancer diagnosis, therapy, and prognostic evaluation. The role and clinical applications of the PI3K/AKT pathway and miRNA/PI3K/AKT axis in the emergence of cancers are reviewed in this article.  相似文献   

15.
目的:探究Rab11a在胰腺癌中的表达模式及其对肿瘤生长和转移的影响.方法:通过免疫组织化学法、RT-PCR和Western blot检测60例胰腺癌患者的癌组织和癌旁组织中Rab11a的表达.通过对人胰腺癌细胞系PANC1转染靶向Rab11a的小干扰RNA或过表达Rab11a的pcDNA3.1质粒考察Rab11a对细...  相似文献   

16.
This study aimed to evaluate the correlation of integrin alpha 7 (ITGA7) with clinical outcomes and its effect on cell activities as well as stemness in hepatocellular carcinoma (HCC). HCC tumor tissues and paired adjacent tissues from 90 HCC patients were obtained and ITGA7 expression was detected using immunohistochemistry assay. Cellular experiments were conducted to examine the effect of ITGA7 on cell activities, astemness via ITGA7 ShRNA transfection, and compensation experiments were further performed to test whether ITGA7 functioned via regulating PTK2-PI3K-AKT signaling pathway. ITGA7 was overexpressed in tumor tissues compared with paired adjacent tissues and its high expression was correlated with larger tumor size, vein invasion and advanced Barcelona Clinic Liver Cancer stage, and it also independently predicted worse overall survival in HCC patients. In cellular experiments, ITGA7 was upregulated in SMMC-7721, Hep G2, HuH-7 and BEL-7404 cell lines compared with normal human liver cells HL-7702. ITGA7 knockdown suppressed cell proliferation but promoted apoptosis, and it also downregulated CSCs markers (CD44, CD133 and OCT-4) as well as PTK2, PI3K and AKT expressions in SMMC-7721 and Hep G2 cell lines. ITGA7 overexpression promoted cell proliferation but inhibited apoptosis, and it also upregulated CSCs markers in HL-7702 cells. Further compensation experiments verified that ITGA7 regulated cell proliferation, apoptosis and CSCs markers via PTK2-PI3K-Akt signaling pathway. ITGA7 negatively associates with clinical outcomes in HCC patients, and it regulates cell proliferation, apoptosis and CSCs markers via PTK2-PI3K-Akt signaling pathway.  相似文献   

17.
Fang J  Ding M  Yang L  Liu LZ  Jiang BH 《Cellular signalling》2007,19(12):2487-2497
PI3K pathway exerts its function through its downstream molecule AKT in regulating various cell functions including cell proliferation, cell transformation, cell apoptosis, tumor growth and angiogenesis. PTEN is an inhibitor of PI3K, and its loss or mutation is common in human prostate cancer. But the direct role and mechanism of PI3K/PTEN signaling in regulating angiogenesis and tumor growth in vivo remain to be elucidated. In this study, by using chicken chorioallantoic membrane (CAM) and in nude mice models, we demonstrated that inhibition of PI3K activity by LY294002 decreased PC-3 cells-induced angiogenesis. Reconstitution of PTEN, the molecular inhibitor of PI3K in PC-3 cells inhibited angiogenesis and tumor growth. Immunohistochemical staining indicated that PTEN expression suppressed HIF-1, VEGF and PCNA expression in the tumor xenographs. Similarly, expression of AKT dominant negative mutant also inhibited angiogenesis and tumor growth, and decreased the expression of HIF-1 and VEGF in the tumor xenographs. These results suggest that inhibition of PI3K signaling pathway by PTEN inhibits tumor angiogenesis and tumor growth. In addition, we found that AKT is the downstream target of PI3K in controlling angiogenesis and tumor growth, and PTEN could inhibit angiogenesis by regulating the expression of HIF-1 and VEGF expression through AKT activation in PC-3 cells.  相似文献   

18.
Aberrant expression of the tripartite motif containing 59 (TRIM59) has been reported to participate in the development and progression of various human cancers. However, its expression pattern and cellular roles in pancreatic cancer (PC) remains unclear. In our study, we found that TRIM59 expression was significantly increased in PC tissues and was positively correlated with several malignant behaviors and poor overall survival of PC patients based on bioinformatics analysis and immunohistochemistry staining. Functionally, small interfering RNA–mediated TRIM59 depletion inhibited cell proliferation and migration in vitro, while TRIM59 overexpression promoted cell proliferation and migration in vitro and drove tumor growth and liver metastasis in vivo. Mechanically, TRIM59 was found to enhance glycolysis through activating the PI3K/AKT/mTOR pathway, ultimately contributing to PC progression. Taken together, our results demonstrate that TRIM59 may be a potential predictor for PC and promotes PC progression via the PI3K/AKT/mTOR-glycolysis signaling pathway, which establishes the rationale for targeting the TRIM59-related pathways to treat PC.  相似文献   

19.
Gastric cancer is a major cause of mortality worldwide. The glutamate/aspartate transporter SLC1A3 has been implicated in tumour metabolism and progression, but the roles of SLC1A3 in gastric cancer remain unclear. We used bioinformatics approaches to analyse the expression of SLC1A3 and its role in gastric cancer. The expression levels of SLC1A3 were examined using RT‐qPCR and Western bolting. SLC1A3 overexpressing and knock‐down cell lines were constructed, and the cell viability was evaluated. Glucose consumption, lactate excretion and ATP levels were determined. The roles of SLC1A3 in tumour growth were evaluated using a xenograft tumour growth model. SLC1A3 was found to be overexpressed in gastric cancer, and this overexpression was associated with poor prognosis. In vitro and in vivo assays showed that SLC1A3 affected glucose metabolism and promoted gastric cancer growth. GSEA analysis suggested that SLC1A3 was positively associated with the up‐regulation of the PI3K/AKT pathway. SLC1A3 overexpression activated the PI3K/AKT pathway and up‐regulated GLUT1, HK II and LDHA expression. The PI3K/AKT inhibitor LY294002 prevented SLC1A3‐induced glucose metabolism and cell proliferation. Our findings indicate that SLC1A3 promotes gastric cancer progression via the PI3K/AKT signalling pathway. SLC1A3 is therefore a potential therapeutic target in gastric cancer.  相似文献   

20.
HSP20 (HSPB6), one of small heat shock proteins (HSPs), is constitutively expressed in various tissues and has several functions. We previously reported that the expression levels of HSP20 in human hepatocellular carcinoma (HCC) cells inversely correlated with the progression of HCC, and that HSP20 suppresses the growth of HCC cells via the AKT and mitogen-activated protein kinase signaling pathways. However, the exact mechanism underlying the effect of HSP20 on the regulation of these signaling pathways remains to be elucidated. To clarify the details of this effect in HCC, we explored the direct targets of HSP20 in HCC using human HCC-derived HuH7 cells with HSP20 overexpression. HSP20 proteins in the HuH7 cells were coimmunoprecipitated with the p85 regulatory subunit and p110 catalytic subunit of phosphoinositide 3-kinase (PI3K), an upstream kinase of AKT. Although HSP20 overexpression in HCC cells failed to affect the expression levels of PI3K, the activity of PI3K in the unstimulated cells and even in the transforming growth factor-α stimulated cells were downregulated by HSP20 overexpression. The association of HSP20 with PI3K was also observed in human HCC tissues in vivo. These findings strongly suggest that HSP20 directly associates with PI3K and suppresses its activity in HCC, resulting in the inhibition of the AKT pathway, and subsequently decreasing the growth of HCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号