首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究蛋白质O-甘露糖转移酶-1(Protein O-mannosyltransferase-1,Pmt1p)与Pmt5p基因对酵母细胞寿命的影响,采用一步基因置换法构建PMT5基因缺失菌株(pmt5Δ),在此基础上,缺失PMT1基因,构建PMT1和PMT5双基因缺失菌株(pmt1Δpmt5Δ)。显微镜下分离和计数酵母子细胞的数目,统计菌株的复制性寿命;检测细胞吸光度值来评价细胞分裂增殖速度。结果发现,与对照组酵母细胞的平均复制性寿命(25代)比较,pmt5Δ菌株(26代)的寿命无明显变化(P 0. 05),而pmt1Δpmt5Δ菌株(21代)的寿命明显缩短(P 0. 01);热量限制条件下,与对照组酵母细胞比较,pmt5Δ菌株的生长曲线无明显变化,而pmt1Δpmt5Δ菌株的生长曲线低平,细胞分裂增殖减慢。结果表明,PMT1与PMT5双基因缺失明显缩短酵母细胞的寿命,机制可能与细胞的增殖活力下降有关。  相似文献   

2.
The yeast a-factor receptor (encoded by STE3) is subject to two modes of endocytosis, a ligand-dependent endocytosis as well as a constitutive, ligand-independent mode. Both modes are associated with receptor ubiquitination (Roth, A.F., and N.G. Davis. 1996. J. Cell Biol. 134:661–674) and both depend on sequence elements within the receptor''s regulatory, cytoplasmically disposed, COOH-terminal domain (CTD). Here, we concentrate on the Ste3p sequences required for constitutive endocytosis. Constitutive endocytosis is rapid. Receptor is synthesized, delivered to the cell surface, endocytosed, and then delivered to the vacuole where it is degraded, all with a t 1/2 of 15 min. Deletion analysis has defined a 36-residue-long sequence mapping near the COOH-terminal end of the Ste3p CTD that is the minimal sequence required for this rapid turnover. Deletions intruding into this interval block or severely slow the rate of endocytic turnover. Moreover, the same 36-residue sequence directs receptor ubiquitination. Mutants deleted for this sequence show undetectable levels of ubiquitination, and mutants having intermediate endocytosis defects show a correlated reduced level of ubiquitination. Not only necessary for ubiquitination and endocytosis, this sequence also is sufficient. When transplanted to a stable cell surface protein, the plasma membrane ATPase Pma1p, the 36-residue STE3 signal directs both ubiquitination of the PMA1-STE3 fusion protein as well as its endocytosis and consequent vacuolar degradation. Alanine scanning mutagenesis across the 36-residue-long interval highlights its overall complexity—no singular sequence motif or signal is found, instead required sequence elements distribute throughout the entire interval. The high proportion of acidic and hydroxylated amino acid residues in this interval suggests a similarity to PEST sequences—a broad class of sequences which have been shown to direct the ubiquitination and subsequent proteosomal degradation of short-lived nuclear and cytoplasmic proteins. A likely possibility, therefore, is that this sequence, responsible for both endocytosis and ubiquitination, may be first and foremost a ubiquitination signal. Finally, we present evidence suggesting that the true signal in the wild-type receptor extends beyond the 36-residue-long sequence defined as a minimal signal to include contiguous PEST-like sequences which extend another 21 residues to the COOH terminus of Ste3p. Together with sequences identified in two other yeast plasma membrane proteins, the STE3 sequence defines a new class of ubiquitination/endocytosis signal.  相似文献   

3.
Considered to be the cleanest liquid fuel, bio-ethanol can be a reliable alternative to fossil fuels. It is produced by fermentation of sugar components of plant materials. The common onions are considered to be a favorable source of fermentation products as they have high sugar contents as well as contain various nutrients. This study focused on the effective production of ethanol from Green onion (Allium fistulosum L.) by the yeast “Saccharomyces cerevisiae” in repeated batch. The results showed that the total sugar concentration of onion juice was 68.4 g/l. The maximum rate of productivity, ethanol yield and final bio-ethanol percentage was 7 g/l/h (g ethanol per liter of onion juice per hour), 35 g/l (g ethanol per liter of onion juice) and 90 %, respectively.  相似文献   

4.
Microtubule dynamics vary during the cell cycle, and microtubules appear to be more dynamic in vivo than in vitro. Proteins that promote dynamic instability are therefore central to microtubule behavior in living cells. Here, we report that a yeast protein of the highly conserved EB1 family, Bim1p, promotes cytoplasmic microtubule dynamics specifically during G1. During G1, microtubules in cells lacking BIM1 showed reduced dynamicity due to a slower shrinkage rate, fewer rescues and catastrophes, and more time spent in an attenuated/paused state. Human EB1 was identified as an interacting partner for the adenomatous polyposis coli (APC) tumor suppressor protein. Like human EB1, Bim1p localizes to dots at the distal ends of cytoplasmic microtubules. This localization, together with data from electron microscopy and a synthetic interaction with the gene encoding the kinesin Kar3p, suggests that Bim1p acts at the microtubule plus end. Our in vivo data provide evidence of a cell cycle–specific microtubule-binding protein that promotes microtubule dynamicity.  相似文献   

5.
Proteins belonging to the CAP superfamily are present in all kingdoms of life and have been implicated in different physiological processes. Their molecular mode of action, however, is poorly understood. Saccharomyces cerevisiae expresses three members of this superfamily, pathogen-related yeast (Pry)1, -2, and -3. We have recently shown that Pry function is required for the secretion of cholesteryl acetate and that Pry proteins bind cholesterol and cholesteryl acetate, suggesting that CAP superfamily members may generally act to bind sterols or related small hydrophobic compounds. Here, we analyzed the mode of sterol binding by Pry1. Computational modeling indicates that ligand binding could occur through displacement of a relatively poorly conserved flexible loop, which in some CAP family members displays homology to the caveolin-binding motif. Point mutations within this motif abrogated export of cholesteryl acetate but did not affect binding of cholesterol. Mutations of residues located outside the caveolin-binding motif, or mutations in highly conserved putative catalytic residues had no effect on export of cholesteryl acetate or on lipid binding. These results indicate that the caveolin-binding motif of Pry1, and possibly of other CAP family members, is crucial for selective lipid binding and that lipid binding may occur through displacement of the loop containing this motif.  相似文献   

6.
We have identified ScPex18p and ScPex21p, two novel S. cerevisiae peroxins required for protein targeting via the PTS2 branch of peroxisomal biogenesis. Targeting by this pathway is known to involve the interaction of oligopeptide PTS2 signals with Pex7p, the PTS2 receptor. Pex7p function is conserved between yeasts and humans, with defects in the human protein causing rhizomelic chondrodysplasia punctata (RCDP), a severe, lethal peroxisome biogenesis disorder characterized by aberrant targeting of several PTS2 peroxisomal proteins, but uncertainty remains about the subcellular localization of this receptor. Previously, we have reported that ScPex7p resides predominantly in the peroxisomal matrix, suggesting that it may function as a highly unusual intraorganellar import receptor, and the data presented in this paper identify Pex18p and Pex21p as key components in the targeting of Pex7p to peroxisomes. They each interact specifically with Pex7p both in two-hybrid analyses and in vitro. In cells lacking both Pex18p and Pex21p, Pex7p remains cytosolic and PTS2 targeting is completely abolished. Pex18p and Pex21p are weakly homologous to each other and display partial functional redundancy, indicating that they constitute a two-member peroxin family specifically required for Pex7p and PTS2 targeting.  相似文献   

7.
The Saccharomyces cerevisiae type 2C protein phosphatase Ptc1 is required for a wide variety of cellular functions, although only a few cellular targets have been identified. A genetic screen in search of mutations in protein kinase–encoding genes able to suppress multiple phenotypic traits caused by the ptc1 deletion yielded a single gene, MKK1, coding for a MAPK kinase (MAPKK) known to activate the cell-wall integrity (CWI) Slt2 MAPK. In contrast, mutation of the MKK1 paralog, MKK2, had a less significant effect. Deletion of MKK1 abolished the increased phosphorylation of Slt2 induced by the absence of Ptc1 both under basal and CWI pathway stimulatory conditions. We demonstrate that Ptc1 acts at the level of the MAPKKs of the CWI pathway, but only the Mkk1 kinase activity is essential for ptc1 mutants to display high Slt2 activation. We also show that Ptc1 is able to dephosphorylate Mkk1 in vitro. Our results reveal the preeminent role of Mkk1 in signaling through the CWI pathway and strongly suggest that hyperactivation of Slt2 caused by upregulation of Mkk1 is at the basis of most of the phenotypic defects associated with lack of Ptc1 function.  相似文献   

8.
9.
10.
11.
The vertebrate nuclear pore complex (NPC) harbors an approximately 10-nm diameter diffusion channel that is large enough to admit 50-kD polypeptides. We have analyzed the permeability properties of the Saccharomyces cerevisiae nuclear envelope (NE) using import (NLS) and export (NES) signal-containing green fluorescent protein (GFP) reporters. Compared with wild-type, passive export rates of a classical karyopherin/importin (Kap) Kap60p/Kap95p-targeted NLS-GFP reporter (cNLS-GFP) were significantly faster in nup188-Delta and nup170-Delta cells. Similar results were obtained using two other NLS-GFP reporters, containing either the Kap104p-targeted Nab2p NLS (rgNLS) or the Kap121p-targeted Pho4p NLS (pNLS). Elevated levels of Hsp70 stimulated cNLS-GFP import, but had no effect on the import of rgNLS-GFP. Thus, the role of Hsp70 in NLS-directed import may be NLS- or targeting pathway-specific. Equilibrium sieving limits for the diffusion channel were assessed in vivo using NES-GFP reporters of 36-126 kD and were found to be greater than wild-type in nup188-Delta and nup170-Delta cells. We propose that Nup170p and Nup188p are involved in establishing the functional resting diameter of the NPC's central transport channel.  相似文献   

12.
The absence of telomerase in many eukaryotes leads to the gradual shortening of telomeres, causing replicative senescence. In humans, this proliferation barrier constitutes a tumor suppressor mechanism and may be involved in cellular aging. Yet the heterogeneity of the senescence phenotype has hindered the understanding of its onset. Here we investigated the regulation of telomere length and its control of senescence heterogeneity. Because the length of the shortest telomeres can potentially regulate cell fate, we focus on their dynamics in Saccharomyces cerevisiae. We developed a stochastic model of telomere dynamics built on the protein-counting model, where an increasing number of protein-bound telomeric repeats shift telomeres into a nonextendable state by telomerase. Using numerical simulations, we found that the length of the shortest telomere is well separated from the length of the others, suggesting a prominent role in triggering senescence. We evaluated this possibility using classical genetic analyses of tetrads, combined with a quantitative and sensitive assay for senescence. In contrast to mitosis of telomerase-negative cells, which produces two cells with identical senescence onset, meiosis is able to segregate a determinant of senescence onset among the telomerase-negative spores. The frequency of such segregation is in accordance with this determinant being the length of the shortest telomere. Taken together, our results substantiate the length of the shortest telomere as being the key genetic marker determining senescence onset in S. cerevisiae.  相似文献   

13.
MTM1 基因对于维持锰超氧化物歧化酶的活性和线粒体正常功能十分重要,MTM1 基因的缺失会严重影响酵母锰超氧化物歧化酶活性,并损伤线粒体功能,因此在非发酵培养基上不能生长.利用MTM1 基因缺失的突变体在非发酵培养基上的生长缺陷,转入酵母基因组文库筛选MTM1 抑制基因,发现MTM1基因缺失造成的损伤一旦形成不可逆转,重新引入MTM1 基因也无法挽救,直接筛选无法得到抑制基因.为了避免MTM1缺失造成的不可逆损伤,在野生型酵母中先转入带有MTM1 基因的质粒,再敲除染色体上的MTM1 基因,随后转入基因组文库,再利用药物5-氟乳清酸(5-FOA)迫使细胞丢失表达MTM1基因的外源质粒,再筛选能在非发酵培养基上生长的转化子,通过这种方法筛选发现,POR2等5个基因的过表达可以挽救MTM1 基因缺失造成的非发酵培养基上的生长缺陷,为深入了解MTM1基因的功能提供了线索,对筛选其他造成不可逆损伤的突变基因的抑制基因提供了一条可行的研究思路.  相似文献   

14.
Topoisomerase II is required for the viability of all eukaryotic cells. It plays important roles in DNA replication, recombination, chromosome segregation, and the maintenance of the nuclear scaffold. Proteins that interact with and regulate this essential enzyme are of great interest. To investigate the role of proteins interacting with the N-terminal domain of the Saccharomyces cerevisiae topoisomerase II, we used a yeast two-hybrid protein interaction screen. We identified an interaction between arginyl-tRNA-protein transferase (Ate1) and the N-terminal domain of the S. cerevisiae topoisomerase II, including the potential site of interaction. Ate1 is a component of the N-end rule protein degradation pathway which targets proteins for degradation. We also propose a previously unidentified role for Ate1 in modulating the level of topoisomerase II through the cell cycle.  相似文献   

15.
Tel1 is the budding yeast ortholog of the mammalian tumor suppressor and DNA damage response (DDR) kinase ATM. However, tel1 cells, unlike ATM-deficient cells, do not exhibit sensitivity to DNA-damaging agents, but do display shortened (but stably maintained) telomere lengths. Neither the extent to which Tel1p functions in the DDR nor the mechanism by which Tel1 contributes to telomere metabolism is well understood. To address the first question, we present the results from a comprehensive genome-wide screen for genetic interactions with tel1 that cause sensitivity to methyl methanesulfonate (MMS) and/or ionizing radiation, along with follow-up characterizations of the 13 interactions yielded by this screen. Surprisingly, many of the tel1 interactions that confer DNA damage sensitivity also exacerbate the short telomere phenotype, suggesting a connection between these two phenomena. Restoration of normal telomere length in the tel1-Δ xxx-Δ mutants results in only minor suppression of the DNA damage sensitivity, demonstrating that the sensitivity of these mutants must also involve mechanisms independent of telomere length. In support of a model for increased replication stress in the tel1-Δ xxx-Δ mutants, we show that depletion of dNTP pools through pretreatment with hydroxyurea renders tel1 cells (but not wild type) MMS-sensitive, demonstrating that, under certain conditions, Tel1p does indeed play a critical role in the DDR.  相似文献   

16.
The Saccharomyces cerevisiae Dnm1 protein is structurally related to dynamin, a GTPase required for membrane scission during endocytosis. Here we show that Dnm1p is essential for the maintenance of mitochondrial morphology. Disruption of the DNM1 gene causes the wild-type network of tubular mitochondrial membranes to collapse to one side of the cell but does not affect the morphology or distribution of other cytoplasmic organelles. Dnm1 proteins containing point mutations in the predicted GTP-binding domain or completely lacking the GTP-binding domain fail to rescue mitochondrial morphology defects in a dnm1 mutant and induce dominant mitochondrial morphology defects in wild-type cells. Indirect immunofluorescence reveals that Dnm1p is distributed in punctate structures at the cell cortex that colocalize with the mitochondrial compartment. These Dnm1p-containing structures remain associated with the spherical mitochondria found in an mdm10 mutant strain. In addition, a portion of Dnm1p cofractionates with mitochondrial membranes during differential sedimentation and sucrose gradient fractionation of wild-type cells. Our results demonstrate that Dnm1p is required for the cortical distribution of the mitochondrial network in yeast, a novel function for a dynamin-related protein.  相似文献   

17.
The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae, certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3' exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5'-3' exonucleolytic degradation by Rat1 and Xrn1. Thus, trm8-Δ trm4-Δ strains are temperature sensitive due to lack of m(7)G(46) and m(5)C and the consequent RTD of tRNA(Val(AAC)), and tan1-Δ trm44-Δ strains are temperature sensitive due to lack of ac(4)C(12) and Um(44) and the consequent RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)). It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. We provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD, whereas reduced levels of EF-1A have the opposite effect. We also provide evidence that RTD acts on a variety of tRNAs lacking one or more different modifications, since trm1-Δ trm4-Δ mutants are subject to RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)) due to lack of m(2,2)G(26) and m(5)C, and since trm8-Δ, tan1-Δ, and trm1-Δ single mutants are each subject to RTD. These results demonstrate that RTD interacts with the translation machinery and acts widely on hypomodified tRNAs.  相似文献   

18.
Pre-messenger RNA splicing is carried out by a large ribonucleoprotein complex called the spliceosome. Despite the striking evolutionary conservation of the spliceosomal components and their functions, controversy persists about the relative importance of splicing in Saccharomyces cerevisiae—particularly given the paucity of intron-containing genes in yeast. Here we show that splicing of one pre-messenger RNA, SUS1, a component of the histone H2B ubiquitin protease machinery, is essential for establishing the proper modification state of chromatin. One protein complex that is intimately involved in pre-mRNA splicing, the yeast cap-binding complex, appears to be particularly important, as evidenced by its extensive and unique genetic interactions with enzymes that catalyze histone H2B ubiquitination. Microarray studies show that cap binding complex (CBC) deletion has a global effect on gene expression, and for ∼20% of these genes, this effect is suppressed when ubiquitination of histone H2B is eliminated. Consistent with this finding of histone H2B dependent effects on gene expression, deletion of the yeast cap binding complex leads to overubiquitination of histone H2B. A key component of the ubiquitin-protease module of the SAGA complex, Sus1, is encoded by a gene that contains two introns and is misspliced when the CBC is deleted, leading to destabilization of the ubiquitin protease complex and defective modulation of cellular H2B levels. These data demonstrate that pre-mRNA splicing plays a critical role in histone H2B ubiquitination and that the CBC in particular helps to establish the proper state of chromatin and proper expression of genes that are regulated at the level of histone H2B ubiquitination.  相似文献   

19.
20.
To study the effect of the ret1-1 mutation on the secretome, the glycosylation patterns and locations of the secretory proteins and glycosyltransferases responsible for glycosylation were investigated. Analyses of secretory proteins and cell wall-associated glycoproteins showed severe impairment of glycosylation in this mutant. Results from 2D-polyacrylamide gel electrophoresis (PAGE) indicated defects in the glycosylation and cellular localization of SDS-soluble cell wall proteins. Localization of RFP-tagged glycosyltransferase proteins in ret1-1 indicated an impairment of Golgi-to retrograde transport at a non-permissive temperature. Thus, impaired glycosylation caused by the mislocalization of ER resident proteins appears to be responsible for the alterations in the secretome and the increased sensitivity to ER stress in ret1-1 mutant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号