首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The TET family of dioxygenases (TET1/2/3) can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) and has been shown to be involved in active and passive DNA demethylation. Here, we demonstrate that altering TET dioxygenase levels within physiological range can affect DNA methylation dynamics of HEK293 cells. Overexpression of TET1 increased global 5hmC levels and was accompanied by mild DNA demethylation of promoters, gene bodies and CpG islands. Conversely, the simultaneous knockdown of TET1, TET2, and TET3 led to decreased global 5hmC levels and mild DNA hypermethylation of above-mentioned regions. The methylation changes observed in the overexpression and knockdown studies were mostly non-reciprocal and occurred with different preference depending on endogenous methylation and gene expression levels. Single-nucleotide 5hmC profiling performed on a genome-wide scale revealed that TET1 overexpression induced 5mC oxidation without a distribution bias among genetic elements and structures. Detailed analysis showed that this oxidation was related to endogenous 5hmC levels. In addition, our results support the notion that the effects of TET1 overexpression on gene expression are generally unrelated to its catalytic activity.  相似文献   

2.
In zygotes, a global loss of DNA methylation occurs selectively in the paternal pronucleus before the first cell division, concomitantly with the appearance of modified forms of 5-methylcytosine. The adjacent maternal pronucleus and certain paternally-imprinted loci are protected from this process. Nakamura et al. recently clarified the molecular mechanism involved: PGC7/Stella/Dppa3 binds to dimethylated histone 3 lysine 9 (H3K9me2), thereby blocking the activity of the Tet3 methylcytosine oxidase in the maternal genome as well as at certain imprinted loci in the paternal genome.DNA methylation is a crucial epigenetic modification that regulates imprinting (differential silencing of maternal or paternal alleles) and repression of retrotransposons and other parasitic DNA, as well as possibly X-chromosome inactivation and cellular differentiation. DNA methylation needs to be faithfully maintained throughout the life cycle, since loss of DNA methylation can result in gene dosage problems, dysregulation of gene expression, and genomic instability due to retrotransposon reactivation1. Nevertheless, genome-wide loss of DNA methylation has been observed during germ cell development2 and in the paternal pronucleus soon after fertilization3.For almost a decade, the global decrease of DNA methylation observed in the paternal genome within a few hours of fertilization was ascribed to an “active”, replication-independent process3. The maternal pronucleus is spared and instead undergoes “passive”, replication-dependent demethylation during early embryogenesis, arising from inhibition of the DNA maintenance methyltransferase Dnmt1 (Dnmt1 is normally recruited to newly-replicated DNA because of the high affinity of its obligate partner, UHRF1, for hemi-methylated DNA strands, which are produced from symmetrically-methylated CpG dinucleotides as a result of DNA replication). The basis for active and passive demethylation of the paternal and maternal genomes remained a mystery until proteins of the TET family – TET1, TET2 and TET3 in humans – were discovered to be Fe(II)- and 2-oxoglutarate-dependent enzymes capable of oxidizing 5-methylcytosine (5mC) in DNA4,5,6. TET enzymes serially convert 5mC into 5-hydroxymethyl-cytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC)5,7,8.With the generation of specific antibodies to 5hmC, it became clear that the supposed “active demethylation” of the paternal pronucleus in mouse zygote after fertilization was due to the inability of anti-5mC antibodies to recognize 5hmC and other 5mC oxidation products9,10. The enzyme responsible for 5mC oxidation was shown to be Tet3, which unlike Tet1 and Tet2 is highly expressed in mouse oocytes and zygotes. RNAi-mediated depletion of Tet3 decreased the staining of the paternal pronucleus with 5hmC, suggesting that immediately after fertilization, Tet3 in the zygote selectively oxidizes 5mC in the paternal genome to 5hmC9,10.How is the maternal pronucleus protected from Tet3 activity? Nakamura et al.11 previously showed that zygotes lacking PGC7/Stella/Dppa3 lose asymmetric regulation of DNA methylation, instead showing global loss of 5mC staining in both paternal and maternal pronuclei. This was correlated with hypomethylation at several maternally-imprinted loci (Peg1, Peg3, Peg10) in PGC7-deficient zygotes, as judged by bisulfite sequencing. Further, certain paternally-imprinted loci (H19, Rasgrf1), which are normally protected from global loss of methylation in the paternal genome, also became hypomethylated in PGC7-deficient zygotes. These data suggested that PGC7 protects the maternal genome, as well as certain paternally imprinted loci, from loss of 5mC.In their recent publication, Nakamura et al.12 elegantly extended these findings to address the mechanism involved. Based on the fact that a major difference between maternal and paternal genomes is that the maternal genome contains histones, whereas the DNA of the entering sperm is tightly packaged with protamine, they asked whether PGC7 recognizes specific histone marks. Indeed, the maternal genome harbors considerable levels of the histone mark H3K9me211, leading them to examine whether PGC7 distinguishes maternal and paternal genomes by recognizing H3K9me2 in the maternal genome. Using wild-type (WT) ES cells and ES cells deficient in the G9a lysine methyltransferase which generates H3K9me2 mark, they showed that PGC7 associated loosely with nucleosomes and chromatin lacking H3K9me2, but tightly if H3K9me2 was present. The binding was recapitulated using recombinant bacterially-expressed PGC7 and histone tail peptides, indicating a direct interaction of PGC7 with the H3K9me2 mark. In agreement, genomic loci enriched with H3K9me2 recruited PGC7 as judged by chromatin immunoprecipitation (ChIP), but this recruitment was abrogated in G9a-deficient ES cells. These data indicated that PGC7 targets genomic regions occupied by nucleosomes containing H3K9me2 (Figure 1); an interesting extension would be to ask whether loss of maternal G9a also results in 5hmC conversion in the maternal pronucleus in zygotes.Open in a separate windowFigure 1Schematic view of paternal (left) and maternal (right) genomes soon after fertilization. Paternal and maternal pronuclei are indicated with immunostaining results in the boxes. PGC7 binds H3K9me2 in the maternal pronucleus and at certain paternally-imprinted loci (H19, Rasgrf1) in the paternal pronucleus, thereby potentially regulating chromatin organization to interfere with Tet3 accessibility.Next, Nakamura et al.12 tested by immunocytochemistry whether PGC7 in zygotes also required H3K9me2. It is known that H3K9me2 staining is concentrated in the maternal but not the paternal pronucleus13. Using conventional staining methods in which the cells are first fixed and then permeabilized to allow antibodies to enter the cell, the authors observed in their earlier study that PGC7 bound to both pronuclei11. Remarkably, by simply reversing the order of the fixation and permeabilization steps – permeabilizing first to allow the loss of loosely bound proteins by dissociation, then fixing and staining – they found that PGC7 associated much more tightly with the maternal pronucleus that bears H3K9me2 mark. Injection of mRNA encoding Jhdm2a (an H3K9me1/ me2-specific demethylase) into zygotes eliminated staining for H3K9me2 as well as PGC7 in the maternal pronucleus, and concomitantly caused loss of 5mC and acquisition of 5hmC. Taken together, these data strongly suggested that PGC7 was selectively recruited to the maternal pronucleus through binding H3K9me2, and that this binding protected zygotic maternal DNA from oxidation of 5mC to 5hmC and beyond (Figure 1).These findings led Nakamura et al. to investigate how PGC7 controls Tet3 activity in zygotes. They showed (in cells that were permeabilized before fixation and immunocytochemistry) that Tet3 was tightly associated only with the paternal pronucleus in WT zygotes, but was present in both pronuclei in PGC7-deficient zygotes. When PGC7 was prevented from binding to the maternal pronucleus by injection of Jhdm2a mRNA, Tet3 became tightly associated with both pronuclei. In other words, loss of PGC7 or loss of H3K9me2 that recruits PGC7 had the same effect – eliminating selective association of Tet3 with the paternal genome. The implication is that PGC7 – which preferentially binds the maternal genome – somehow promotes the selective binding of Tet3 to the paternal genome, thus permitting rapid 5mC oxidation in paternal but not maternal DNA (Figure 1).PGC7 is a small protein (150 amino acids (aa) in the mouse, 159 aa in humans) whose sequence is only moderately conserved. Nakamura et al.12 showed that the binding of PGC7 to H3K9me2 required the N-terminal half of PGC7, whereas its ability to exclude Tet3 from the maternal pronucleus required the C-terminal half. It is unclear how Tet3 exclusion is mediated. One possibility is that the C-terminal region of PGC7 sterically excludes Tet3 from binding, either to DNA or to a chromatin mark; another is that the C-terminal region of PGC7 is capable of altering chromatin configuration to prevent the binding of Tet3 to chromatin. In support of the latter hypothesis, the rate with which micrococcal nuclease (MNase) digested high-molecular weight chromatin was significantly slower in WT ES cells in which PGC7 was present, compared to PGC7−/− and G9a−/− ES cells in which PGC7 was either absent or not recruited to DNA because of the loss of H3K9me2 mark. In contrast, DNA methylation did not alter the chromatin association of PGC7 or its ability to protect high-molecular weight chromatin from MNase digestion, as shown by using Dnmt1−/−Dnmt3a−/−Dnmt3b−/− triple knockout ES cells that completely lack DNA methylation.How does PGC7 protect paternally-imprinted loci from Tet3-mediated 5mC oxidation? Although the haploid sperm genome is mostly packaged with protamine, a genome-wide analysis revealed that 4% of the genome of mature human sperm bears nucleosomes located at developmental and imprinted genes14. Nakamura et al.12 found that among paternally-imprinted differentially methylated regions (DMRs), the H19 and Rasgrf1 DMRs contained H3K9me2 whereas the Meg3 DMR did not, consistent with their previous finding that in PGC7-deficient zygotes, the H19 and Rasgrf1 DMRs were hypomethylated but the Meg3 DMR was unaffected11. Therefore, PGC7 may be recruited to paternally-imprinted loci through H3K9me2-containing nucleosomes that pre-exist in the sperm haploid genome upon fertilization. Alternatively, Nakamura et al. point out that protamine in the sperm is replaced soon after fertilization by the histone H3.3 variant, which in somatic cells does not bear H3K9me2 mark.In conclusion, Nakamura et al.12 demonstrate unambiguously that PGC7 specifically binds to H3K9me2 in the maternal genome in zygotes, where its global occupancy excludes Tet3 and inhibits Tet3-mediated 5mC oxidation. This novel finding provides new insights into the global alterations of DNA methylation status that occur during early embryogenesis. Follow-up questions abound. First, can PGC7 protect other methylated loci such as transposable elements and the X-chromosome? It would be interesting to assess H3K9me2 at these loci. Second, how does the N-terminal half of PGC7 recognize H3K9me2? Structural characterization of this interaction may elucidate a novel epigenetic “reader” domain specific for H3K9me2. Third, PGC7 is a marker for cells of the inner cell mass, and is co-expressed with Tet1 and Tet2 rather than Tet3 in ESCs15. Does PGC7 also antagonize Tet1 and Tet2 and protect imprinted loci in ESCs? Fourth, how does PGC7 inhibit the access of Tet3 to chromatin? Considering that PGC7 is small and is not equipped with known enzymatic domains, it is likely that PGC-interacting proteins, rather than PGC7 itself, function to regulate chromatin status. Fifth, how is Tet3 recruited to paternal chromatin – are there specific histone or other epigenetic marks that facilitate Tet3 recruitment? Finally, while technically challenging, it seems imperative to identify the target genes of PGC7 and Tet3, by profiling the genomic location of 5hmC and other 5mC oxidation products in the paternal and maternal genomes of zygotes from WT, Tet3-deficient and PGC7-deficient mice.  相似文献   

3.
The ten-eleven translocation (TET) family of dioxygenases (TET1/2/3) converts 5-methylcytosine to 5-hydroxymethylcytosine and provides a vital mechanism for DNA demethylation. However, how TET proteins are regulated is largely unknown. Here we report that the O-linked β-GlcNAc (O-GlcNAc) transferase (OGT) is not only a major TET3-interacting protein but also regulates TET3 subcellular localization and enzymatic activity. OGT catalyzes the O-GlcNAcylation of TET3, promotes TET3 nuclear export, and, consequently, inhibits the formation of 5-hydroxymethylcytosine catalyzed by TET3. Although TET1 and TET2 also interact with and can be O-GlcNAcylated by OGT, neither their subcellular localization nor their enzymatic activity are affected by OGT. Furthermore, we show that the nuclear localization and O-GlcNAcylation of TET3 are regulated by glucose metabolism. Our study reveals the differential regulation of TET family proteins by OGT and a novel link between glucose metabolism and DNA epigenetic modification.  相似文献   

4.
5.
The DNA methylation program in vertebrates is an essential part of the epigenetic regulatory cascade of development, cell differentiation, and progression of diseases including cancer. While the DNA methyltransferases (DNMTs) are responsible for the in vivo conversion of cytosine (C) to methylated cytosine (5mC), demethylation of 5mC on cellular DNA could be accomplished by the combined action of the ten-eleven translocation (TET) enzymes and DNA repair. Surprisingly, the mammalian DNMTs also possess active DNA demethylation activity in vitro in a Ca2+- and redox conditions-dependent manner, although little is known about its molecular mechanisms and occurrence in a cellular context. In this study, we have used LC-MS/MS to track down the fate of the methyl group removed from 5mC on DNA by mouse DNMT3B in vitro and found that it becomes covalently linked to the DNA methylation catalytic cysteine of the enzyme. We also show that Ca2+ homeostasis-dependent but TET1/TET2/TET3/TDG-independent demethylation of methylated episomal DNA by mouse DNMT3A or DNMT3B can occur in transfected human HEK 293 and mouse embryonic stem (ES) cells. Based on these results, we present a tentative working model of Ca2+ and redox conditions-dependent active DNA demethylation by DNMTs. Our study substantiates the potential roles of the vertebrate DNMTs as double-edged swords in DNA methylation-demethylation during Ca2+-dependent physiological processes.  相似文献   

6.
TET2 enzymatically converts 5-methyl-cytosine to 5-hydroxymethyl-cytosine, possibly leading to loss of DNA methylation. TET2 mutations are common in myeloid leukemia and were proposed to contribute to leukemogenesis through DNA methylation. To expand on this concept, we studied chronic myelomonocytic leukemia (CMML) samples. TET2 missense or nonsense mutations were detected in 53% (16/30) of patients. In contrast, only 1/30 patient had a mutation in IDH1 or IDH2, and none of them had a mutation in DNMT3A in the sites most frequently mutated in leukemia. Using bisulfite pyrosequencing, global methylation measured by the LINE-1 assay and DNA methylation levels of 10 promoter CpG islands frequently abnormal in myeloid leukemia were not different between TET2 mutants and wild-type CMML cases. This was also true for 9 out of 11 gene promoters reported by others as differentially methylated by TET2 mutations. We found that two non-CpG island promoters, AIM2 and SP140, were hypermethylated in patients with mutant TET2. These were the only two gene promoters (out of 14,475 genes) previously found to be hypermethylated in TET2 mutant cases. However, total 5-methyl-cytosine levels in TET2 mutant cases were significantly higher than TET2 wild-type cases (median = 14.0% and 9.8%, respectively) (p = 0.016). Thus, TET2 mutations affect global methylation in CMML but most of the changes are likely to be outside gene promoters.Key words: TET2, DNA methylation, mutation, CMML, promoter  相似文献   

7.
8.
DNA methylation is closely involved in the regulation of cellular differentiation, including chondrogenic differentiation of mesenchymal stem cells. Recent studies showed that Ten–eleven translocation (TET) family proteins converted 5-methylcytosine (5mC) to 5-hydroxymethylcytosine, 5-formylcytosine and 5carboxylcytosine by oxidation. These reactions constitute potential mechanisms for active demethylation of methylated DNA. However, the relationship between the DNA methylation patterns and the effects of TET family proteins in chondrocyte differentiation is still unclear. In this study, we showed that DNA hydroxylation of 5mC was increased during chondrocytic differentiation of C3H10T1/2 cells and that the expression of Tet1 was particularly enhanced. Moreover, knockdown experiments revealed that the downregulation of Tet1 expression caused decreases in chondrogenesis markers such as type 2 and type 10 collagens. Furthermore, we found that TET proteins had a site preference for hydroxylation of 5mC on the Insulin-like growth factor 1 (Igf1) promoter in chondrocytes. Taken together, we showed that the expression of Tet1 was specifically facilitated in chondrocyte differentiation and Tet1 can regulate chondrocyte marker gene expression presumably through its hydroxylation activity for DNA.  相似文献   

9.
Cytosine methylation is the major epigenetic modification of metazoan DNA. Although there is strong evidence that active DNA demethylation occurs in animal cells, the molecular details of this process are unknown. The recent discovery of the TET protein family (TET1–3) 5-methylcytosine hydroxylases has provided a new entry point to reveal the identity of the long-sought DNA demethylase. Here, we review the recent progress in understanding the function of TET proteins and 5-hydroxymethylcytosine (5hmC) through various biochemical and genomic approaches, the current evidence for a role of 5hmC as an early intermediate in active DNA demethylation and the potential functions of TET proteins and 5hmC beyond active DNA demethylation. We also discuss how future studies can extend our knowledge of this novel epigenetic modification.Key words: TET1, 5-hydroxymethylcytosine, active DNA demethylation, epigenetic, DNA methylation, hippocampus, electroconvulsive stimulation, Gadd45b, BER  相似文献   

10.
11.
During mammalian development the fertilized zygote and primordial germ cells lose their DNA methylation within one cell cycle leading to the concept of active DNA demethylation. Recent studies identified the TET hydroxylases as key enzymes responsible for active DNA demethylation, catalyzing the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine. Further oxidation and activation of the base excision repair mechanism leads to replacement of a modified cytosine by an unmodified one. In this study, we analyzed the expression/activity of TET1-3 and screened for the presence of 5mC oxidation products in adult human testis and in germ cell cancers. By analyzing human testis sections, we show that levels of 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine are decreasing as spermatogenesis proceeds, while 5-methylcytosine levels remain constant. These data indicate that during spermatogenesis active DNA demethylation becomes downregulated leading to a conservation of the methylation marks in mature sperm. We demonstrate that all carcinoma in situ and the majority of seminomas are hypomethylated and hypohydroxymethylated compared to non-seminomas. Interestingly, 5-formylcytosine and 5-carboxylcytosine were detectable in all germ cell cancer entities analyzed, but levels did not correlate to the 5-methylcytosine or 5-hydroxymethylcytosine status. A meta-analysis of gene expression data of germ cell cancer tissues and corresponding cell lines demonstrates high expression of TET1 and the DNA glycosylase TDG, suggesting that germ cell cancers utilize the oxidation pathway for active DNA demethylation. During xenograft experiments, where seminoma-like TCam-2 cells transit to an embryonal carcinoma-like state DNMT3B and DNMT3L where strongly upregulated, which correlated to increasing 5-methylcytosine levels. Additionally, 5-hydroxymethylcytosine levels were elevated, demonstrating that de novo methylation and active demethylation accompanies this transition process. Finally, mutations of IDH1 (IDH1 R132) and IDH2 (IDH2 R172) leading to production of the TET inhibiting oncometabolite 2-hydroxyglutarate in germ cell cancer cell lines were not detected.  相似文献   

12.
13.
Ten Eleven Translocation (TET) protein-catalyzed 5mC oxidation not only creates novel DNA modifications, such as 5hmC, but also initiates active or passive DNA demethylation. TETs’ role in the crosstalk with specific histone modifications, however, is largely elusive. Here, we show that TET2-mediated DNA demethylation plays a primary role in the de novo establishment and maintenance of H3K4me3/H3K27me3 bivalent domains underlying methylated DNA CpG islands (CGIs). Overexpression of wild type (WT), but not catalytic inactive mutant (Mut), TET2 in low-TET-expressing cells results in an increase in the level of 5hmC with accompanying DNA demethylation at a subset of CGIs. Most importantly, this alteration is sufficient in making de novo bivalent domains at these loci. Genome-wide analysis reveals that these de novo synthesized bivalent domains are largely associated with a subset of essential developmental gene promoters, which are located within CGIs and are previously silenced due to DNA methylation. On the other hand, deletion of Tet1 and Tet2 in mouse embryonic stem (ES) cells results in an apparent loss of H3K27me3 at bivalent domains, which are associated with a particular set of key developmental gene promoters. Collectively, this study demonstrates the critical role of TET proteins in regulating the crosstalk between two key epigenetic mechanisms, DNA methylation and histone methylation (H3K4me3 and H3K27me3), particularly at CGIs associated with developmental genes.  相似文献   

14.
TET1 is a 5-methylcytosine dioxygenase and its DNA demethylating activity has been implicated in pluripotency and reprogramming. However, the precise role of TET1 in DNA methylation regulation outside of developmental reprogramming is still unclear. Here, we show that overexpression of the TET1 catalytic domain but not full length TET1 (TET1-FL) induces massive global DNA demethylation in differentiated cells. Genome-wide mapping reveals that 5-hydroxymethylcytosine production by TET1-FL is inhibited as DNA methylation increases, which can be explained by the preferential binding of TET1-FL to unmethylated CpG islands (CGIs) through its CXXC domain. TET1-FL specifically accumulates 5-hydroxymethylcytosine at the edges of hypomethylated CGIs, while knockdown of endogenous TET1 induces methylation spreading from methylated edges into hypomethylated CGIs. We also found that gene expression changes after TET1-FL overexpression are relatively small and independent of its dioxygenase function. Thus, our results identify TET1 as a maintenance DNA demethylase that does not purposely decrease methylation levels, but specifically prevents aberrant methylation spreading into CGIs in differentiated cells.  相似文献   

15.

Background

Primordial germ cells (PGC) are the precursors of the gametes. During pre-natal development, PGC undergo an epigenetic reprogramming when bulk DNA demethylation occurs and is followed by sex-specific de novo methylation. The de novo methylation and the maintenance of the methylation patterns depend on DNA methyltransferases (DNMTs). PGC reprogramming has been widely studied in mice but not in rats. We have previously shown that the rat might be an interesting model to study germ cell development. In face of the difficulties of getting enough PGC for molecular studies, the aim of this study was to propose an alternative method to study rat PGC DNA methylation. Rat embryos were collected at 14, 15 and 19 days post-coitus (dpc) for the analysis of 5mC, 5hmC, DNMT1, DNMT3a and DNMT3b expression or at 16dpc for treatment 5-Aza-CdR, a DNMT inhibitor, in vitro.

Methods

Once collected, the gonads were placed in 24-well plates previously containing 45μm pore membrane and medium with or without 5-Aza-CdR. The culture was kept for five days and medium was changed daily. The gonads were either fixed or submitted to RNA extraction.

Results

5mC and DNMTs labelling suggests that PGC are undergoing epigenetic reprogramming around 14/15dpc. The in vitro treatment of rat embryonic gonads with 1 μM of 5-Aza-CdR lead to a loss of 5mC labelling and to the activation of Pax6 expression in PGC, but not in somatic cells, suggesting that 5-Aza-CdR promoted a PGC-specific global DNA hypomethylation.

Conclusions

This study suggests that the protocol used here can be a potential method to study the wide DNA demethylation that takes place during PGC reprogramming.
  相似文献   

16.
17.
IntroductionDNA methylation is an epigenetic mechanism regulating gene expression that has been insufficiently studied in the blood of rheumatoid arthritis (RA) patients, as only T cells and total peripheral blood mononuclear cells (PBMCs) from patients with established RA have been studied and with conflicting results.MethodFive major blood cell subpopulations: T, B and NK cells, monocytes, and polymorphonuclear leukocytes, were isolated from 19 early RA patients and 17 healthy controls. Patient samples were taken before and 1 month after the start of treatment with methotrexate (MTX). Analysis included DNA methylation with high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry-selected reaction monitoring (HPLC-ESI-MS/MS-SRM) and expression levels of seven methylation-specific enzymes by quantitative polymerase chain reaction (qPCR).ResultsDisease-modifying anti-rheumatic drug (DMARD)-naïve early RA patients showed global DNA hypomethylation in T cells and monocytes, together with a lower expression of DNA methyltrasnferase 1 (DNMT1), the maintenance DNA methyltransferase, which was also decreased in B cells. Furthermore, significantly increased expression of ten-eleven translocation1 (TET1), TET2 and TET3, enzymes involved in demethylation, was found in monocytes and of TET2 in T cells. There was also modest decreased expression of DNMT3A in B cells and of growth arrest and DNA-damage-inducible protein 45A (GADD45A) in T and B cells. Treatment with MTX reverted hypomethylation in T cells and monocytes, which were no longer different from controls, and increased global methylation in B cells. In addition, DNMT1 and DNMT3A showed a trend to reversion of their decreased expression.ConclusionsOur results confirm global DNA hypomethylation in patients with RA with specificity for some blood cell subpopulations and their reversal with methotrexate treatment. These changes are accompanied by parallel changes in the levels of enzymes involved in methylation, suggesting the possibility of regulation at this level.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0748-5) contains supplementary material, which is available to authorized users.  相似文献   

18.
《Epigenetics》2013,8(2):201-207
TET2 enzymatically converts 5-methyl-cytosine to 5-hydroxymethyl-cytosine, possibly leading to loss of DNA methylation. TET2 mutations are common in myeloid leukemia and were proposed to contribute to leukemogenesis through DNA methylation. To expand on this concept, we studied chronic myelomonocytic leukemia (CMML) samples. TET2 missense or nonsense mutations were detected in 53% (16/30) of patients. In contrast, only 1/30 patient had a mutation in IDH1 or IDH2, and none of them had a mutation in DNMT3A in the sites most frequently mutated in leukemia. Using bisulfite pyrosequencing, global methylation measured by the LINE-1 assay and DNA methylation levels of 10 promoter CpG islands frequently abnormal in myeloid leukemia were not different between TET2 mutants and wild-type CMML cases. This was also true for 9 out of 11 gene promoters reported by others as differentially methylated by TET2 mutations. We found that two non-CpG island promoters, AIM2 and SP140, were hypermethylated in patients with mutant TET2. These were the only two gene promoters (out of 14,475 genes) previously found to be hypermethylated in TET2 mutant cases. However, total 5-methyl-cytosine levels in TET2 mutant cases were significantly higher than TET2 wild-type cases (median = 14.0% and 9.8%, respectively) (p = 0.016). Thus, TET2 mutations affect global methylation in CMML but most of the changes are likely to be outside gene promoters.  相似文献   

19.
Artificial induction of active DNA demethylation appears to be a possible and useful strategy in molecular biology research and therapy development. Dimethyl sulfoxide (DMSO) was shown to cause phenotypic changes in embryonic stem cells altering the genome-wide DNA methylation profiles. Here we report that DMSO increases global and gene-specific DNA hydroxymethylation levels in pre-osteoblastic MC3T3-E1 cells. After 1 day, DMSO increased the expression of genes involved in DNA hydroxymethylation (TET) and nucleotide excision repair (GADD45) and decreased the expression of genes related to DNA methylation (Dnmt1, Dnmt3b, Hells). Already 12 hours after seeding, before first replication, DMSO increased the expression of the pro-apoptotic gene Fas and of the early osteoblastic factor Dlx5, which proved to be Tet1 dependent. At this time an increase of 5-methyl-cytosine hydroxylation (5-hmC) with a concomitant loss of methyl-cytosines on Fas and Dlx5 promoters as well as an increase in global 5-hmC and loss in global DNA methylation was observed. Time course-staining of nuclei suggested euchromatic localization of DMSO induced 5-hmC. As consequence of induced Fas expression, caspase 3/7 and 8 activities were increased indicating apoptosis. After 5 days, the effect of DMSO on promoter- and global methylation as well as on gene expression of Fas and Dlx5 and on caspases activities was reduced or reversed indicating down-regulation of apoptosis. At this time, up regulation of genes important for matrix synthesis suggests that DMSO via hydroxymethylation of the Fas promoter initially stimulates apoptosis in a subpopulation of the heterogeneous MC3T3-E1 cell line, leaving a cell population of extra-cellular matrix producing osteoblasts.   相似文献   

20.

Background

Cytosine methylation is a frequent epigenetic modification restricting the activity of gene regulatory elements. Whereas DNA methylation patterns are generally inherited during replication, both embryonic and somatic differentiation processes require the removal of cytosine methylation at specific gene loci to activate lineage-restricted elements. However, the exact mechanisms facilitating the erasure of DNA methylation remain unclear in many cases.

Results

We previously established human post-proliferative monocytes as a model to study active DNA demethylation. We now show, for several previously identified genomic sites, that the loss of DNA methylation during the differentiation of primary, post-proliferative human monocytes into dendritic cells is preceded by the local appearance of 5-hydroxymethylcytosine. Monocytes were found to express the methylcytosine dioxygenase Ten-Eleven Translocation (TET) 2, which is frequently mutated in myeloid malignancies. The siRNA-mediated knockdown of this enzyme in primary monocytes prevented active DNA demethylation, suggesting that TET2 is essential for the proper execution of this process in human monocytes.

Conclusions

The work described here provides definite evidence that TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine initiates targeted, active DNA demethylation in a mature postmitotic myeloid cell type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号