首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Understanding the host genetics of the immune response in retrovirus infection models could provide insights for basic HIV vaccine discovery. In Friend retrovirus (FV) infection of mice, Fv1 differentially inhibits N-tropic versus B-tropic FV infection by mediating a capsid-dependent post-entry block, Fv2 susceptibility governs splenomegaly induction, and Rfv3 resistance primes a stronger neutralizing antibody response due to more potent Apobec3 activity. Apobec3 polymorphisms in inbred mouse strains correlate with Rfv3 resistance and susceptibility, with one unresolved exception. The 129/OlaHsd (129P2) mouse strain is Fv2 and Rfv3 susceptible based on genotyping, but infection of 129P2 mice with B-tropic FV resulted in strong neutralizing antibody responses and no splenomegaly. Here we confirm that 129P2 mice are Fv1nr/nr, explaining its resistance to B-tropic FV. Infection of 129P2 mice with NB-tropic FV, which can efficiently infect mice independent of Fv1 genotype, resulted in severe splenomegaly, high levels of viremia and weak neutralizing antibody responses regardless of Apobec3 status. Notably, high-dose B-tropic FV infection of 129P2 Apobec3-deficient mice induced significant adaptive immune responses and conferred high levels of protection following challenge with pathogenic NB-tropic FV. This immunological protection complemented previous studies that N-tropic FV can act as a live-attenuated vaccine in Fv1 b/b mice. Altogether, the results obtained in 129P2 mice strengthen the conclusion that Rfv3 is encoded by Apobec3, and highlight Fv1 incompatibility as a retroviral vaccine paradigm in mice. Due to its susceptibility to disease that allows for pathogenic challenge studies, B-tropic FV infection of 129P2 mice may be a useful model to study the immunological pathways induced by retroviral capsid restriction.  相似文献   

3.
Restriction factors: a defense against retroviral infection   总被引:19,自引:0,他引:19  
Susceptibility to retroviral infection is determined, in part, by host genes with antiviral activity. The Fv1 gene, which inhibits murine leukemia virus infection in mice, encodes one such resistance factor, and was long thought to be unique in that it restricts post-entry, pre-integration steps of retroviral replication. However, recent findings suggest the existence of similar restriction factors in primates, including humans. These factors, termed Lv1 and Ref1, can inhibit a range of retroviruses, including human immunodeficiency virus type 1 and its relatives. Fv1, Lv1 and Ref1 target capsid determinants to block infection but can be saturated by incoming virions. Primate- and murine-retrovirus restriction factors have diverse and overlapping specificities, and some variants of Lv1, as well as Ref1, apparently recognize and inhibit infection by widely divergent retroviruses.  相似文献   

4.

Background

Endogenous murine leukemia retroviruses (MLVs) are high copy number proviral elements difficult to comprehensively characterize using standard low throughput sequencing approaches. However, high throughput approaches generate data that is challenging to process, interpret and present.

Results

Next generation sequencing (NGS) data was generated for MLVs from two wild caught Mus musculus domesticus (from mainland France and Corsica) and for inbred laboratory mouse strains C3H, LP/J and SJL. Sequence reads were grouped using a novel sequence clustering approach as applied to retroviral sequences. A Markov cluster algorithm was employed, and the sequence reads were queried for matches to specific xenotropic (Xmv), polytropic (Pmv) and modified polytropic (Mpmv) viral reference sequences.

Conclusions

Various MLV subtypes were more widespread than expected among the mice, which may be due to the higher coverage of NGS, or to the presence of similar sequence across many different proviral loci. The results did not correlate with variation in the major MLV receptor Xpr1, which can restrict exogenous MLVs, suggesting that endogenous MLV distribution may reflect gene flow more than past resistance to infection.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1766-z) contains supplementary material, which is available to authorized users.  相似文献   

5.
Alleles at the Fv1 gene of inbred mice confer resistance to infection and spread of vertically or horizontally transmitted murine leukemia viruses (MuLV). The nucleotide sequence of Fv1 bears similarity to the gag of a human endogenous retrovirus, HERV-L, but is more closely related to the gag-coding sequence of a newly described class of HERV-L-related mouse endogenous retroviruses designated MuERV-L. Both observations suggest an origin of Fv1 from endogenous gag sequences. The molecular definition of Fv1 provided an opportunity to determine the phylogeny of the gene among wild mice and its relation to MuERV-L. PCR primers, chosen to include most of the coding region of Fv1 for both the n and b alleles, were used to amplify sequences from animals of the genus Mus, which were then sequenced. Closely related products were obtained from almost all animals examined that evolved after the separation from Rattus, in which the homologous gene was shown to be absent. A phylogenetic tree generated with Fv1 sequence data differs noticeably from that developed with sequence data from other genes. In addition, non-synonymous changes were found to be present twice as frequently as synonymous changes, a fact that departs from the standard behavior of a structural gene. These observations suggest that the Fv1 gene may have been subjected to possible horizontal transfers as well as to positive Darwinian selection. Received: 9 January 1998 / Accepted: 17 August 1998  相似文献   

6.
7.
Mouse APOBEC3 (mA3) is a cytidine deaminase with antiviral activity. mA3 is linked to the Rfv3 virus resistance factor, a gene responsible for recovery from infection by Friend murine leukemia virus, and mA3 allelic variants differ in their ability to restrict mouse mammary tumor virus. We sequenced mA3 genes from 38 inbred strains and wild mouse species, and compared the mouse sequence and predicted structure with human APOBEC3G (hA3G). An inserted sequence was identified in the virus restrictive C57BL strain allele that disrupts a splice donor site. This insertion represents the long terminal repeat of the xenotropic mouse gammaretrovirus, and was acquired in Eurasian mice that harbor xenotropic retrovirus. This viral regulatory sequence does not alter splicing but is associated with elevated mA3 expression levels in spleens of laboratory and wild-derived mice. Analysis of Mus mA3 coding sequences produced evidence of positive selection and identified 10 codons with very high posterior probabilities of having evolved under positive selection. Six of these codons lie in two clusters in the N-terminal catalytically active cytidine deaminase domain (CDA), and 5 of those 6 codons are polymorphic in Rfv3 virus restrictive and nonrestrictive mice and align with hA3G CDA codons that are critical for deaminase activity. Homology models of mA3 indicate that the two selected codon clusters specify residues that are opposite each other along the predicted CDA active site groove, and that one cluster corresponds to an hAPOBEC substrate recognition loop. Substitutions at these clustered mA3 codons alter antiviral activity. This analysis suggests that mA3 has been under positive selection throughout Mus evolution, and identified an inserted retroviral regulatory sequence associated with enhanced expression in virus resistant mice and specific residues that modulate antiviral activity.  相似文献   

8.
The Fv1 protein is an endogenous factor in mice that confers resistance to infection by certain classes of murine leukemia virus, a phenomenon referred to as restriction. The mechanism of restriction is not understood, and the low endogenous level of Fv1 in cells has prevented any biochemical or biophysical analysis of the protein. We have now purified recombinant Fv1(n) protein from a baculovirus system and demonstrate that Fv1 exists in a multimeric form. Furthermore, we have mapped the position of two domains within the protein using limited proteolysis. Biophysical characterization of the N-terminal domain reveals that it comprises a highly helical and extended dimeric structure. Based on these biochemical and biophysical data, we propose a model for the arrangement of domains in Fv1 and suggest that dimerization of the N-terminal domain is necessary for Fv1 function to allow the protein to interact with multiple capsid protomers in retroviral cores.  相似文献   

9.
To probe the genetic determinants controlling the interaction between the retroviral restriction gene Fv1 and its murine leukemia virus target, we set out to develop rapid, transient assays for Fv1 function. Cells were transfected or transduced with Fv1 expression plasmids which can produce green fluorescent protein via an internal ribosome entry site positioned between the Fv1 and green fluorescent protein coding sequences. Fv1 function was then assessed by comparing virus replication in green fluorescent protein-positive and -negative cells, using retroviral vectors encoding a second fluorescent marker, yellow fluorescent protein, or beta-galactosidase. Using this assay, we could show that Fv1 specificities were not as absolute as previously thought, since the Fv1(b) allele was capable of interacting with "nonrestricted" B- and NB-tropic viruses and by shuffling the n- and b-alleles of Fv1, it was possible to generate a Fv1 molecule capable of restricting N-, B-, and NB-tropic viruses equally efficiently. Further, we could show that the presence of nonrestricting Fv1 in the same cell as restrictive Fv1 abrogates restriction, implying competition for binding to the retroviral target.  相似文献   

10.
Wu T  Yan Y  Kozak CA 《Journal of virology》2005,79(15):9677-9684
Cells from the Asian wild mouse species Mus castaneus are resistant to infection by the polytropic host range group of mouse gammaretroviruses. Two factors are responsible for this resistance: a defective XPR1 cell surface receptor for polytropic murine leukemia viruses (P-MLVs), and a resistance factor detectable only in interspecies hybrids between M. castaneus and mice with an XPR1 variant that permits infection by xenotropic MLVs (X-MLVs) as well as P-MLVs. This second novel virus resistance phenotype has been associated with expression of viral Env glycoprotein; Northern blotting with specific hybridization probes identified a spliced X-MLV env message unique to virus-resistant mice. These observations suggest that resistance is due to expression of one or more endogenous X-MLV envelope genes that interfere with infection by exogenous P-MLVs. M. castaneus contains multiple X-MLV proviruses, but serial backcrosses reduced this proviral content and permitted identification of a single proviral env sequence inherited with resistance. The resistance phenotype and the provirus were mapped to the same site on distal chromosome 18. The provirus was shown to be a full-length provirus highly homologous to previously described X-MLVs. Use of viral pseudotypes confirmed that this resistance gene, termed Rmcf2, prevents entry of P-MLVs. Rmcf2 resembles the virus resistance genes Fv4 and Rmcf in that it produces Env glycoprotein but fails to produce infectious virus; the proviruses associated with all three resistance genes have fatal defects. This type of provirus Env-mediated resistance represents an important defense mechanism in wild mouse populations exposed to endemic infections.  相似文献   

11.
Retrovirus tropism can be restricted by host cell factors such as Fv1, TRIM5alpha, and Lv1 that inhibit infection by targeting the incoming viral capsid. The Fv1 gene inhibits murine leukemia virus infection in mice, but the precise mechanism of Fv1-mediated restriction is poorly understood. Our previous studies had demonstrated that Fv1-mediated viral tropism can be determined within the capsid protein at position 114 (Jung and Kozak. 2000. J. Virol. 74: 5385-7). To study the interaction between Fv1 and CA, we introduced amino acid substitution and deletion at this site in the N-tropic AKV capsid gene. The mutated two-LTR proviral DNAs were introduced into SC-1 cells by transfection. After transfection, cell supernatants collected from transfected cells were tested for host range susceptibility. The result indicated that substitution of amino acids did not alter tropism, but the deletion of 114His produced a virus with unusual tropism. The novel phenotype produced here failed to replicate in Fv1-expressing cells. This mutant virus showing such an extreme restriction pattern would be useful for studying the mechanism of Fv1- mediated restriction.  相似文献   

12.
A novel gammaretrovirus, xenotropic murine leukemia virus-related virus (XMRV), has been identified in patients with prostate cancer and in patients with chronic fatigue syndromes. Standard Mus musculus laboratory mice lack a functional XPR1 receptor for XMRV and are therefore not a suitable model for the virus. In contrast, Gairdner's shrew-mice (Mus pahari) do express functional XPR1. To determine whether Mus pahari could serve as a model for XMRV, primary Mus pahari fibroblasts and mice were infected with cell-free XMRV. Infection of cells in vitro resulted in XMRV Gag expression and the production of XMRV virions. After intraperitoneal injection of XMRV into Mus pahari mice, XMRV proviral DNA could be detected in spleen, blood, and brain. Intravenous administration of a green fluorescent protein (GFP) vector pseudotyped with XMRV produced GFP(+) CD4(+) T cells and CD19(+) B cells. Mice mounted adaptive immune responses against XMRV, as evidenced by the production of neutralizing and Env- and Gag-specific antibodies. Prominent G-to-A hypermutations were also found in viral genomes isolated from the spleen, suggesting intracellular restriction of XMRV infection by APOBEC3 in vivo. These data demonstrate infection of Mus pahari by XMRV, potential cell tropism of the virus, and immunological and intracellular restriction of virus infection in vivo. These data support the use of Mus pahari as a model for XMRV pathogenesis and as a platform for vaccine and drug development against this potential human pathogen.  相似文献   

13.
14.
Tetherin is a membrane protein of unusual topology expressed from rodents to humans that accumulates enveloped virus particles on the surface of infected cells. However, whether this ‘tethering’ activity promotes or restricts retroviral spread during acute retrovirus infection in vivo is controversial. We report here the identification of a single nucleotide polymorphism in the Tetherin gene of NZW/LacJ (NZW) mice that mutated the canonical ATG start site to GTG. Translation of NZW Tetherin from downstream ATGs deleted a conserved dual-tyrosine endosomal sorting motif, resulting in higher cell surface expression and more potent inhibition of Friend retrovirus release compared to C57BL/6 (B6) Tetherin in vitro. Analysis of (B6×NZW)F1 hybrid mice revealed that increased Tetherin cell surface expression in NZW mice is a recessive trait in vivo. Using a classical genetic backcrossing approach, NZW Tetherin expression strongly correlated with decreased Friend retrovirus replication and pathogenesis. However, the protective effect of NZW Tetherin was not observed in the context of B6 Apobec3/Rfv3 resistance. These findings identify the first functional Tetherin polymorphism within a mammalian host, demonstrate that Tetherin cell surface expression is a key parameter for retroviral restriction, and suggest the existence of a restriction factor hierarchy to counteract pathogenic retrovirus infections in vivo.  相似文献   

15.
Transgenic mice bearing a murine retroviral envelope transgene (Fv4) have Fv4 gp70env (SU) in their serum in amounts sufficient to block infection by ecotropic virus in vitro. Fv4 Env in serum is derived largely but not exclusively from hematopoietic cells. Tail cells from Fv4 mice and cell lines transduced with the Fv4 env transgene synthesize both components of the envelope protein (gp70 SU and p15E TM) but secrete the gp70 moiety, in the absence of retroviral particles. Blocking of the ecotropic viral receptor by secreted gp70 SU may contribute to resistance to retroviral infection in these mice.  相似文献   

16.
Xenotropic mouse leukemia viruses (X-MLVs) are broadly infectious for mammals except most of the classical strains of laboratory mice. These gammaretroviruses rely on the XPR1 receptor for entry, and the unique resistance of laboratory mice is due to two mutations in different putative XPR1 extracellular loops. Cells from avian species differ in susceptibility to X-MLVs, and 2 replacement mutations in the virus-resistant chicken XPR1 (K496Q and Q579E) distinguish it from the more permissive duck and quail receptors. These substitutions align with the two mutations that disable the laboratory mouse XPR1. Mutagenesis of the chicken and duck genes confirms that residues at both sites are critical for virus entry. Among 32 avian species, the 2 disabling XPR1 mutations are found together only in the chicken, an omnivorous, ground-dwelling fowl that was domesticated in India and/or Southeast Asia, which is also where X-MLV-infected house mice evolved. The receptor-disabling mutations are also present separately in 5 additional fowl and raptor species, all of which are native to areas of Asia populated by the virus-infected subspecies Mus musculus castaneus. Phylogenetic analysis showed that the avian XPR1 gene is under positive selection at sites implicated in receptor function, suggesting a defensive role for XPR1 in the avian lineage. Contact between bird species and virus-infected mice may thus have favored selection of mouse virus-resistant receptor orthologs in the birds, and our data suggest that similar receptor-disabling mutations were fixed in mammalian and avian species exposed to similar virus challenges.  相似文献   

17.
The apolipoprotein B editing complex 3 (A3) cytidine deaminases are among the most highly evolutionarily selected retroviral restriction factors, both in terms of gene copy number and sequence diversity. Primate genomes encode seven A3 genes, and while A3F and 3G are widely recognized as important in the restriction of HIV, the role of the other genes, particularly A3A, is not as clear. Indeed, since human cells can express multiple A3 genes, and because of the lack of an experimentally tractable model, it is difficult to dissect the individual contribution of each gene to virus restriction in vivo. To overcome this problem, we generated human A3A and A3G transgenic mice on a mouse A3 knockout background. Using these mice, we demonstrate that both A3A and A3G restrict infection by murine retroviruses but by different mechanisms: A3G was packaged into virions and caused extensive deamination of the retrovirus genomes while A3A was not packaged and instead restricted infection when expressed in target cells. Additionally, we show that a murine leukemia virus engineered to express HIV Vif overcame the A3G-mediated restriction, thereby creating a novel model for studying the interaction between these proteins. We have thus developed an in vivo system for understanding how human A3 proteins use different modes of restriction, as well as a means for testing therapies that disrupt HIV Vif-A3G interactions.  相似文献   

18.
The DBA/2 mouse Rmcf gene is responsible for in vivo and in vitro resistance to infection by the polytropic mink cell focus-forming (MCF) virus subgroup of murine leukemia viruses (MLVs). Previous studies suggested that Rmcf resistance is mediated by expression of an interfering MCF MLV envelope (Env) gene. To characterize this env gene, we examined resistance in crosses between Rmcf(r) DBA/2 mice and Mus castaneus, a species that lacks endogenous MCF env sequences. In backcross progeny, inheritance of Rmcf resistance correlated with inheritance of a specific endogenous MCF virus env-containing 4.6-kb EcoRI fragment. This fragment was present in the DBA/2N substrain with Rmcf-mediated resistance but not in virus-susceptible DBA/2J substrain mice. This fragment contains a provirus with a 5' long terminal repeat and the 5' half of env; the gag and pol genes have been partially deleted. The Env sequence is identical to that of a highly immunogenic viral glycoprotein expressed in the DBA/2 cell line L5178Y and closely resembles the env genes of modified polytropic proviruses. The coding sequence for the full-length Rmcf Env surface subunit was amplified from DNAs from virus-resistant backcross mice and was cloned into an expression vector. NIH 3T3 and BALB 3T3 cells stably transfected with this construct showed significant resistance to infection by MCF MLV but not by amphotropic MLV. This study identifies an Rmcf-linked MCF provirus and indicates that, like the ecotropic virus resistance gene Fv4, Rmcf may mediate resistance through an interference mechanism.  相似文献   

19.
20.
Mice of the I/LnJ inbred strain are unique in their ability to mount a robust and sustained humoral immune response capable of neutralizing infection with a betaretrovirus, mouse mammary tumor virus (MMTV). Virus-neutralizing antibodies (Abs) coat MMTV virions secreted by infected cells, preventing virus spread and hence the formation of mammary tumors. To investigate whether I/LnJ mice resist infection with other retroviruses besides MMTV, the animals were infected with murine leukemia virus (MuLV), a gammaretrovirus. MuLV-infected I/LnJ mice produced virus-neutralizing Abs that block virus transmission and virally induced disease. Generation of virus-neutralizing Abs required gamma interferon but was independent of interleukin-12. This unique mechanism of retrovirus resistance is governed by a single recessive gene, virus infectivity controller 1 (vic1), mapped to chromosome 17. In addition to controlling the antivirus humoral immune response, vic1 is also required for an antiviral cytotoxic response. Both types of responses were maintained in mice of the susceptible genetic background but congenic for the I/LnJ vic1 locus. Although the vic1-mediated resistance to MuLV resembles the mechanism of retroviral recovery controlled by the resistance to Friend virus 3 (rfv3) gene, the rfv3 gene has been mapped to chromosome 15 and confers resistance to MuLV but not to MMTV. Thus, we have identified a unique virus resistance mechanism that controls immunity against two distinct retroviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号