首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Addition of NAD+ to purified potato (Solanum tuberosum L.) mitochondria respiring α-ketoglutarate and malate in the presence of the electron transport inhibitor rotenone, stimulated O2 uptake. This stimulation was prevented by incubating mitochondria with N-4-azido-2-nitrophenyl-aminobutyryl-NAD+ (NAP4-NAD+), an inhibitor of NAD+ uptake, but not by 1 mm EGTA, an inhibitor of external NADH oxidation. NAD+-stimulated malate-cytochrome c reductase activity, and reduction of added NAD+ by intact mitochondria, could be duplicated by rupturing the mitochondria and adding a small quantity to the cuvette. The extent of external NAD+ reduction was correlated with the amount of extra mitochondrial malate dehydrogenase present. Malate oxidation by potato mitochondria depleted of endogenous NAD+ by storing on ice for 72 hours, was completely dependent on added NAD+, and the effect of NAD+ on these mitochondria was prevented by incubating them with NAP4-NAD+. External NAD+ reduction by these mitochondria was not affected by NAP4-NAD+. We conclude that all effects of exogenous NAD+ on plant mitochondrial respiration can be attributed to net uptake of the NAD+ into the matrix space.  相似文献   

2.
3.
4.
One of the most important omissions in recent evolutionary theory concerns how eukaryotes could emerge and evolve. According to the currently accepted views, the first eukaryotic cell possessed a nucleus, an endomembrane system, and a cytoskeleton but had an inefficient prokaryotic-like metabolism. In contrast, one of the most ancient eukaryotes, the metamonada Giardia lamblia, was found to have formerly possessed mitochondria. In sharp contrast with the traditional views, this paper suggests, based on the energetic aspect of genome organization, that the emergence of eukaryotes was promoted by the establishment of an efficient energy-converting organelle, such as the mitochondrion. Mitochondria were acquired by the endosymbiosis of ancient α-purple photosynthetic Gram-negative eubacteria that reorganized the prokaryotic metabolism of the archaebacterial-like ancestral host cells. The presence of an ATP pool in the cytoplasm provided by this cell organelle allowed a major increase in genome size. This evolutionary change, the remarkable increase both in genome size and complexity, explains the origin of the eukaryotic cell itself. The loss of cell wall and the appearance of multicellularity can also be explained by the acquisition of mitochondria. All bacteria use chemiosmotic mechanisms to harness energy; therefore the periplasm bounded by the cell wall is an essential part of prokaryotic cells. Following the establishment of mitochondria, the original plasma membrane-bound metabolism of prokaryotes, as well as the funcion of the periplasm providing a compartment for the formation of different ion gradients, has been transferred into the inner mitochondrial membrane and intermembrane space. After the loss of the essential function of periplasm, the bacterial cell wall could also be lost, which enabled the naked cells to establish direct connections among themselves. The relatively late emergence of mitochondria may be the reason why multicellularity evolved so slowly. Received: 29 May 1997 / Accepted: 9 October 1997  相似文献   

5.
We have previously proposed an SNS hypothesis on the origin of the genetic code (Ikehara and Yoshida 1998). The hypothesis predicts that the universal genetic code originated from the SNS code composed of 16 codons and 10 amino acids (S and N mean G or C and either of four bases, respectively). But, it must have been very difficult to create the SNS code at one stroke in the beginning. Therefore, we searched for a simpler code than the SNS code, which could still encode water-soluble globular proteins with appropriate three-dimensional structures at a high probability using four conditions for globular protein formation (hydropathy, α-helix, β-sheet, and β-turn formations). Four amino acids (Gly [G], Ala [A], Asp [D], and Val [V]) encoded by the GNC code satisfied the four structural conditions well, but other codes in rows and columns in the universal genetic code table do not, except for the GNG code, a slightly modified form of the GNC code. Three three-amino acid systems ([D], Leu and Tyr; [D], Tyr and Met; Glu, Pro and Ile) also satisfied the above four conditions. But, some amino acids in the three systems are far more complex than those encoded by the GNC code. In addition, the amino acids in the three-amino acid systems are scattered in the universal genetic code table. Thus, we concluded that the universal genetic code originated not from a three-amino acid system but from a four-amino acid system, the GNC code encoding [GADV]-proteins, as the most primitive genetic code. Received: 11 June 2001 / Accepted: 11 October 2001  相似文献   

6.
Comparative analysis of the ontogeny of representatives of two sister taxa (Cladocera and Cyclestherida) showed that the paedomorphic morphology of cladocerans (the small number of thoracic segments and segments of branches of antennae II, and the reduction of the carapace) was caused by the cessation of development of the somatic structures at early larval stages of ontogeny. It is demonstrated that this stop is not associated with the accelerated development of the reproductive system (progenesis), since it takes place long prior to the beginning of reproduction. In accordance with this fact, the past hypotheses that cladocerans evolved from the reproducing larvae of the ancestral form or that they are early maturing metanauplii should be recognized as erroneous. Cyclestheria. The origin of Cladocera from a Cyclestheria-like ancestor should be regarded as neotenic, taking into consideration the extended interpretation of this term.  相似文献   

7.
8.
9.
Recent experimental work has verified the prediction that marine aerosols could have an exterior film of amphiphiles; palmitic, stearic and oleic acids were predominant. Thermodynamic analysis has revealed that such aerosols are energetically capable of asymmetric division. In a prebiotic terrestrial environment, one of the products of such aerosol fission would have been bacterially sized (microns), the other would have been virally sized (tens of nanometers). Plausible avenues for chemical differentiation between the two particles are discussed, and the probabilities for the transition from geochemistry to biochemistry updated in light of recent palaeo fossil studies.  相似文献   

10.
The defining feature of the pineal gland is the capacity to function as a melatonin factory that operates on a ∼24 h schedule, reflecting the unique synthetic capacities of the pinealocyte. Melatonin synthesis is typically elevated at night and serves to provide the organism with a signal of nighttime. Melatonin levels can be viewed as hands of the clock. Issues relating to the evolutionary events leading up to the immergence of this system have not received significant attention. When did melatonin synthesis appear in the evolutionary line leading to vertebrates? When did a distinct pineal gland first appear? What were the forces driving this evolutionary trend? As more knowledge has grown about the pinealocyte and the relationship it has to retinal photoreceptors, it has become possible to generate a plausible hypothesis to explain how the pineal gland and the melatonin rhythm evolved. At the heart of the hypothesis is the melatonin rhythm enzyme arylalkylamine N-acetyltransferase (AANAT). The advances supporting the hypothesis will be reviewed here and expanded beyond the original foundation; the hypothesis and its implications will be addressed.  相似文献   

11.
The defining feature of the pineal gland is the capacity to function as a melatonin factory that operates on a ~24 h schedule, reflecting the unique synthetic capacities of the pinealocyte. Melatonin synthesis is typically elevated at night and serves to provide the organism with a signal of nighttime. Melatonin levels can be viewed as hands of the clock. Issues relating to the evolutionary events leading up to the immergence of this system have not received significant attention. When did melatonin synthesis appear in the evolutionary line leading to vertebrates? When did a distinct pineal gland first appear? What were the forces driving this evolutionary trend? As more knowledge has grown about the pinealocyte and the relationship it has to retinal photoreceptors, it has become possible to generate a plausible hypothesis to explain how the pineal gland and the melatonin rhythm evolved. At the heart of the hypothesis is the melatonin rhythm enzyme arylalkylamine N‐acetyltransferase (AANAT). The advances supporting the hypothesis will be reviewed here and expanded beyond the original foundation; the hypothesis and its implications will be addressed.  相似文献   

12.
13.
《Plains anthropologist》2013,58(50):305-306
Abstract

Recent ethnographic work with Cree informants supports the hypothesis that the original Cree. term for “Blackfoot” Indians referred to animal (perhaps horse’s) hooves rather than to artificially blackened feet or moccasins.  相似文献   

14.
15.
16.
Microsatellite Evolution: Testing the Ascertainment Bias Hypothesis   总被引:5,自引:0,他引:5  
Previous studies suggest the median allele length of microsatellites is longest in the species from which the markers were derived, suggesting that an ascertainment bias was operating. We have examined whether the size distribution of microsatellite alleles between sheep and cattle is source dependent using a set of 472 microsatellites that can be amplified in both species. For those markers that were polymorphic in both species we report a significantly greater number of markers (P < 0.001) with longer median allele sizes in sheep, regardless of microsatellite origin. This finding suggests that any ascertainment bias operating during microsatellite selection is only a minor contributor to the variation observed. Received: 6 January 1997 / Accepted: 19 May 1997  相似文献   

17.
Zann Gill 《Biosemiotics》2013,6(3):403-419
Charles Darwin’s theory of evolution characterized all life as engaged in a “struggle for existence”. To struggle requires internal data processing to detect and interpret patterns to guide behavior, a mechanism to struggle for existence. The cognitive bootstrapping A-PR cycle (Autonomy | Pattern Recognition) couples the origin of life and mind, enabling their symbiotic co-evolution. Life processes energy to create order. Mind processes data to create meaning. Life and mind co-evolve toward increased functional effectiveness, using A-PR feedback cycles that reflect the two Laws deduced from Ockham’s Razor. The Law of Parsimony is only one of two laws that have emerged from debate about Ockham’s Razor. Less well known is the “other edge of Ockham’s Razor”, the Law of Succinctness which, when viewed through the lens of Charles Darwin’s theory of evolution, enables the A-PR Hypothesis to fulfill the criteria of Ockham’s Razor.  相似文献   

18.
Sound is an inherent component of the environment that provides conditions and information necessary for many animal activities. Soniferous species require specific acoustic and physical conditions suitable for their signals to be transmitted, received, and effectively interpreted to successfully identify and utilize resources in their environment and interact with conspecifics and other heterospecific organisms. We propose the Acoustic Habitat Hypothesis to explain how the acoustic environment influences habitat selection of sound-dependent species. We postulate that sound-dependent species select and occupy habitats with unique acoustic characteristics that are essential to their functional needs and conducive to the threshold of sound frequency they produce and detect. These acoustic habitats are based on the composition of biophony, geophony, and technophony in the soundscape and on the biosemiotics mechanisms described in the eco-field hypothesis. The Acoustic Habitat Hypothesis initiates questions of habitat selection that go beyond the physical attributes of the environment by applying ecoacoustics theory. We outline the theoretical basis of the Acoustic Habitat Hypothesis and provide examples from the literature to support its assumptions. The concept of acoustic habitats has been documented in the literature for many years but here, we accurately and extensively define acoustic habitat and we put this concept into a unified theory. We also include perspectives on how the Acoustic Habitat Hypothesis can stimulate a paradigm shift in conservation strategies for threatened and endangered species.  相似文献   

19.
The origin of life is a field full of controversies, not only because of our vague understanding concerning the relevant issues, but also, perhaps more often, owing to our dim conceptual framework throughout the whole field. To improve this situation, an in‐depth conceptual dissection is presented here. It is elucidated that, at its core, the origin of life has three aspects. The facts involved in the process are taken as the historical aspect, which is destined to be uncertain and often irrelevant to debate regarding details. The rules involved include two distinct aspects: chemical mechanisms operated in the whole process, while evolutionary mechanisms joined in only after the emergence of the first Darwinian entities – and then accounted for the subsequent buildup of complexity (this cannot be explained solely by natural selection). Basically, we can ask about the possibility of any assumed event in the origin of life: ‘Is it evolutionarily plausible, chemically feasible, and historically likely?’ Clues from any of the three aspects may be quite valuable in directing our explorations on the other two. This conceptual dissection provides a clearer context for the field, which may even be more useful than any sort of specific research.  相似文献   

20.
Reproductive division of labor is a hallmark of multicellular organisms. However, the evolutionary pressures that give rise to delineated germ and somatic cells remain unclear. Here we propose a hypothesis that the mutagenic consequences associated with performing metabolic work favor such differentiation. We present evidence in support of this hypothesis gathered using a computational form of experimental evolution. Our digital organisms begin each experiment as undifferentiated multicellular individuals, and can evolve computational functions that improve their rate of reproduction. When such functions are associated with moderate mutagenic effects, we observe the evolution of reproductive division of labor within our multicellular organisms. Specifically, a fraction of the cells remove themselves from consideration as propagules for multicellular offspring, while simultaneously performing a disproportionately large amount of mutagenic work, and are thus classified as soma. As a consequence, other cells are able to take on the role of germ, remaining quiescent and thus protecting their genetic information. We analyze the lineages of multicellular organisms that successfully differentiate and discover that they display unforeseen evolutionary trajectories: cells first exhibit developmental patterns that concentrate metabolic work into a subset of germ cells (which we call “pseudo-somatic cells”) and later evolve to eliminate the reproductive potential of these cells and thus convert them to actual soma. We also demonstrate that the evolution of somatic cells enables phenotypic strategies that are otherwise not easily accessible to undifferentiated organisms, though expression of these new phenotypic traits typically includes negative side effects such as aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号