首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The smallest contractile unit in striated muscles is the sarcomere. Although some of the classic features of contraction assume a uniform behavior of sarcomeres within myofibrils, the occurrence of sarcomere length nonuniformities has been well recognized for years, but it is yet not well understood. In the past years, there has been a great advance in experiments using isolated myofibrils and sarcomeres that has allowed scientists to directly evaluate sarcomere length nonuniformity. This review will focus on studies conducted with these preparations to develop the hypotheses that 1) force production in myofibrils is largely altered and regulated by intersarcomere dynamics and that 2) the mechanical work of one sarcomere in a myofibril is transmitted to other sarcomeres in series. We evaluated studies looking into myofibril activation, relaxation, and force changes produced during activation. We conclude that force production in myofibrils is largely regulated by intersarcomere dynamics, which arises from the cooperative work of the contractile and elastic elements within a myofibril.  相似文献   

2.
《The Journal of cell biology》1989,108(6):2355-2367
Successive stages in the disassembly of myofibrils and the subsequent assembly of new myofibrils have been studied in cultures of dissociated chick cardiac myocytes. The myofibrils in trypsinized and dispersed myocytes are sequentially disassembled during the first 3 d of culture. They split longitudinally and then assemble into transitory polygons. Multiples of single sarcomeres, the cardiac polygons, are analogous to the transitory polygonal configurations assumed by stress fibers in spreading fibroblasts. They differ from their counterparts in fibroblasts in that they consist of muscle alpha-actinin vertices and muscle myosin heavy chain struts, rather than of the nonmuscle contractile protein isoforms of stress fiber polygons. EM sections reveal the vertices and struts in cardiac polygons to be typical Z and A bands. Most cardiac polygons are eliminated by day 5 of culture. Concurrent with the disassembly and elimination of the original myofibrils new myofibrils are rapidly assembled elsewhere in the same myocyte. Without exception both distal tips of each nascent myofibril terminate in adhesion plaques. The morphology and composition of the adhesion plaques capping each end of each myofibril are similar to those of the termini of stress fibers in fibroblasts. However, whereas the adhesion complexes involving stress fibers in fibroblasts consist of vinculin/nonmuscle alpha-actinin/beta- and gamma-actins, the analogous structures in myocytes involving myofibrils consist of vinculin/muscle alpha-actinin/alpha-actin. The addition of 1.7-2.0 microns sarcomeres to the distal tips of an elongating myofibril, irrespective of whether the myofibril consists of 1, 10, or several hundred tandem sarcomeres, occurs while the myofibril appears to remain linked to its respective adhesion plaques. The adhesion plaques in vitro are the equivalent of the in vivo intercalated discs, both in terms of their molecular composition and with respect to their functioning as initiating sites for the assembly of new sarcomeres. How 1.7-2.0 microns nascent sarcomeres can be added distally during elongation while the tips of the myofibrils remain inserted into submembranous adhesion plaques is unknown.  相似文献   

3.
《Biophysical journal》2020,118(8):1921-1929
It has been accepted that the force produced by a skeletal muscle myofibril depends on its cross-sectional area but not on the number of active sarcomeres because they are arranged in series. However, a previous study performed by our group showed that blocking actomyosin interactions within an activated myofibril and depleting the thick filaments in one sarcomere unexpectedly reduced force production. In this study, we examined in detail how consecutive depletion of thick filaments in individual sarcomeres within a myofibril affects force production. Myofibrils isolated from rabbit psoas were activated and relaxed using a perfusion system. An extra microperfusion needle filled with a high-ionic strength solution was used to erase thick filaments in individual sarcomeres in real time before myofibril activation. The isometric forces were measured upon activation. The force produced by myofibrils with intact sarcomeres was significantly higher than the force produced by myofibrils with one or more sarcomeres lacking thick filaments (p < 0.0001) irrespective of the number of contractions imposed on the myofibrils and their initial sarcomere length. Our results suggest that the myofibril force is affected by intersarcomere dynamics and the number of active sarcomeres in series.  相似文献   

4.
Formins are cytoskeleton regulating proteins characterized by a common FH2 structural domain. As key players in the assembly of actin filaments, formins direct dynamic cytoskeletal processes that influence cell shape, movement and adhesion. The large number of formin genes, fifteen in the human, suggests distinct tasks and expression patterns for individual family members, in addition to overlapping functions. Several formins have been associated with invasive cell properties in experimental models, linking them to cancer biology. One example is FMNL1, which is considered to be a leukocyte formin and is known to be overexpressed in lymphomas. Studies on FMNL1 and many other formins have been hampered by a lack of research tools, especially antibodies suitable for staining paraffin-embedded formalin-fixed tissues. Here we characterize, using bioinformatics tools and a validated antibody, the expression pattern of FMNL1 in human tissues and study its subcellular distribution. Our results indicate that FMNL1 expression is not restricted to hematopoietic tissues and that neoexpression of FMNL1 can be seen in epithelial cancer.  相似文献   

5.
Newt embryonic myocardial cells can undergo mitosis in culture. The successive changes in the striation pattern of sarcomeres of myofibrils during mitosis were studied by polarization microscopy without fixing or killing the cells. Birefringence of well-organized striation patterns, i.e., bright A-bands and dark I-bands, was clearly visible in interphase cells and did not show any detectable changes during incubation for 3 h or more. Electron microscopy showed the presence of well-organized myofibrils with Z-bands in these interphase cells. When myocardial cells entered the mitotic stage, the birefringence of striation pattern of their myofibrils gradually changed with the pattern in small parts of the myofibrils gradually becoming indistinct (called 'indistinct striation' in this paper). These indistinct regions increased in size during the mitotic stage. In addition, in some regions of the indistinct striation, the birefringence of sarcomeres gradually decreased and finally disappeared (called 'disappearance of sarcomeres' in this paper). No myocardial cells underwent mitosis without these disruptive changes of the myofibril striation patterns. In the post-mitotic stage, the well-organized striation of the myofibrils reappeared. Electron microscopy showed disorganized sarcomeres without Z-bands in the regions of indistinct striation, and no well-organized myofibrils in the regions where the sarcomeres had disappeared. Thus the well-organized myofibrils with Z-bands became transiently disorganized at least in some parts, during mitosis. They were then reorganized into daughter myocardial cells.  相似文献   

6.
Formin-like 1 (FMNL1) is a member of Formin family proteins which are the actin nucleators. Although FMNL1 activities have been shown to be essential for cell adhesion, cytokinesis, cell polarization and migration in mitosis, the functional roles of mammalian FMNL1 during oocyte meiosis remain uncertain. In this study, we investigated the functions of FMNL1 in mouse oocytes using specific morpholino (MO) microinjection and live cell imaging. Immunofluorescent staining showed that in addition to its cytoplasmic distribution, FMNL1 was primarily localized at the spindle poles after germinal vesicle breakdown (GVBD). FMNL1 knockdown caused the low rate of polar body extrusion and resulted in large polar bodies. Time-lapse microscopic and immunofluorescence intensity analysis indicated that this might be due to the aberrant actin expression levels. Cortical polarity was disrupted as shown by a loss of actin cap and cortical granule free domain (CGFD) formation, which was confirmed by a failure of meiotic spindle positioning. And this might be the reason for the large polar body formation. Spindle formation was also disrupted, which might be due to the abnormal localization of p-MAPK. These results indicated that FMNL1 affected both actin dynamics and spindle formation for the oocyte polar body extrusion. Moreover, FMNL1 depletion resulted in aberrant localization and expression patterns of a cis-Golgi marker protein, GM130. Finally, we found that the small GTPase RhoA might be the upstream regulator of FMNL1. Taken together, our data indicate that FMNL1 is required for spindle organization and actin assembly through a RhoA-FMNL1-GM130 pathway during mouse oocyte meiosis.Key words: actin, FMNL1, golgi, polar body extrusion, spindle organization  相似文献   

7.
Formins are highly conserved heterogeneous family of proteins with several isoforms having significant contribution in multiple cellular functions. Formins play crucial role in remodelling of actin cytoskeleton and thus play important role in cell motility. Formins are also involved in many cellular activities like determining cell polarity, cytokinesis and morphogenesis. Formins are multi domain protein with characteristic homodimeric formin homology 2 (FH2) domain. It nucleates the actin filaments and its activity is regulated by the presence of characteristic formin homology 1 (FH1) domain. In higher mammals like human and mouse fifteen different formin isoforms are present. However the function and expression pattern of each and every formin in different adult tissues are not well characterized. Here we have found that multiple formins are expressing in each adult tissue of mouse, irrespective of their origin from the germ layer. Formins are also expressing from early stage of development to the adulthood in brain. The expression of many formins in a single tissue of adult mouse indicates that regulation of actin cytoskeleton dynamics by formins may be crucial for physiological processes like wound healing, tissue repairing, exocytosis, endocytosis, synapse formation and maintenance. Expression of FMNL2 and Fhdc1 are high in adult mouse brain as compare to embryonic stages. Higher expression of FMNL2 and Fhdc1 indicates that FMNL2 and Fhdc1 might be very important for the adult brain functions.  相似文献   

8.
《The Journal of cell biology》1986,103(6):2163-2171
We have used fluorescence analogue cytochemistry in conjunction with time lapse recording to study the dynamics of alpha-actinin, a major component of the Z line, during myofibrillogenesis. Rhodamine-labeled alpha-actinin microinjected into living cultured chick skeletal myotubes became localized in discrete cellular structures within 1 h and remained specifically associated with structures for up to 4 d, allowing individual identified structures to be followed during development. In the most immature cells used, alpha-actinin was found in diffuse aggregates, some of which displayed sarcomeric periodicity. Aggregates were observed to coalesce into better defined structures (Z bands) that were approximately 1.0-micron wide. Z bands condensed into narrow, more intensely fluorescent Z lines in 4-48 h. During this period, Z lines grew laterally, primarily by the addition of small beads of alpha-actinin to existing Z lines or by the merging of small Z lines. In more mature cells, alpha-actinin added to Z lines without going through a visible intermediary structure. Mean sarcomere length did not change significantly during the stages examined, although the variability of sarcomere length did decrease markedly over time for identified sets of sarcomeres. At early stages, myofibrils frequently shifted position in both the longitudinal and lateral directions. Neighboring myofibrils were frequently associated for one or more sarcomeres sporadically along their length, such that the intervening sarcomeres were often misaligned. Associations between myofibrils were often transitory. Shifts in myofibril location in conjunction with the formation, breaking, and reformation of lateral associations between myofibrils facilitated the alignment of Z lines through a trial and error process.  相似文献   

9.
It is generally assumed that sarcomere lengths (SLs) change in isometric fibres following activation and following stretch on the descending limb of the force-length relationship, because of an inherent instability. Although this assumption has never been tested directly, instability and SL non-uniformity have been associated with several mechanical properties, such as 'creep' and force enhancement. The aim of this study was to test directly the hypothesis that sarcomeres are unstable on the descending limb of the force-length relationship. We used single myofibrils, isolated from rabbit psoas, that were attached to glass needles that allowed for controlled stretching of myofibrils. Images of the sarcomere striation pattern were projected onto a linear photodiode array, which was scanned at 20 Hz to produce dark-light patterns corresponding to the A- and I-bands, respectively. Starting from a mean SL of 2.55 +/- 0.07 microm, stretches of 11.2 +/- 1.6% of SL at a speed of 118.9 +/- 5.9 nm s(-1) were applied to the activated myofibrils (pCa(2+) = 4.75). SLs along the myofibril were non-uniform before, during and after the stretch, but with few exceptions, they remained constant during the isometric period before stretch, and during the extended isometric period after stretch. Sarcomeres never lengthened to a point beyond thick and thin filament overlap. We conclude that sarcomeres are non-uniform but generally stable on the descending limb of the force-length relationship.  相似文献   

10.
The formin family of proteins contributes to spatiotemporal control of actin cytoskeletal rearrangements during motile cell activities. The FMNL subfamily exhibits multiple mechanisms of linear actin filament formation and organization. Here we report novel actin-modifying functions of FMNL1 in breast adenocarcinoma migration models. FMNL1 is required for efficient cell migration and its three isoforms exhibit distinct localization. Suppression of FMNL1 protein expression results in a significant impairment of cell adhesion, migration, and invasion. Overexpression of FMNL1ɣ, but not FMNL1β or FMNL1α, enhances cell adhesion independent of the FH2 domain and FMNL1ɣ rescues migration in cells depleted of all three endogenous isoforms. While FMNL1ɣ inhibits actin assembly in vitro, it facilitates bundling of filamentous actin independent of the FH2 domain. The unique interactions of FMNL1ɣ with filamentous actin provide a new understanding of formin domain functions and its effect on motility of diverse cell types suggest a broader role than previously realized.  相似文献   

11.
In order to evaluate the effects of specific mutations on sarcomere assembly and function in vivo, we describe the course of normal development of Drosophila indirect flight muscle (IFM) in staged pupae using electron microscopy. We find that no contractile assemblies remain in larval muscle remnants invaded by imaginal myoblasts, establishing that myofibrils in IFM assemble de novo. Stress-fiber-like structures or other template structures are not prominent before or during sarcomere assembly. By 42 hr pupation (eclosion 112 hr), thick and thin filaments have appeared simultaneously in slender, interdigitated arrays between regularly spaced Z-bodies. Each tiny, uniformly striated myofibril forms within a "sleeve" of microtubules, and both microtubules and myofibrils are attached to the cell membrane at each end of the fiber from the initial stages of assembly. Later in pupation, the microtubule "sleeves" disassemble. Sarcomere number appears to remain constant. We saw no evidence that terminal sarcomeres are sites for addition of new sarcomeres or that Z-lines split transversely, producing new, very short sarcomeres. Rather, initial thick and thin filaments and sarcomeres are much shorter than adult length. Sarcomere length increases smoothly and coordinately from 1.7 to 3.2 μm, reflecting increase in filament lengths and indicating that myosin and actin molecules must be incorporated into filaments after sarcomere formation. Myofilaments are not seen scattered in the cytoplasm at any time, nor do we detect filaments that could be in the process of being "trolleyed" along myofibrils into positions of lateral register. Myofibril diameter increases uniformly from 4-thick filaments to 36-thick filaments across, by peripheral addition of myofilaments. At each successive stage, all sarcomeres in a fiber attained similar length and diameter. Initial thick filaments are solid but within several hours these and all subsequently assembled thick filaments appear hollow. Initial Z-bodies do not show any internal lattice and are more irregularly shaped than adult Z-discs.  相似文献   

12.
Obscurin is a recently identified giant multidomain muscle protein whose functions remain poorly understood. The goal of this study was to investigate the process of assembly of obscurin into nascent sarcomeres during the transition from non-striated myofibril precursors to striated structure of differentiating myofibrils in cell cultures of neonatal rat cardiac myocytes. Double immunofluorescent labeling and high resolution confocal microscopy demonstrated intense incorporation of obscurin in the areas of transition from non-striated to striated regions on the tips of developing myofibrils and at the sites of lateral fusion of nascent sarcomere bundles. We found that obscurin rapidly and precisely accumulated in the middle of the A-band regions of the terminal newly assembled half-sarcomeres in the zones of transition from the continuous, non-striated pattern of sarcomeric α-actinin distribution to cross-striated structure of laterally expanding nascent Z-discs. The striated pattern of obscurin typically ended at these points. This occurred before the assembly of morphologically differentiated terminal Z-discs of the assembling sarcomeres on the tips of growing myofibrils. The presence of obscurin in the areas of the terminal Z-discs of each new sarcomere was detected at the same time or shortly after complete assembly of sarcomeric structure. Many non-striated fibers with very low concentration of obscurin were already immunopositive for sarcomeric actin and myosin. This suggests that obscurin may serve for organization and alignment of myofilaments into the striated pattern. The comparison of obscurin and titin localization in these areas showed that obscurin assembly into the A-bands occurred soon after or concomitantly with incorporation of titin. Electron microscopy of growing myofibrils demonstrated intense formation and integration of myosin filaments into the “open” half-assembled sarcomeres in the areas of the terminal Z–I structures and at the lateral surfaces of newly formed, terminally located nascent sarcomeres. This process progressed before the assembly of the second-formed, terminal Z-discs of new sarcomeres and before the development of ultrastructurally detectable mature M-lines that define the completion of myofibril assembly, which supports the data of immunocytochemical study. Abundant non-aligned sarcomeres in immature myofibrils located on the growing tips were spatially separated and underwent the transition to the registered, aligned pattern. The sarcoplasmic reticulum, the organelle known to interact with obscurin, assembled around each new sarcomere. These results suggest that obscurin is directly involved in the proper positioning and alignment of myofilaments within nascent sarcomeres and in the establishment of the registered pattern of newly assembled myofibrils and the sarcoplasmic reticulum at advanced stages of myofibrillogenesis. This paper is dedicated to the memory of Professor Pavel P. Rumyantsev (1927–1988), a pioneer in studies of cardiac muscle differentiation, who is a lasting inspiration to all who worked with him.  相似文献   

13.
The association of desmin, a 55,000-dalton intermediate-filament protein, with the developing cardiac myofibril was studied by immunocytochemical methods in primary cultured myocytes isolated from embyronic rat hearts at different ages. In the earliest contractile myocytes obtained from 10-day-old embryonic hearts, desmin exists as an extensive cytoskeletal network with little or no association with the myofibrils. As the heart develops the cytoskeletal desmin undergoes the myofibrils. Initially, the cytoskeletal desmin appears to outline the developing myofibril as short, discontinuous filaments. At intermediate stages of heart development, desmin filaments in 12- to 16-day-old embryonic myocytes continue to outline the forming myofibrils. Associated with these filaments are crossbridges and foci of desmin spaced at a frequency equal to that of the Z-line spacing. Desmin becomes progressively associated with the myofibril from the central region of the cell toward the cell margin. Desmin filaments at this stage begin to coalesce in the region of the intercalated disk. In the early neonatal heart, desmin of the Z lines becomes continuous across the sarcomere and appears to integrate the myofibrils into a unit. These observations suggest that desmin is not required in the early stages of mammalian heart development for the initial assembly of cardiac sarcomeres or the initiation of cardiac myofibrillar contractions. In later stages of mammalian heart development, desmin is found associated with the cardiac myofibrils in such a manner as to stably integrate these elements into the cytoplasm. Additionally, desmin, in the Z lines of the more mature myocytes appears to maintain the myofibrils in close registry to each other and to the intercalated disk.  相似文献   

14.
The development of myofibrils in cultured myotome cells from Xenopus embryos was studied with whole-mount and thin-section electron microscopy. For whole mount, the cells were grown on Formvar-coated grids, fixed, dehydrated, critical-point dried, and examined with a conventional (100 kV) or a high-voltage (1000 kV) electron microscope. Nonstriated bundles of 6- to 8-nm microfilaments, similar to stress fibers in nonmuscle cells, appear prior to nascent myofibrils. These bundles run the whole length of the cell and are inserted into the cell cortex. The transition from striated region to nonstriated region on a single nascent myofibril can be seen in both whole-mount and thin-section images. New sarcomeres appear to be added at the distal end of existing ones. Our data also indicate that these new sarcomeres are formed on a preexisting bundle of thin filaments. This suggests that the bundles of microfilaments are precursors to myofibrils. Evidence for this hypothesis came from the following observations. (1) Nascent myofibrils are anchored to the cell cortex via thin filaments similar to microfilament bundles. (2) Thin filaments in newly formed sarcomeres are often continuous through the middle of the A band. Later they break to form the H zone. (3) Thin filaments appear to be continuous through the developing Z band. Later they interact with the filaments in the Z band to form the staggered appearance.  相似文献   

15.
16.
Epithelial integrity is vitally important, and its deregulation causes early stage cancer. De novo formation of an adherens junction (AJ) between single epithelial cells requires coordinated, spatial actin dynamics, but the mechanisms steering nascent actin polymerization for cell–cell adhesion initiation are not well understood. Here we investigated real-time actin assembly during daughter cell–cell adhesion formation in human breast epithelial cells in 3D environments. We identify formin-like 2 (FMNL2) as being specifically required for actin assembly and turnover at newly formed cell–cell contacts as well as for human epithelial lumen formation. FMNL2 associates with components of the AJ complex involving Rac1 activity and the FMNL2 C terminus. Optogenetic control of Rac1 in living cells rapidly drove FMNL2 to epithelial cell–cell contact zones. Furthermore, Rac1-induced actin assembly and subsequent AJ formation critically depends on FMNL2. These data uncover FMNL2 as a driver for human epithelial AJ formation downstream of Rac1.  相似文献   

17.
Residual force enhancement in myofibrils and sarcomeres   总被引:1,自引:0,他引:1  
Residual force enhancement has been observed following active stretch of skeletal muscles and single fibres. However, there has been intense debate whether force enhancement is a sarcomeric property, or is associated with sarcomere length instability and the associated development of non-uniformities. Here, we studied force enhancement for the first time in isolated myofibrils (n=18) that, owing to the strict in series arrangement, allowed for evaluation of this property in individual sarcomeres (n=79). We found consistent force enhancement following stretch in all myofibrils and each sarcomere, and forces in the enhanced state typically exceeded the isometric forces on the plateau of the force-length relationship. Measurements were made on the plateau and the descending limb of the force-length relationship and revealed gross sarcomere length non-uniformities prior to and following active myofibril stretching, but in contrast to previous accounts, revealed that sarcomere lengths were perfectly stable under these experimental conditions. We conclude that force enhancement is a sarcomeric property that does not depend on sarcomere length instability, that force enhancement varies greatly for different sarcomeres within the same myofibril and that sarcomeres with vastly different amounts of actin-myosin overlap produce the same isometric steady-state forces. This last finding was not explained by differences in the amount of contractile proteins within sarcomeres, vastly different passive properties of individual sarcomeres or (half-) sarcomere length instabilities, suggesting that the basic mechanical properties of muscles, such as force enhancement, force depression and creep, which have traditionally been associated with sarcomere instabilities and the corresponding dynamic redistribution of sarcomere lengths, are not caused by such instabilities, but rather seem to be inherent properties of the mechanisms of contraction.  相似文献   

18.
Embryonic Xenopus myocytes generate spontaneous calcium (Ca(2+)) transients during differentiation in culture. Suppression of these transients disrupts myofibril organization and the formation of sarcomeres through an identified signal transduction cascade. Since transients often occur during myocyte polarization and migration in culture, we hypothesized they might play additional roles in vivo during tissue formation. We have tested this hypothesis by examining Ca(2+) dynamics in the intact Xenopus paraxial mesoderm as it differentiates into the mature myotome. We find that Ca(2+) transients occur in cells of the developing myotome with characteristics remarkably similar to those in cultured myocytes. Transients produced within the myotome are correlated with somitogenesis as well as myocyte maturation. Since transients arise from intracellular stores in cultured myocytes, we examined the functional distribution of both IP(3) and ryanodine receptors in the intact myotome by eliciting Ca(2+) elevations in response to photorelease of caged IP(3) and superfusion of caffeine, respectively. As in culture, transients in vivo depend on Ca(2+) release from ryanodine receptor (RyR) stores, and blocking RyR during development interferes with somite maturation.  相似文献   

19.
Insect flight muscle is known for its crystal-quality regularity of contractile protein arrangement within a sarcomere. We have previously shown by X-ray microdiffraction that the crystal-quality regularity in bumble-bee flight muscle is not confined within a sarcomere, but extends over the entire length of a myofibril (>1000 sarcomeres connected in series). Because of this, the whole myofibril may be regarded as a millimetre-long, natural single protein crystal. Using bright X-ray beams from a synchrotron radiation source, we examined how this long-range crystallinity has evolved among winged insects. We analysed >4600 microdiffraction patterns of quick-frozen myofibrils from 50 insect species, covering all the major winged insect orders. The results show that the occurrence of such long-range crystallinity largely coincides with insect orders with asynchronous muscle operation. However, a few of the more skilled fliers among lower-order insects apparently have developed various degrees of structural regularity, suggesting that the demand for skillful flight has driven the lattice structure towards increased regularity.  相似文献   

20.
Formins, proteins defined by the presence of an FH2 domain and their ability to nucleate linear F-actin de novo, play a key role in the regulation of the cytoskeleton. Initially thought to primarily regulate actin, recent studies have highlighted a role for formins in the regulation of microtubule dynamics, and most recently have uncovered the ability of some formins to coordinate the organization of both the microtubule and actin cytoskeletons. While biochemical analyses of this family of proteins have yielded many insights into how formins regulate diverse cytoskeletal reorganizations, we are only beginning to appreciate how and when these functional properties are relevant to biological processes in a developmental or organismal context. Developmental genetic studies in fungi, Dictyostelium, vertebrates, plants and other model organisms have revealed conserved roles for formins in cell polarity, actin cable assembly and cytokinesis. However, roles have also been discovered for formins that are specific to particular organisms. Thus, formins perform both global and specific functions, with some of these roles concurring with previous biochemical data and others exposing new properties of formins. While not all family members have been examined across all organisms, the analyses to date highlight the significance of the flexibility within the formin family to regulate a broad spectrum of diverse cytoskeletal processes during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号