首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The folding process for newly synthesized, multispanning membrane proteins in the endoplasmic reticulum (ER) is largely unknown. Here, we describe early folding events of the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ABC-transporter family. In vitro translation of CFTR in the presence of semipermeabilized cells allowed us to investigate this protein during nascent chain elongation. We found that CFTR folds mostly during synthesis as determined by protease susceptibility. C-terminally truncated constructs showed that individual CFTR domains formed well-defined structures independent of C-terminal parts. We conclude that the multidomain protein CFTR folds mostly cotranslationally, domain by domain.  相似文献   

2.
Proteins that contain a distinct knot in their native structure are impressive examples of biological self-organization. Although this topological complexity does not appear to cause a folding problem, the mechanisms by which such knotted proteins form are unknown. We found that the fusion of an additional protein domain to either the amino terminus, the carboxy terminus, or to both termini of two small knotted proteins did not affect their ability to knot. The multidomain constructs remained able to fold to structures previously thought unfeasible, some representing the deepest protein knots known. By examining the folding kinetics of these fusion proteins, we found evidence to suggest that knotting is not rate limiting during folding, but instead occurs in a denatured-like state. These studies offer experimental insights into when knot formation occurs in natural proteins and demonstrate that early folding events can lead to diverse and sometimes unexpected protein topologies.  相似文献   

3.
The folding of multidomain proteins often proceeds in a hierarchical fashion with individual domains folding independent of one another. A large single-domain protein, however, can consist of multiple modules whose folding may be autonomous or interdependent in ways that are unclear. We used coarse-grained simulations to explore the folding landscape of the two-subdomain bacterial response regulator CheY. Thermodynamic and kinetic characterization shows the landscape to be highly analogous to the four-state landscape reported for another two-subdomain protein, T4 lysozyme. An on-pathway intermediate structured in the more stable nucleating subdomain was observed, as were transient states frustrated in off-pathway contacts prematurely structured in the weaker subdomain. Local unfolding, or backtracking, was observed in the frustrated state before the native conformation could be reached. Nonproductive frustration was attributable to competition for van der Waals contacts between the two subdomains. In an accompanying article, stopped-flow kinetic measurements support an off-pathway burst-phase intermediate, seemingly consistent with our prediction of early frustration in the folding landscape of CheY. Comparison of the folding mechanisms for CheY, T4 lysozyme, and interleukin-1β leads us to postulate that subdomain competition is a general feature of large single-domain proteins with multiple folding modules.  相似文献   

4.
5.
Spectrin domains are three-helix bundles, commonly found in large tandem arrays. Equilibrium studies have shown that spectrin domains are significantly stabilized by their neighbors. In this work we show that domain:domain interactions can also have profound effects on their kinetic behavior. We have studied the folding of a tandem pair of spectrin domains (R1617) using a combination of single- and double-jump stopped flow experiments (monitoring folding by both circular dichroism and fluorescence). Mutant proteins were also used to investigate the complex folding kinetics. We find that, although the domains fold and unfold individually, there is a single rate-determining step for both folding and unfolding of the protein. This is consistent with the equilibrium observation of cooperative folding of the entire two-domain protein. The results may have important biological implications. Not only will the protein fold more efficiently during cotranslational folding, but the ability of the multidomain protein to withstand thermal unfolding in the cell will be dramatically increased. This study suggests that caution has to be exercised when extrapolating from single domains to larger proteins with a number of independently folding modules arranged in tandem. The multidomain protein spectrin is certainly more than "the sum of its parts".  相似文献   

6.
The 62 kDa protein firefly luciferase folds very rapidly upon translation on eukaryotic ribosomes. In contrast, the chaperone-mediated refolding of chemically denatured luciferase occurs with significantly slower kinetics. Here we investigate the structural basis for this difference in folding kinetics. We find that an N-terminal domain of luciferase (residues 1-190) folds co-translationally, followed by rapid formation of native protein upon release of the full-length polypeptide from the ribosome. In contrast sequential domain formation is not observed during in vitro refolding. Discrete unfolding steps, corresponding to domain unfolding, are however observed when the native protein is exposed to increasing concentrations of denaturant. Thus, the co-translational folding reaction bears more similarities to the unfolding reaction than to refolding from denaturant. We propose that co-translational domain formation avoids intramolecular misfolding and may be critical in the folding of multidomain proteins.  相似文献   

7.
There is a lack of experimental structural information about folding intermediates of multidomain proteins. Tick carboxypeptidase inhibitor (TCI) is a small, disulfide-rich protein consisting of two domains that fold and unfold autonomously through the formation of two major intermediates, IIIa and IIIb. Each intermediate contains three native disulfide bonds in one domain and six free cysteines in the other domain. Here we have determined the NMR structures of these two intermediates trapped and isolated at acidic pH in which they are stable and compared their structures with that of the native protein analyzed under the same conditions. Both IIIa and IIIb were found to contain a folded region that corresponds to the N- and C-terminal domains of TCI, respectively, with structures very similar to the corresponding regions of the native protein. The remainder of the polypeptide chains of the intermediates was shown to be unfolded in a random coil conformation. Solvent exchange measurements further indicated that the two protein domains are not completely independent, but affect each other in terms of dynamics and stability, in agreement with reported inhibitory activity data. The derived results provide structural evidence for symmetric TCI folding and unfolding mechanisms that converge in IIIa and IIIb and reveal the structural basis that accounts for the strong and simultaneous accumulation of both intermediates. Altogether, this work has important implications for a better understanding of the folding mechanisms of multidomain, disulfide-rich proteins.  相似文献   

8.
Domains are the structural, functional, and evolutionary components of proteins. Most folding studies to date have concentrated on the folding of single domains, but more than 70% of human proteins contain more than one domain, and interdomain interactions can affect both the stability and the folding kinetics. Whether the folding pathway is altered by interdomain interactions is not yet known. Here we investigated the effect of a folded neighbouring domain on the folding pathway of spectrin R16 (the 16th α-helical repeat from chicken brain α-spectrin) by using the two-domain construct R1516. The R16 folds faster and unfolds more slowly in the presence of its folded neighbour R15 (the 15th α-helical repeat from chicken brain α-spectrin). An extensive Φ-value analysis of the R16 domain in R1516 was completed to compare the transition state of the R16 domain alone with that of the R16 domain in a multidomain construct. The results indicate that the folding pathways are the same. This result validates the current approach of breaking up larger proteins into domains for the study of protein folding pathways.  相似文献   

9.
The D135 group II intron ribozyme follows a unique folding pathway that is direct and appears to be devoid of kinetic traps. During the earliest stages of folding, D135 collapses slowly to a compact intermediate, and all subsequent assembly events are rapid. Collapse of intron domain 1 (D1) has been shown to limit the rate constant for D135 folding, although the specific substructure of the D1 kinetic intermediate has not yet been identified. Employing time-resolved nucleotide analog interference mapping, we have identified a cluster of atoms within the D1 main stem that control the rate constant for D135 collapse. Functional groups within the κ-ζ element are particularly important for this earliest stage of folding, which is intriguing given that this same motif also serves later as the docking site for catalytic domain 5. More important, the κ-ζ element is shown to be a divalent ion binding pocket, indicating that this region is a Mg2+-dependent switch that initiates the cascade of D135 folding events. By measuring the Mg2+ dependence of the compaction rate constant, we conclude that the actual rate-limiting step in D1 compaction involves the formation of an unstable folding intermediate that is captured by the binding of Mg2+. This carefully orchestrated folding pathway, in which formation of an active-site docking region is early and rate limiting, ensures proper folding of the intron core and faithful splicing. It may represent an important paradigm for the folding of large, multidomain RNA molecules.  相似文献   

10.
Oshrit Arviv  Yaakov Levy 《Proteins》2012,80(12):2780-2798
Most eukaryotic and a substantial fraction of prokaryotic proteins are composed of more than one domain. The tethering of these evolutionary, structural, and functional units raises, among others, questions regarding the folding process of conjugated domains. Studying the folding of multidomain proteins in silico enables one to identify and isolate the tethering‐induced biophysical determinants that govern crosstalks generated between neighboring domains. For this purpose, we carried out coarse‐grained and atomistic molecular dynamics simulations of two two‐domain constructs from the immunoglobulin‐like β‐sandwich fold. Each of these was experimentally shown to behave as the “sum of its parts,” that is, the thermodynamic and kinetic folding behavior of the constituent domains of these constructs seems to occur independently, with the folding of each domain uncoupled from the folding of its partner in the two‐domain construct. We show that the properties of the individual domains can be significantly affected by conjugation to another domain. The tethering may be accompanied by stabilizing as well as destabilizing factors whose magnitude depends on the size of the interface, the length, and the flexibility of the linker, and the relative stability of the domains. Accordingly, the folding of a multidomain protein should not be viewed as the sum of the folding patterns of each of its parts, but rather, it involves abrogating several effects that lead to this outcome. An imbalance between these effects may result in either stabilization or destabilization owing to the tethering. Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

11.
A "folding element" is a contiguous peptide segment crucial for a protein to be foldable and is a new concept that could assist in our understanding of the protein-folding problem. It is known that the presence of the complete set of folding elements of dihydrofolate reductase (DHFR) from Escherichia coli is essential for the protein to be foldable. Since almost all of the amino acid residues known to be involved in the early folding events of DHFR are located within the folding elements, a close relationship between the folding elements and early folding events is hypothesized. In order to test this hypothesis, we have investigated whether or not the early folding events are preserved in circular permutants and topological mutants of DHFR, in which the order of the folding elements is changed but the complete set of folding elements is present. The stopped-flow circular dichroism (CD) measurements show that the CD spectra at the early stages of folding are similar among the mutants and the wild-type DHFR, indicating that the presence of the complete set of folding elements is sufficient to preserve the early folding events. We have further examined whether or not sequence perturbation on the folding elements by a single amino acid substitution affects the early folding events of DHFR. The results show that the amino acid substitutions inside of the folding elements can affect the burst-phase CD spectra, whereas the substitutions outside do not. Taken together, these results indicate that the above hypothesis is true, suggesting a close relationship between the foldability of a protein and the early folding events. We propose that the folding elements interact with each other and coalesce to form a productive intermediate(s) early in the folding, and these early folding events are important for a protein to be foldable.  相似文献   

12.
Lee SY  Fujitsuka Y  Kim DH  Takada S 《Proteins》2004,55(1):128-138
Protein-folding mechanisms of two small globular proteins, IgG binding domain of protein G and alpha spectrin SH3 domain are investigated via Brownian dynamics simulations with a model made of coarse-grained physical energy functions responsible for sequence-specific interactions and weak Gō-like energies. The folding pathways of alpha spectrin SH3 are known to be mainly controlled by the native topology, while protein G folding is anticipated to be more sensitive to the sequence-specific effects than native topology. We found in the folding of protein G that the C terminal beta hairpin is formed earlier and is rigid, once ordered, in the presence of an intact C terminal turn. The alpha helix is found to exhibit repeated partial formations/deformations during folding and to be stabilized via the tertiary contact with preformed beta sheets. This predicted scenario is fully consistent with experimental phi value data. Moreover, we found that the folding route is critically affected when the hydrophobic interaction is excluded from physical energy terms, suggesting that the hydrophobicity critically contributes to the folding propensity of protein G. For the folding of alpha spectrin SH3, we found that the distal beta hairpin and diverging turn are parts formed early, fully in harmony with previous results of simple Gō-like and experimental analysis, supporting that the folding route of SH3 domain is robust and coded by the native topology. The hybrid method provides useful tools for analyzing roles of physical interactions in determining folding mechanisms.  相似文献   

13.
Sato S  Luisi DL  Raleigh DP 《Biochemistry》2000,39(16):4955-4962
The folding kinetics of the multidomain ribosomal protein L9 were studied using pH jump stopped-flow fluorescence and circular dichroism (CD) in conjunction with guanidine hydrochloride (GdnHCl) jump stopped-flow CD experiments. Equilibrium CD and 1D (1)H NMR measurements demonstrated that the C-terminal domain unfolds below pH 4 while the N-terminal domain remains fully folded. Thus, the N-terminal domain remains folded during the pH jump experiments. The folding rate constant of the C-terminal domain was determined to be 3.5 s(-1) by pH jump experiments conducted in the absence of denaturant using stopped-flow CD and fluorescence. CD-detected GdnHCl jump measurements showed that the N- and C-terminal domains fold independently each by an apparent two-state mechanism. The folding rate constant for the N-terminal domain and the C-terminal domain in the absence of denaturant were calculated to be 760 and 4. 7 s(-1), respectively. The good agreement between the pH jump and the denaturant concentration jump experiments shows that the folding rate of the C-terminal domain is the same whether or not the N-terminal domain is folded. This result suggests that the slow folding of the C-terminal domain is not a consequence of unfavorable interactions with the rest of the protein chain during refolding. This is an interesting result since contact order analysis predicts that the folding rate of the C-terminal domain should be noticeably faster. The folding rate of the isolated N-terminal domain was also measured by stopped-flow CD and was found to be the same as the rate for the domain in the intact protein.  相似文献   

14.
Raman EP  Barsegov V  Klimov DK 《Proteins》2007,67(4):795-810
One of the factors, which influences protein folding in vivo, is a linkage of protein domains into multidomain tandems. However, relatively little is known about the impact of domain connectivity on protein folding mechanisms. In this article, we use coarse grained models of proteins to explore folding of tandem-linked domains (TLD). We found TLD folding to follow two scenarios. In the first, the tandem connectivity produces relatively minor impact on folding and the mechanisms of folding of tandem-linked and single domains remain similar. The second scenario involves qualitative changes in folding mechanism because of tandem linkage. As a result, protein domains, which fold via two-state mechanism as single isolated domains, may form new stable intermediates when inserted into tandems. The new intermediates are created by topological constraints imposed by the linkers between domains. In both cases tandem linkage slows down folding. We propose that the impact of tandem connectivity can be minimized, if the terminal secondary structure elements (SSEs) are flexible. In particular, two factors appear to facilitate TLD folding: (1) the interactions between terminal SSE are poorly ordered in the folding transition state, whereas nonterminal SSE are better structured, (2) the interactions between terminal SSE are weak in the native state. We apply these findings to wild-type proteins by examining experimental phi-value data and by performing all-atom molecular dynamics simulations. We show that immunoglobulin-like domains appear to utilize the factors, which minimize the impact of tandem connectivity on their folding. Several single domain proteins, which are likely to misfold in tandems, are also identified.  相似文献   

15.
In a natively folded protein of moderate or larger size, the protein backbone may weave through itself in complex ways, raising questions about what sequence of events might have to occur in order for the protein to reach its native configuration from the unfolded state. A mathematical framework is presented here for describing the notion of a topological folding barrier, which occurs when a protein chain must pass through a hole or opening, formed by other regions of the protein structure. Different folding pathways encounter different numbers of such barriers and therefore different degrees of frustration. A dynamic programming algorithm finds the optimal theoretical folding path and minimal degree of frustration for a protein based on its natively folded configuration. Calculations over a database of protein structures provide insights into questions such as whether the path of minimal frustration might tend to favor folding from one or from many sites of folding nucleation, or whether proteins favor folding around the N terminus, thereby providing support for the hypothesis that proteins fold co-translationally. The computational methods are applied to a multi-disulfide bonded protein, with computational findings that are consistent with the experimentally observed folding pathway. Attention is drawn to certain complex protein folds for which the computational method suggests there may be a preferred site of nucleation or where folding is likely to proceed through a relatively well-defined pathway or intermediate. The computational analyses lead to testable models for protein folding.  相似文献   

16.
Titin is a giant, multidomain muscle protein forming a major component of the sarcomere in vertebrate striated muscle. As for many other multidomain proteins, the properties of titin are often studied by characterisation of the constituent domains in isolation. This raises the question of to what extent the properties of the isolated domains are representative of the domains in the wild-type protein. We address this question for the I-band region of titin, which is of particular biological interest due to its role in muscle elasticity, by determining the properties of five immunoglobulin domains from the I-band in three different contexts; firstly as isolated domains with the boundaries defined conservatively, secondly, with a two amino acid extension at both the N and C terminus and thirdly as part of multidomain constructs. We show that adjacent domains in the titin I-band have very different kinetic properties which, in general, undergo only a small change in the presence of neighbouring domains and conclude that, provided that care is taken in the choice of domain boundaries, the properties of the titin I-band are essentially "the sum of its parts". From this and other work we propose that variation in kinetic properties between adjacent domains may be a general property of the I-band thereby preventing misfolding events on muscle relaxation.  相似文献   

17.
We have designed an automated procedure to cut a protein into compact hydrophobic folding units. The hydrophobic units are large enough to contain tertiary non-local interactions, reflecting potential nucleation sites during protein folding. The quality of a hydrophobic folding unit is evaluated by four criteria. The first two correspond to visual characterization of a structural domain, namely, compactness and extent of isolation. We use the definition of Zehfus and Rose (Zehfus MH, Rose GD, 1986, Biochemistry 25:35-340) to calculate the compactness of a cut protein unit. The isolation of a unit is based on the solvent accessible surface area (ASA) originally buried in the interior and exposed to the solvent after cutting. The third quantity is the hydrophobicity, equivalent to the fraction of the buried non-polar ASA with respect to the total non-polar ASA. The last criterion in the evaluation of a folding unit is the number of segments it includes. To conform with the rationale of obtaining hydrophobic units, which may relate to early folding events, the hydrophobic interactions are implicitly and explicitly applied in their generation and assessment. We follow Holm and Sander (Holm L, Sander C, 1994, Proteins 19:256-268) to reduce the multiple cutting-point problem to a one-dimensional search for all reasonable trial cuts. However, as here we focus on the hydrophobic cores, the contact matrix used to obtain the first non-trivial eigenvector contains only hydrophobic contracts, rather than all, hydrophobic and hydrophilic, interactions. This dataset of hydrophobic folding units, derived from structurally dissimilar single chain monomers, is particularly useful for investigations of the mechanism of protein folding. For cases where there are kinetic data, the one or more hydrophobic folding units generated for a protein correlate with the two or with the three-state folding process observed. We carry out extensive amino acid sequence order independent structural comparisons to generate a structurally non-redundant set of hydrophobic folding units for fold recognition and for statistical purposes.  相似文献   

18.
In the cell, protein folding is mediated by folding catalysts and chaperones. The two functions are often linked, especially when the catalytic module forms part of a multidomain protein, as in Methanococcus jannaschii peptidyl-prolyl cis/trans isomerase FKBP26. Here, we show that FKBP26 chaperone activity requires both a 50-residue insertion in the catalytic FKBP domain, also called ‘Insert-in-Flap’ or IF domain, and an 80-residue C-terminal domain. We determined FKBP26 structures from four crystal forms and analyzed chaperone domains in light of their ability to mediate protein-protein interactions. FKBP26 is a crescent-shaped homodimer. We reason that folding proteins are bound inside the large crescent cleft, thus enabling their access to inward-facing peptidyl-prolyl cis/trans isomerase catalytic sites and ipsilateral chaperone domain surfaces. As these chaperone surfaces participate extensively in crystal lattice contacts, we speculate that the observed lattice contacts reflect a proclivity for protein associations and represent substrate interactions by FKBP26 chaperone domains. Finally, we find that FKBP26 is an exceptionally flexible molecule, suggesting a mechanism for nonspecific substrate recognition.  相似文献   

19.
The fusion of soluble partner to the N terminus of aggregation-prone polypeptide has been popularly used to overcome the formation of inclusion bodies in the E. coli cytosol. The chaperone-like functions of the upstream fusion partner in the artificial multidomain proteins could occur in de novo folding of native multidomain proteins. Here, we show that the N-terminal domains of three E. coli multidomain proteins such as lysyl-tRNA synthetase, threonyl-tRNA synthetase, and aconitase are potent solubility enhancers for various C-terminal heterologous proteins. The results suggest that the N-terminal domains could act as solubility enhancers for the folding of their authentic C-terminal domains in vivo. Tandem repeat of N-terminal domain or insertion of aspartic residues at the C terminus of the N-terminal domain also increased the solubility of fusion proteins, suggesting that the solubilizing ability correlates with the size and charge of N-terminal domains. The solubilizing ability of N-terminal domains would contribute to the autonomous folding of multidomain proteins in vivo, and based on these results, we propose a model of how N-terminal domains solubilize their downstream domains.  相似文献   

20.
How the endoplasmic reticulum (ER) folding machinery coordinates general and specialized chaperones during protein translation and folding remains an important unanswered question. Here, we show two structural domains in MESD, a specialized chaperone for LRP5/6, carry out dual functions. The chaperone domain forms a complex with the immature receptor, maintaining the β-propeller (BP) domain in an interaction competent state for epidermal growth factor-repeat binding. This promotes proper folding of the BP domain, causing a binding switch from the chaperone domain to the escort domain. The escort complex ensures LRP5/6 safe-trafficking from the ER to the Golgi by preventing premature ligand-binding. Inside the Golgi, the BP domain may contain a histidine switch, regulating MESD dissociation and retrieval. Together, we generate a plausible cell biology picture of the MESD/LRP5/6 pathway, suggesting that it is the specialized chaperones, MESD, that serves as the folding template to drive proper folding and safe trafficking of large multidomain proteins LRP5/6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号