首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Biophysical journal》2022,121(2):207-227
Entry of coronaviruses into host cells is mediated by the viral spike protein. Previously, we identified the bona fide fusion peptides (FPs) for severe acute respiratory syndrome coronavirus (“SARS-1”) and severe acute respiratory syndrome coronavirus-2 (“SARS-2”) using electron spin resonance spectroscopy. We also found that their FPs induce membrane ordering in a Ca2+-dependent fashion. Here we study which negatively charged residues in SARS-1 FP are involved in this binding, to build a topological model and clarify the role of Ca2+. Our systematic mutation study on the SARS-1 FP shows that all six negatively charged residues contribute to the FP’s membrane ordering activity, with D812 the dominant residue. The corresponding SARS-2 residue D830 plays an equivalent role. We provide a topological model of how the FP binds Ca2+ ions: its two segments FP1 and FP2 each bind one Ca2+. The binding of Ca2+, the folding of FP (both studied by isothermal titration calorimetry experiments), and the ordering activity correlate very well across the mutants, suggesting that the Ca2+ helps the folding of FP in membranes to enhance the ordering activity. Using a novel pseudotyped viral particle-liposome methodology, we monitored the membrane ordering induced by the FPs in the whole spike protein in its trimer form in real time. We found that the SARS-1 and SARS-2 pseudotyped viral particles also induce membrane ordering to the extent that separate FPs do, and mutations of the negatively charged residues also significantly suppress the membrane ordering activity. However, the slower kinetics of the FP ordering activity versus that of the pseudotyped viral particle suggest the need for initial trimerization of the FPs.  相似文献   

2.
The emergence of coronavirus disease 2019 (COVID-19) pandemic in Wuhan city, China at the end of 2019 made it urgent to identify the origin of the causal pathogen and its molecular evolution, to appropriately design an effective vaccine. This study analyzes the evolutionary background of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or SARS-2) in accordance with its close relative SARS-CoV (SARS-1), which was emerged in 2002. A comparative genomic and proteomic study was conducted on SARS-2, SARS-1, and Middle East respiratory syndrome coronavirus (MERS), which was emerged in 2012. In silico analysis inferred the genetic variability among the tested viruses. The SARS-1 genome harbored 11 genes encoding 12 proteins, while SARS-2 genome contained only 10 genes encoding for 10 proteins. MERS genome contained 11 genes encoding 11 proteins. The analysis also revealed a slight variation in the whole genome size of SARS-2 comparing to its siblings resulting from sequential insertions and deletions (indels) throughout the viral genome particularly ORF1AB, spike, ORF10 and ORF8. The effective indels were observed in the gene encoding the spike protein that is responsible for viral attachment to the angiotensin-converting enzyme 2 (ACE2) cell receptor and initiating infection. These indels are responsible for the newly emerging COVID-19 variants αCoV, βCoV, γCoV and δCoV. Nowadays, few effective COVID-19 vaccines developed based on spike (S) glycoprotein were approved and become available worldwide. Currently available vaccines can relatively prevent the spread of COVID-19 and suppress the disease. The traditional (killed or attenuated virus vaccine and antibody-based vaccine) and innovated vaccine production technologies (RNA- and DNA-based vaccines and viral vectors) are summarized in this review. We finally highlight the most common questions related to COVID-19 disease and the benefits of getting vaccinated.  相似文献   

3.
EF-hand Ca2+-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca2+. Upon binding Ca2+, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca2+-binding affinity of CaM and most S100s in the absence of target is weak (CaKD > 1 μM). However, upon effector protein binding, the Ca2+ affinity of these proteins increases via heterotropic allostery (CaKD < 1 μM). Because of the high number and micromolar concentrations of EF-hand CBPs in a cell, at any given time, allostery is required physiologically, allowing for (i) proper Ca2+ homeostasis and (ii) strict maintenance of Ca2+-signaling within a narrow dynamic range of free Ca2+ ion concentrations, [Ca2+]free. In this review, mechanisms of allostery are coalesced into an empirical “binding and functional folding (BFF)” physiological framework. At the molecular level, folding (F), binding and folding (BF), and BFF events include all atoms in the biomolecular complex under study. The BFF framework is introduced with two straightforward BFF types for proteins (type 1, concerted; type 2, stepwise) and considers how homologous and nonhomologous amino acid residues of CBPs and their effector protein(s) evolved to provide allosteric tightening of Ca2+ and simultaneously determine how specific and relatively promiscuous CBP-target complexes form as both are needed for proper cellular function.  相似文献   

4.
5.
Stromal interaction molecule 1 (STIM1) is an endo/sarcoplasmic reticulum (ER/SR) calcium (Ca2+) sensing protein that regulates store-operated calcium entry (SOCE). In SOCE, STIM1 activates Orai1-composed Ca2+ channels in the plasma membrane (PM) after ER stored Ca2+ depletion. S-Glutathionylation of STIM1 at Cys56 evokes constitutive SOCE in DT40 cells; however, the structural and biophysical mechanisms underlying the regulation of STIM1 by this modification are poorly defined. By establishing a protocol for site-specific STIM1 S-glutathionylation using reduced glutathione and diamide, we have revealed that modification of STIM1 at either Cys49 or Cys56 induces thermodynamic destabilization and conformational changes that result in increased solvent-exposed hydrophobicity. Further, S-glutathionylation or point-mutation of Cys56 reduces Ca2+ binding affinity, as measured by intrinsic fluorescence and far-UV circular dichroism spectroscopies. Solution NMR showed S-glutathionylated-induced perturbations in STIM1 are localized to the α1 helix of the canonical EF-hand, the α3 and α4 helices of the non-canonical EF-hand and α6 and α8 helices of the SAM domain. Finally, we designed an S-glutathiomimetic mutation that strongly recapitulates the structural, biophysical and functional effects within the STIM1 luminal domain and we envision to be another tool for understanding the effects of protein S-glutathionylation in vitro, in cellulo and in vivo.  相似文献   

6.
Dysferlin is a large membrane protein found most prominently in striated muscle. Loss of dysferlin activity is associated with reduced exocytosis, abnormal intracellular Ca2+ and the muscle diseases limb-girdle muscular dystrophy and Miyoshi myopathy. The cytosolic region of dysferlin consists of seven C2 domains with mutations in the C2A domain at the N-terminus resulting in pathology. Despite the importance of Ca2+ and membrane binding activities of the C2A domain for dysferlin function, the mechanism of the domain remains poorly characterized. In this study we find that the C2A domain preferentially binds membranes containing PI(4,5)P2 through an interaction mediated by residues Y23, K32, K33, and R77 on the concave face of the domain. We also found that subsequent to membrane binding, the C2A domain inserts residues on the Ca2+ binding loops into the membrane. Analysis of solution NMR measurements indicate that the domain inhabits two distinct structural states, with Ca2+ shifting the population between states towards a more rigid structure with greater affinity for PI(4,5)P2. Based on our results, we propose a mechanism where Ca2+ converts C2A from a structurally dynamic, low PI(4,5)P2 affinity state to a high affinity state that targets dysferlin to PI(4,5)P2 enriched membranes through interaction with Tyr23, K32, K33, and R77. Binding also involves changes in lipid packing and insertion by the third Ca2+ binding loop of the C2 domain into the membrane, which would contribute to dysferlin function in exocytosis and Ca2+ regulation.  相似文献   

7.
Cyclic adenosine monophosphate (cAMP) and calcium ions (Ca2+) are two chemical molecules that play a central role in the stimulus-dependent secretion processes within cells. Ca2+ acts as the basal signaling molecule responsible to initiate cell secretion. cAMP primarily acts as an intracellular second messenger in a myriad of cellular processes by activating cAMP-dependent protein kinases through association with such kinases in order to mediate post-translational phosphorylation of those protein targets. Put succinctly, both Ca2+ and cAMP act by associating or activating other proteins to ensure successful secretion. Calcineurin is one such protein regulated by Ca2+; its action depends on the intracellular levels of Ca2+. Being a phosphatase, calcineurin dephosphorylate and other proteins, as is the case with most other phosphatases, such as protein phosphatase 2A (PP2A), PP2C, and protein phosphatase-1 (PP1), will likely be activated by phosphorylation. Via this process, calcineurin is able to affect different intracellular signaling with clinical importance, some of which has been the basis for development of different calcineurin inhibitors. In this review, the cAMP-dependent calcineurin bio-signaling, protein-protein interactions and their physiological implications as well as regulatory signaling within the context of cellular secretion are explored.  相似文献   

8.
Background and purposePrimary dysmenorrhea is the most common gynaecologic problem in menstruating women and is characterized by spasmodic uterine contraction and pain symptoms associated with inflammatory disturbances. Paeonol is an active phytochemical component that has shown anti-inflammatory and analgesic effects in several animal models. The aim of this study was to explore whether paeonol is effective against dysmenorrhea and to investigate the potential mechanism of cannabinoid receptor signalling.Experimental approachDysmenorrhea was established by injecting oestradiol benzoate into female mice. The effects of paeonol on writhing time and latency, uterine pathology and inflammatory mediators were explored. Isolated uterine smooth muscle was used to evaluate the direct effect of paeonol on uterine contraction.Key resultsThe oral administration of paeonol reduced dysmenorrhea pain and PGE2 and TNF-α expression in the uterine tissues of mice, and paeonol was found to be distributed in lesions of the uterus. Paeonol almost completely inhibited oxytocin-, high potassium- and Ca2+-induced contractions in isolated uteri. Antagonists of CB2R (AM630) and the MAPK pathway (U0126), but not of CB1R (AM251), reversed the inhibitory effect of paeonol on uterine contraction. Paeonol significantly blocked L-type Ca2+ channels and calcium influx in uterine smooth muscle cells via CB2R. Molecular docking results showed that paeonol fits well with the binding site of CB2R.Conclusions and implicationsPaeonol partially acts through CB2R to restrain calcium influx and uterine contraction to alleviate dysmenorrhea in mice. These results suggest that paeonol has therapeutic potential for the treatment of dysmenorrhea.  相似文献   

9.
In humans, the biosynthesis and trafficking of mitochondrial [4Fe-4S]2+ clusters is a highly coordinated process that requires a complex protein machinery. In a mitochondrial pathway among various proposed to biosynthesize nascent [4Fe-4S]2+ clusters, two [2Fe-2S]2+ clusters are converted into a [4Fe-4S]2+ cluster on a ISCA1-ISCA2 complex. Along this pathway, this cluster is then mobilized from this complex to mitochondrial apo recipient proteins with the assistance of accessory proteins. NFU1 is the accessory protein that first receives the [4Fe-4S]2+ cluster from ISCA1-ISCA2 complex. A structural view of the protein–protein recognition events occurring along the [4Fe-4S]2+ cluster trafficking as well as how the globular N-terminal and C-terminal domains of NFU1 act in such process is, however, still elusive. Here, we applied small-angle X-ray scattering coupled with on-line size-exclusion chromatography and paramagnetic NMR to disclose structural snapshots of ISCA1-, ISCA2- and NFU1-containing apo complexes as well as the coordination of [4Fe-4S]2+ cluster bound to the ISCA1-NFU1 complex, which is the terminal stable species of the [4Fe-4S]2+ cluster transfer pathway involving ISCA1-, ISCA2- and NFU1 proteins. The structural modelling of ISCA1-ISCA2, ISCA1-ISCA2-NFU1 and ISCA1-NFU1 apo complexes, here reported, reveals that the structural plasticity of NFU1 domains is crucial to drive protein partner recognition and modulate [4Fe-4S]2+ cluster transfer from the cluster-assembly site in the ISCA1-ISCA2 complex to a cluster-binding site in the ISCA1-NFU1 complex. These structures allowed us to provide a first rational for the molecular function of the N-domain of NFU1, which can act as a modulator in the [4Fe-4S]2+ cluster transfer.  相似文献   

10.
11.
Transient receptor potential vanilloid 1 (TRPV1) is known as a receptor of capsaicin, a spicy ingredient of chili peppers. It is also sensitive to a variety of pungent compounds and is involved in nociception. Here, we focused on the structural characteristics of capsaicin, and investigated whether vanillylmanderic acid (VMA), vanillic acid (VAcid), vanillyl alcohol (VAlc), vanillyl butyl ether (VBE), and vanillin, containing a vanillyl skeleton similar to capsaicin, affected the TRPV1 activities. For detection of TRPV1 activity, intracellular Ca2+ concentration ([Ca2+]i) was measured in HEK 293 cells heterologously expressing mouse TRPV1 (mTRPV1-HEK) and in mouse sensory neurons. Except for vanillin, four vanilloid analogues dose-dependently increased [Ca2+]i in mTRPV1-HEK. The solutions that dissolved VMA, VAcid and vanillin at high concentrations were acidic, whereas those of VAlc and VBE were neutral. Neutralized VAcid evoked [Ca2+]i increases but neutralized VMA did not. Mutation of capsaicin-sensing sites diminished [Ca2+]i responses to VAcid, VAlc and VBE. VAcid, VMA, and vanillin suppressed the activation of TRPV1 induced by capsaicin. VAcid and VMA also inhibited the acid-induced TRPV1 activation. In sensory neurons, VMA diminished TRPV1 activation by capsaicin or acids. The present data indicate that these structural characteristics of chemical compounds on TRPV1 may provide strategies for the development of novel analgesic drugs targeting nociceptive TRPV1.  相似文献   

12.
COVID-19 caused by SARS-CoV-2 is the latest pandemic which has thrown the world into an unprecedented social and economic uncertainties along with huge loss to humanity. Identification of the host factors regulating the replication of SARS-CoV-2 in human host may help in the development of novel anti-viral therapies to combat the viral infection and spread. Recently, some research groups used genome-wide CRISPR/Cas screening to identify the host factors critical for the SARS-CoV-2 replication and infection. A comparative analysis of these significant host factors (p < 0.05) identified fifteen proteins common in these studies. Apart from ACE2 (receptor for SARS-CoV-2 attachment), other common host factors were CSNK2B, GDI2, SLC35B2, DDX51, VPS26A, ARPP-19, C1QTNF7, ALG6, LIMA1, COG3, COG8, BCOR, LRRN2 and TLR9. Additionally, viral interactome of these host factors revealed that many of them were associated with several SARS-CoV-2 proteins as well. Interestingly, some of these host factors have already been shown to be critical for the pathogenesis of other viruses suggesting their crucial role in virus-host interactions. Here, we review the functions of these host factors and their role in other diseases with special emphasis on viral diseases.  相似文献   

13.
Transient receptor potential vanilloid member 4 (TRPV4) is a Ca2+ permeable nonselective cation channel, and mutations in the TRPV4 gene cause congenital skeletal dysplasias and peripheral neuropathies. Although TRPV4 is widely expressed in the brain, few studies have assessed the pathogenesis of TRPV4 mutations in the brain. We aimed to elucidate the pathological associations between a specific TRPV4 mutation and neurodevelopmental defects using dopaminergic neurons (DNs) differentiated from dental pulp stem cells (DPSCs). DPSCs were isolated from a patient with metatropic dysplasia and multiple neuropsychiatric symptoms caused by a gain-of-function TRPV4 mutation, c.1855C>T (p.L619F). The mutation was corrected by CRISPR/Cas9 to obtain isogenic control DPSCs. Mutant DPSCs differentiated into DNs without undergoing apoptosis; however, neurite development was significantly impaired in mutant vs. control DNs. Mutant DNs also showed accumulation of mitochondrial Ca2+ and reactive oxygen species, low adenosine triphosphate levels despite a high mitochondrial membrane potential, and lower peroxisome proliferator-activated receptor gamma coactivator 1-alpha expression and mitochondrial content. These results suggested that the persistent Ca2+ entry through the constitutively activated TRPV4 might perturb the adaptive coordination of multiple mitochondrial functions, including oxidative phosphorylation, redox control, and biogenesis, required for dopaminergic circuit development in the brain. Thus, certain mutations in TRPV4 that are associated with skeletal dysplasia might have pathogenic effects on brain development, and mitochondria might be a potential therapeutic target to alleviate the neuropsychiatric symptoms of TRPV4-related diseases.  相似文献   

14.
《Fungal biology》2021,125(8):630-636
The emergence of drug-resistant pathogens has urged researchers to discover alternatives for traditional antibiotics. β-amyrin, which is included in the category of triterpenoids extracted from plants, is known for its antimicrobial activity, although the underlying mechanism has not yet been revealed. This study was conducted to elucidate the antifungal mode of action of β-amyrin against Candida albicans. Based on the relevance between triterpenoids and oxidative molecules, reactive oxygen species (ROS) concentrations were detected, which showed a noticeable increment. Disruption of Ca2+ homeostasis in the cytosol was additionally analyzed, which was supported by interactions between two. Subsequently, decrease in mitochondrial membrane potential, increment of mitochondrial Ca2+, and ROS concentration were monitored, which suggested mitochondrial dysfunction modulated by Ca2+. Further investigation confirmed oxidative damage through glutathione reduction and DNA fragmentation. Accumulation of lethal damages resulted in the activation of caspases and externalization of phosphatidylserine, indicating the induction of yeast apoptosis by β-amyrin in C. albicans.  相似文献   

15.
Magnesium ions (Mg2+) are the most abundant divalent cations in living organisms and are essential for various physiological processes, including ATP utilization and the catalytic activity of numerous enzymes. Therefore, the homeostatic mechanisms associated with cellular Mg2+ are crucial for both eukaryotic and prokaryotic organisms and are thus strictly controlled by Mg2+ channels and transporters. Technological advances in structural biology, such as the expression screening of membrane proteins, in meso phase crystallization, and recent cryo-EM techniques, have enabled the structure determination of numerous Mg2+ channels and transporters. In this review article, we provide an overview of the families of Mg2+ channels and transporters (MgtE/SLC41, TRPM6/7, CorA/Mrs2, CorC/CNNM), and discuss the structural biology prospects based on the known structures of MgtE, TRPM7, CorA and CorC.  相似文献   

16.
SARS-CoV-2, previously named 2019 novel coronavirus (2019-nCoV), has been associated with the global pandemic of acute respiratory distress syndrome. First reported in December 2019 in the Wuhan province of China, this new RNA virus has several folds higher transmission among humans than its other family member (SARS-CoV and MERS-CoV). The SARS-CoV-2 spike receptor-binding domain (RBD) is the region mediating the binding of the virus to host cells via Angiotensin-converting enzyme 2 (ACE2), a critical step of viral. Here in this study, we have utilized in silico approach for the virtual screening of antiviral library extracted from the Asinex database against the Receptor binding domain (RBD) of the S1 subunit of the SARS-CoV-2 spike glycoprotein. Further, the molecules were ranked based on their binding affinity against RBD, and the top 15 molecules were selected. The affinity of these selected molecules to interrupt the ACE2-Spike interaction was also studied. It was found that the chosen molecules were demonstrating excellent binding affinity against spike protein, and these molecules were also very effectively interrupting the ACE2-RBD interaction.Furthermore, molecular dynamics (MD) simulation studies were utilized to investigate the top 3 selected molecules' stability in the ACE2-RBD complexes. To the best of our knowledge, this is the first study where molecules' inhibitory potential against the Receptor binding domain (RBD) of the S1 subunit of the SARS-CoV-2 spike glycoprotein and their inhibitory potential against the ACE2-Spike has been studied. We believe that these compounds can be further tested as a potential therapeutic option against COVID-19.  相似文献   

17.
SARS-CoV-2 is the causative agent of COVID-19. The dimeric form of the viral Mpro is responsible for the cleavage of the viral polyprotein in 11 sites, including its own N and C-terminus. The lack of structural information for intermediary forms of Mpro is a setback for the understanding its self-maturation process. Herein, we used X-ray crystallography combined with biochemical data to characterize multiple forms of SARS-CoV-2 Mpro. For the immature form, we show that extra N-terminal residues caused conformational changes in the positioning of domain-three over the active site, hampering the dimerization and diminishing its activity. We propose that this form preludes the cis and trans-cleavage of N-terminal residues. Using fragment screening, we probe new cavities in this form which can be used to guide therapeutic development. Furthermore, we characterized a serine site-directed mutant of the Mpro bound to its endogenous N and C-terminal residues during dimeric association stage of the maturation process. We suggest this form is a transitional state during the C-terminal trans-cleavage. This data sheds light in the structural modifications of the SARS-CoV-2 main protease during its self-maturation process.  相似文献   

18.
Spike glycoprotein of SARS-CoV-2 mediates viral entry into host cells by facilitating virus attachment and membrane fusion. ACE2 is the main receptor of SARS-CoV-2 and its interaction with spike has shaped the virus’ emergence from an animal reservoir and subsequent evolution in the human host. Many structural studies on the spike:ACE2 interaction have provided insights into mechanisms driving viral evolution during the on-going pandemic. This review describes the molecular basis of spike binding to ACE2, outlines mechanisms that have optimised this interaction during viral evolution, and suggests directions for future research.  相似文献   

19.
An effective innate antiviral response is critical for the mitigation of severe disease and host survival following infection. In vivo, the innate antiviral response is triggered by cells that detect the invading pathogen and then communicate through autocrine and paracrine signaling to stimulate the expression of genes that inhibit viral replication, curtail cell proliferation, or modulate the immune response. In other words, the innate antiviral response is complex and dynamic. Notably, in the laboratory, culturing viruses and assaying viral life cycles frequently utilizes cells that are derived from tissues other than those that support viral replication during natural infection, while the study of viral pathogenesis often employs animal models. In recapitulating the human antiviral response, it is important to consider that variation in the expression and function of innate immune sensors and antiviral effectors exists across species, cell types, and cell differentiation states, as well as when cells are placed in different contexts. Thus, to gain novel insight into the dynamics of the host response and how specific sensors and effectors impact infection kinetics by a particular virus, the model system must be selected carefully. In this review, we briefly introduce key signaling pathways involved in the innate antiviral response and highlight how these differ between systems. We then review the application of tissue-engineered or 3D models for studying the antiviral response, and suggest how these in vitro culture systems could be further utilized to assay physiologically-relevant host responses and reveal novel insight into virus-host interactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号