首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Carbapenem-hydrolyzing class D β-lactamases (CHDLs) represent an emerging antibiotic resistance mechanism encountered among the most opportunistic Gram-negative bacterial pathogens. We report here the substrate kinetics and mechanistic characterization of a prominent CHDL, the OXA-58 enzyme, from Acinetobacter baumannii. OXA-58 uses a carbamylated lysine to activate the nucleophilic serine used for β-lactam hydrolysis. The deacylating water molecule approaches the acyl-enzyme species, anchored at this serine (Ser-83), from the α-face. Our data show that OXA-58 retains the catalytic machinery found in class D β-lactamases, of which OXA-10 is representative. Comparison of the homology model of OXA-58 and the recently solved crystal structures of OXA-24 and OXA-48 with the OXA-10 crystal structure suggests that these CHDLs have evolved the ability to hydrolyze imipenem, an important carbapenem in clinical use, by subtle structural changes in the active site. These changes may contribute to tighter binding of imipenem to the active site and removal of steric hindrances from the path of the deacylating water molecule.  相似文献   

2.
《Journal of molecular biology》2019,431(18):3472-3500
The β-lactams retain a central place in the antibacterial armamentarium. In Gram-negative bacteria, β-lactamase enzymes that hydrolyze the amide bond of the four-membered β-lactam ring are the primary resistance mechanism, with multiple enzymes disseminating on mobile genetic elements across opportunistic pathogens such as Enterobacteriaceae (e.g., Escherichia coli) and non-fermenting organisms (e.g., Pseudomonas aeruginosa). β-Lactamases divide into four classes; the active-site serine β-lactamases (classes A, C and D) and the zinc-dependent or metallo-β-lactamases (MBLs; class B). Here we review recent advances in mechanistic understanding of each class, focusing upon how growing numbers of crystal structures, in particular for β-lactam complexes, and methods such as neutron diffraction and molecular simulations, have improved understanding of the biochemistry of β-lactam breakdown. A second focus is β-lactamase interactions with carbapenems, as carbapenem-resistant bacteria are of grave clinical concern and carbapenem-hydrolyzing enzymes such as KPC (class A) NDM (class B) and OXA-48 (class D) are proliferating worldwide. An overview is provided of the changing landscape of β-lactamase inhibitors, exemplified by the introduction to the clinic of combinations of β-lactams with diazabicyclooctanone and cyclic boronate serine β-lactamase inhibitors, and of progress and strategies toward clinically useful MBL inhibitors. Despite the long history of β-lactamase research, we contend that issues including continuing unresolved questions around mechanism; opportunities afforded by new technologies such as serial femtosecond crystallography; the need for new inhibitors, particularly for MBLs; the likely impact of new β-lactam:inhibitor combinations and the continuing clinical importance of β-lactams mean that this remains a rewarding research area.  相似文献   

3.
The activity of class D β-lactamases is dependent on Lys70 carboxylation in the active site. Structural, kinetic and affinity studies show that this post-translational modification can be affected by the presence of a poor substrate such as moxalactam but also by the V117T substitution. Val117 is a strictly conserved hydrophobic residue located in the active site. In addition, inhibition of class D β-lactamases by chloride ions is due to a competition between the side chain carboxylate of the modified Lys70 and chloride ions. Determination of the individual kinetic constants shows that the deacylation of the acyl-enzyme is the rate-limiting step for the wild-type OXA-10 β-lactamase.  相似文献   

4.
Bacterial resistance to β-lactams antibiotics is a serious threat to human health. The most common cause of resistance to the β-lactams is the production of β-lactamase that inactivates β-lactams. Specifically, class A extended-spectrum β-lactamase produced by antibiotic resistant bacteria is capable of hydrolyzing extended-spectrum Cephalosporins and Monobactams. Mutations in class A β-lactamases play a crucial role in substrate and inhibitor specificity. In this present study, the E166A point mutant, R274N/R276N double mutant, and E166A/R274N/R276N triple mutant class A β-lactamases are analyzed. Molecular dynamics (MD) simulations are done to understand the consequences of mutations in class A β-lactamases. Root mean square deviation, root mean square fluctuation, radius of gyration, solvent accessibility surface area, hydrogen bond, and essential dynamics analysis results indicate notable loss in stability for mutant class A β-lactamases. MD simulations of native and mutant structures clearly confirm that the substitution of alanine at the position of 166, Asparagine at 274 and 276 causes more flexibility in 3D space. Molecular docking results indicate the mutation in class A β-lactamases which decrease the binding affinity of Cefpirome and Ceftobiprole which are third and fifth generation Cephalosporins, respectively. MD simulation of Ceftobiprole-native and mutant type Class A β-lactamases complexes reveal that E166A/R274N/R276N mutations alter the structure and notable loss in the stability for Ceftobirole-mutant type Class A β-lactamases complexes. Ceftobiprole is currently prescribed for patients with serious bacterial infections; this phenomenon is the probable cause for the effectiveness of Ceftobiprole in controlling bacterial infections.  相似文献   

5.
The evolution of multidrug resistance in Acinetobacter spp. increases the risk of our best antibiotics losing their efficacy. From a clinical perspective, the carbapenem-hydrolyzing class D β-lactamase subfamily present in Acinetobacter spp. is particularly concerning because of its ability to confer resistance to carbapenems. The kinetic profiles of class D β-lactamases exhibit variability in carbapenem hydrolysis, suggesting functional differences. To better understand the structure–function relationship between the carbapenem-hydrolyzing class D β-lactamase OXA-24/40 found in Acinetobacter baumannii and carbapenem substrates, we analyzed steady-state kinetics with the carbapenem antibiotics meropenem and ertapenem and determined the structures of complexes of OXA-24/40 bound to imipenem, meropenem, doripenem, and ertapenem, as well as the expanded-spectrum cephalosporin cefotaxime, using X-ray crystallography. We show that OXA-24/40 exhibits a preference for ertapenem compared with meropenem, imipenem, and doripenem, with an increase in catalytic efficiency of up to fourfold. We suggest that superposition of the nine OXA-24/40 complexes will better inform future inhibitor design efforts by providing insight into the complicated and varying ways in which carbapenems are selected and bound by class D β-lactamases.  相似文献   

6.
An important mechanism of resistance to β-lactam antibiotics is via their β-lactamase–catalyzed hydrolysis. Recent work has shown that, in addition to the established hydrolysis products, the reaction of the class D nucleophilic serine β-lactamases (SBLs) with carbapenems also produces β-lactones. We report studies on the factors determining β-lactone formation by class D SBLs. We show that variations in hydrophobic residues at the active site of class D SBLs (i.e. Trp105, Val120, and Leu158, using OXA-48 numbering) impact on the relative levels of β-lactones and hydrolysis products formed. Some variants, i.e. the OXA-48 V120L and OXA-23 V128L variants, catalyze increased β-lactone formation compared with the WT enzymes. The results of kinetic and product studies reveal that variations of residues other than those directly involved in catalysis, including those arising from clinically observed mutations, can alter the reaction outcome of class D SBL catalysis. NMR studies show that some class D SBL variants catalyze formation of β-lactones from all clinically relevant carbapenems regardless of the presence or absence of a 1β-methyl substituent. Analysis of reported crystal structures for carbapenem-derived acyl-enzyme complexes reveals preferred conformations for hydrolysis and β-lactone formation. The observation of increased β-lactone formation by class D SBL variants, including the clinically observed carbapenemase OXA-48 V120L, supports the proposal that class D SBL-catalyzed rearrangement of β-lactams to β-lactones is important as a resistance mechanism.  相似文献   

7.
The emergence of class D β-lactamases with carbapenemase activity presents an enormous challenge to health practitioners, particularly with regard to the treatment of infections caused by Gram-negative pathogens such as Acinetobacter baumannii. Unfortunately, class D β-lactamases with carbapenemase activity are resistant to β-lactamase inhibitors. To better understand the details of the how these enzymes bind and hydrolyze carbapenems, we have determined the structures of two deacylation-deficient variants (K84D and V130D) of the class D carbapenemase OXA-24 with doripenem bound as a covalent acyl-enzyme intermediate. Doripenem adopts essentially the same configuration in both OXA-24 variant structures, but varies significantly when compared to the non-carbapenemase class D member OXA-1/doripenem complex. The alcohol of the 6α hydroxyethyl moiety is directed away from the general base carboxy-K84, with implications for activation of the deacylating water. The tunnel formed by the Y112/M223 bridge in the apo form of OXA-24 is largely unchanged by the binding of doripenem. The presence of this bridge, however, causes the distal pyrrolidine/sulfonamide group to bind in a drastically different conformation compared to doripenem bound to OXA-1. The resulting difference in the position of the side-chain bridge sulfur of doripenem is consistent with the hypothesis that the tautomeric state of the pyrroline ring contributes to the different carbapenem hydrolysis rates of OXA-1 and OXA-24. These findings represent a snapshot of a key step in the catalytic mechanism of an important class D enzyme, and might be useful for the design of novel inhibitors.  相似文献   

8.
By reacting fluorescein isothiocyanate with meropenem, we have prepared a carbapenem-based fluorescent β-lactam. Fluorescein–meropenem binds both penicillin-binding proteins and β-lactam sensors and undergoes a typical acylation reaction in the active site of these proteins. The probe binds the class D carbapenemase OXA-24/40 with close to the same affinity as meropenem and undergoes a complete catalytic hydrolysis reaction. The visible light excitation and strong emission of fluorescein render this molecule a useful structure–function probe through its application in sodium dodecyl sulfate–polyacrylamide gel electrophoresis assays as well as solution-based kinetic anisotropy assays. Its classification as a carbapenem β-lactam and the position of its fluorescent modification render it a useful complement to other fluorescent β-lactams, most notably Bocillin FL. In this study, we show the utility of fluorescein–meropenem by using it to detect mutants of OXA-24/40 that arrest at the acyl-intermediate state with carbapenem substrates but maintain catalytic competency with penicillin substrates.  相似文献   

9.
The OXA-type β-lactamases are so named because of their oxacillin-hydrolyzing abilities. In this study we characterize an extended spectrum β-lactamase, designated OXA-4, produced by a clinical isolate of Pseudomonas aeruginosa. ESBL production was detected by double disk synergy test. The P. aeruginosa isolate was obtained from endotracheal suction tip of 84 years old male patient diagnosed with CVA and hypertension. ESBL producing OXA β-lactamases was detected by PCR with primers specific to the conserved regions of the coding genes. Iso electric focusing was done to confirm the significance, sequencing the amplified product was also done. In the phenotypic identification, the strain was highly resistant to third generation cephalosporins and also to imipenem. The PCR amplified product for OXA β-lactamase was viewed at 919 bp. The pI point for the same was identified at 7.2. With the help of sequencing the amplified OXA β-lactamase was identified as OXA-4 gene. Here we report P. aeruginosa producing OXA-4 ESBL for the first time in the Indian subcontinent.  相似文献   

10.
Acinetobacter baumannii, one of the major Gram negative bacteria, causes nosocomial infections such as pneumonia, urinary tract infection, meningitis, etc. β-lactam-based antibiotics like penicillin are used conventionally to treat infections of A. baumannii; however, they are becoming progressively less effective as the bacterium produces diverse types of β-lactamases to inactivate the antibiotics. We have recently identified a novel β-lactamase, OXA-51 from clinical strains of A. baumannii from our hospital. In the present study, we generated the structure of OXA-51 using MODELLER9v7 and studied the interaction of OXA-51 with a number of β-lactams (penicillin, oxacillin, ceftazidime, aztreonam and imipenem) using two independent programs: GLIDE and GOLD. Based on the results of different binding parameters and number of hydrogen bonds, interaction of OXA-51 was found to be maximum with ceftazidime and lowest with imipenem. Further, molecular dynamics simulation results also support this fact. The lowest binding affinity of imipenem to OXA-51 indicates clearly that it is not efficiently cleaved by OXA-51, thus explaining its high potency against resistant A. baumannii. This finding is supported by experimental results from minimum inhibitory concentration analysis and transmission electron microscopy. It can be concluded that carbapenems (imipenem) are presently effective β-lactam antibiotics against resistant strains of A. baumannii harbouring OXA-51. The results presented here could be useful in designing more effective derivatives of carbapenem.  相似文献   

11.
The Ω-loop at the active site of β-lactamases exerts significant impact on the kinetics and substrate profile of these enzymes by forming part of the substrate binding site and posing as steric hindrance toward bulky substrates. Mutating certain residues on the Ω-loop has been a general strategy for molecular evolution of β-lactamases to expand their hydrolytic activity toward extended-spectrum antibiotics through a mechanism believed to involve enhanced structural flexibility of the Ω-loop. Yet no structural information is available that demonstrates such flexibility or its relation to substrate profile and enzyme kinetics. Here we report an engineered β-lactamase that contains an environment-sensitive fluorophore conjugated near its active site to probe the structural dynamics of the Ω-loop and to detect the binding of diverse substrates. Our results show that this engineered β-lactamase has improved binding kinetics and positive fluorescence signal toward oxyimino-cephalosporins, but shows little such effect to non-oxyimino-cephalosporins. Structural studies reveal that the Ω-loop adopts a less stabilized structure, and readily undergoes conformational change to accommodate the binding of bulky oxyimino-cephalosporins while no such change is observed for non-oxyimino-cephalosporins. Mutational studies further confirm that this substrate-induced structural change is directly responsible for the positive fluorescence signal specific to oxyimino-cephalosporins. Our data provide mechanistic evidence to support the long-standing model that the evolutionary strategy of mutating the Ω-loop leads to increased structural flexibility of this region, which in turn facilitates the binding of extended spectrum β-lactam antibiotics. The oxyimino-cephalosporin-specific fluorescence profile of our engineered β-lactamase also demonstrates the possibility of designing substrate-selective biosensing systems.  相似文献   

12.
The duplicative mutation of an Ala-Val-Arg sequence at positions 208 to 210 in the loop structure of Enterobacter cloacae class C β-lactamase caused substrate specificity extension to oxyimino β-lactam antibiotics and this chromosomal mutation provided bacterial cells with high resistance to the β-lactams (M. Nukaga et al, 1995, J. Biol. Chem. 270, 5729-5735). In order to confirm the universality of this phenomenon among other class C β-lactamases, the duplicative mutation was applied to a class C β-lactamase of Citrobacter freundii, which has 74% homology to the E. cloacae β-lactamase amino acid sequence. The counterpart sequence to the Ala-Val-Arg of the E. cloacae enzyme in C. freundii β-lactamase was identified to be Pro-Val-His. A Pro-Val-His sequence was inserted just after the native Pro-Val-His sequence at positions 208 to 210 in the C. freundii β-lactamase. The resulting mutant of C. freundii β-lactamase obtained a striking characteristic that we expected, showing substrate specificity extension to oxyimino β-lactams. Nearly the same result was obtained with the insertion of an Ala-Val-Arg sequence after the native Pro-Val-His sequence. These results indicate that structural modification of this locus commonly induces modification of the substrate specificity to unfavorable substrates for many chromosomal class C β-lactamases produced by Gram-negative bacteria.  相似文献   

13.
Acinetobacter baumannii, an important nosocomial pathogen, is increasingly becoming resistant to antibiotics including recent β-lactam like imipenem. Production of different types of β-lactamases is one of the major resistance mechanisms which bacteria adapt. We recently reported the presence of a β-lactamase, OXA-51, in clinical strains of A. baumannii in ICUs of our hospital. This study is an attempt to understand the structure–function relationship of purified OXA-51 in carbapenem resistance in A. baumannii. The OXA-51 was cloned, expressed in E. coli Bl-21(DE3) and further purified. The in vitro enzyme activity of purified OXA-51 was confirmed by two independent techniques; in-gel assay and spectrophotometric method using nitrocefin. Further in vivo effect of OXA-51 was followed by transmission electron microscopy of bacterium. Biophysical and biochemical investigations of OXA-51 were done using LC-MS/MS, UV–Vis absorption, fluorescence, circular dichroic spectroscopy and isothermal calorimetry. Native OXA-51 was characterized as 30.6?kDa, pI 8.43 with no disulphide bonds and comprising of 30% α-helix, 27% β-sheet. Secondary structure of OXA-51 was significantly unchanged in broad pH (4–10) and temperature (30–60?°C) range with only local alterations at tertiary structural level. Interestingly, enzymatic activity up to 75% was retained under above conditions. Hydrolysis of imipenem by OXA-51 (km,1?μM) was found to be thermodynamically favourable. In the presence of imipenem, morphology of sensitive strain of A. baumannii was drastically changed, while OXA-51-transformed sensitive strain retained the stable coccobacillus shape, which demonstrates that imipenem is able to kill sensitive strain but is unable to do so in OXA-51-transformed strain. Hence the production of pH- and temperature-stable OXA-51 appears to be a major determinant in the resistance mechanisms adopted by A. baumannii in order to evade even the latest β-lactams, imipenem. It can be concluded from the study that OXA-51 plays a vital role in the survival of the pathogen under stress conditions and thus poses a major threat.  相似文献   

14.
Production of β-lactamases is the primary mechanism of antibiotic resistance employed by gram-negative pathogens. Chromogenic β-lactams are important reagents for detection and assay of β-lactamases, but limited commercial availability and exorbitant pricing of these compounds are prohibitive. Here we describe a straightforward synthesis of a chromogenic cephalosporin for β-lactamase assay that gives an overall yield of 74%. On hydrolysis, its λ(max) undergoes a bathochromic shift that is easy to see and measure spectrophotometrically with a Δε(442 nm) of 14,500cm(-1)M(-1). This compound was shown to be a substrate for a variety of β-lactamases.  相似文献   

15.
The catalytic efficiency of class D β-lactamases depends critically on an unusual carboxylated lysine as the general base residue for both the acylation and deacylation steps of the enzyme. Microbiological and biochemical studies on the class D β-lactamases OXA-1 and OXA-24 showed that the two enzymes behave differently when reacting with two 6-methylidene penems (penem 1 and penem 3): the penems are good inhibitors of OXA-1 but act more like substrates for OXA-24. UV difference and Raman spectroscopy revealed that the respective reaction mechanisms are different. The penems form an unusual intermediate, a 1,4-thiazepine derivative in OXA-1, and undergo deacylation followed by the decarboxylation of Lys-70, rendering OXA-1 inactive. This inactivation could not be reversed by the addition of 100 mm NaHCO3. In OXA-24, under mild conditions (enzyme:inhibitor = 1:4), only hydrolyzed products were detected, and the enzyme remained active. However, under harsh conditions (enzyme:inhibitor = 1:2000), OXA-24 was inhibited via decarboxylation of Lys-84; however, the enzyme could be reactivated by the addition of 100 mm NaHCO3. We conclude that OXA-24 not only decarboxylates with difficulty but also recarboxylates with ease; in contrast, OXA-1 decarboxylates easily but recarboxylates with difficulty. Structural analysis of the active site indicates that a crystallographic water molecule may play an important role in carboxylation in OXA-24 (an analogous water molecule is not found in OXA-1), supporting the suggestion that a water molecule in the active site of OXA-24 can lower the energy barrier for carboxylation significantly.  相似文献   

16.
The New Delhi Metallo-β-lactamase (NDM-1) gene makes multiple pathogenic microorganisms resistant to all known β-lactam antibiotics. The rapid emergence of NDM-1 has been linked to mobile plasmids that move between different strains resulting in world-wide dissemination. Biochemical studies revealed that NDM-1 is capable of efficiently hydrolyzing a wide range of β-lactams, including many carbapenems considered as "last resort" antibiotics. The crystal structures of metal-free apo- and monozinc forms of NDM-1 presented here revealed an enlarged and flexible active site of class B1 metallo-β-lactamase. This site is capable of accommodating many β-lactam substrates by having many of the catalytic residues on flexible loops, which explains the observed extended spectrum activity of this zinc dependent β-lactamase. Indeed, five loops contribute "keg" residues in the active site including side chains involved in metal binding. Loop 1 in particular, shows conformational flexibility, apparently related to the acceptance and positioning of substrates for cleavage by a zinc-activated water molecule.  相似文献   

17.
Synthesis of β-lactamases is one of the common mechanisms of bacterial resistance to β-lactam antibiotics such as penicillins and cephalosporins. The widespread use of antibiotics resulted in appearance of numerous extended-spectrum β-lactamase variants or inhibitor-resistant β-lactamases. In TEM type β-lactamases mutations of 92 residues have been described. Several mutations are functionally important and they determine the extended substrate specificity. However, roles of the most so-called associated mutations, located far from the active site, remain unknown. We have investigated the role of associated mutations in structure of β-lactamase TEM-72, which contains two key mutations (G238S, E240K) and two associated mutations (Q39K, M182T) by means of molecular dynamics simulation. Appearance of the key mutations (in 238 and 240 positions) caused destabilization of the protein globule, characterized by increased mobility of amino acid residues. Associated mutations (Q39K, M182T) exhibited opposite effect on the protein structure. The mutation M182T stabilized, while the mutation Q39K destabilized the protein. It appears that the latter mutation promoted optimization of the conformational mobility of β-lactamase and may influence the enzyme activity.  相似文献   

18.
Class D β-lactamases pose an emerging threat to the efficacy of β-lactam therapy for bacterial infections. Class D enzymes differ mechanistically from other β-lactamases by the presence of an active-site N-carboxylated lysine that serves as a general base to activate the serine nucleophile for attack. We have used site-saturation mutagenesis at position V117 in the class D β-lactamase OXA-1 to investigate how alterations in the environment around N-carboxylated K70 affect the ability of that modified residue to carry out its normal function. Minimum inhibitory concentration analysis of the 20 position 117 variants demonstrates a clear pattern of charge and polarity effects on the level of ampicillin resistance imparted on Escherichia coli (E. coli). Substitutions that introduce a negative charge (D, E) at position 117 reduce resistance to near background levels, while the positively charged K and R residues maintain the highest resistance levels of all mutants. Treatment of the acidic variants with the fluorescent penicillin BOCILLIN FL followed by SDS-PAGE shows that they are active for acylation by substrate but deacylation-deficient. We used a novel fluorescence anisotropy assay to show that the specific charge and hydrogen-bonding potential of the residue at position 117 affect CO(2) binding to K70, which in turn correlates to deacylation activity. These conclusions are discussed in light of the mechanisms proposed for both class D β-lactamases and BlaR β-lactam sensor proteins and suggest a reason for the preponderance of asparagine at the V117-homologous position in the sensors.  相似文献   

19.
目的调查多药耐药鲍曼不动杆菌老年患者分离株(MDR-ABA-5077)β-内酰胺酶基因分布情况。方法 MDR-ABA-5077株分离自宁波市医疗中心李惠利医院2009年7月住院老年患者,采用聚合酶联反应(PCR)及序列分析的方法分析21种β-内酰胺酶基因。结果本株MDR-ABA共检出3种β-内酰胺酶基因:TEM、SHV、ADC,其余18种β-内酰胺酶基因未检出。ADC阳性基因测得序列经BLAST比对与已在GenBank登录的ADC型AmpC均不相同,经与GenBank登录的ADC型序列分子进化分析,确认为ADC型β-内酰胺酶新的变异型。结论本株MDR-ABA多种β-内酰胺类药物耐药与产TEM、SHV、ADC等3种β-内酰胺酶相关。  相似文献   

20.
Antimicrobial resistance represents a global threat to healthcare. The ability to adequately treat infectious diseases is increasingly under siege due to the emergence of drug-resistant microorganisms. New approaches to drug development are especially needed to target organisms that exhibit broad antibiotic resistance due to expression of β-lactamases which is the most common mechanism by which bacteria become resistant to β-lactam antibiotics. We designed and synthesized 20 novel monocyclic β-lactams with alkyl- and aryl-thio moieties at C4, and subsequently tested these for antibacterial activity. These compounds demonstrated intrinsic activity against serine β-lactamase producing Mycobacterium tuberculosis wild type strain (Mtb) and multiple (n=6) β-lactamase producing Moraxella catarrhalis clinical isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号