共查询到20条相似文献,搜索用时 0 毫秒
1.
- Download : Download high-res image (313KB)
- Download : Download full-size image
2.
3.
The crystal structure of the globular head of complement protein C1q provides a basis for its versatile recognition properties 总被引:1,自引:0,他引:1
Gaboriaud C Juanhuix J Gruez A Lacroix M Darnault C Pignol D Verger D Fontecilla-Camps JC Arlaud GJ 《The Journal of biological chemistry》2003,278(47):46974-46982
C1q is a versatile recognition protein that binds to an amazing variety of immune and non-immune ligands and triggers activation of the classical pathway of complement. The crystal structure of the C1q globular domain responsible for its recognition properties has now been solved and refined to 1.9 A of resolution. The structure reveals a compact, almost spherical heterotrimeric assembly held together mainly by non-polar interactions, with a Ca2+ ion bound at the top. The heterotrimeric assembly of the C1q globular domain appears to be a key factor of the versatile recognition properties of this protein. Plausible three-dimensional models of the C1q globular domain in complex with two of its physiological ligands, C-reactive protein and IgG, are proposed, highlighting two of the possible recognition modes of C1q. The C1q/human IgG1 model suggests a critical role for the hinge region of IgG and for the relative orientation of its Fab domain in C1q binding. 相似文献
4.
BACKGROUND: Molecular chaperone Hsp40 can bind non-native polypeptide and facilitate Hsp70 in protein refolding. How Hsp40 and other chaperones distinguish between the folded and unfolded states of proteins to bind nonnative polypeptides is a fundamental issue. RESULTS: To investigate this mechanism, we determined the crystal structure of the peptide-binding fragment of Sis1, an essential member of the Hsp40 family from Saccharomyces cerevisiae. The 2.7 A structure reveals that Sis1 forms a homodimer in the crystal by a crystallographic twofold axis. Sis1 monomers are elongated and consist of two domains with similar folds. Sis1 dimerizes through a short C-terminal stretch. The Sis1 dimer has a U-shaped architecture and a large cleft is formed between the two elongated monomers. Domain I in each monomer contains a hydrophobic depression that might be involved in binding the sidechains of hydrophobic amino acids. CONCLUSIONS: Sis1 (1-337), which lacks the dimerization motif, exhibited severe defects in chaperone activity, but could regulate Hsp70 ATPase activity. Thus, dimer formation is critical for Sis1 chaperone function. We propose that the Sis1 cleft functions as a docking site for the Hsp70 peptide-binding domain and that Sis1-Hsp70 interaction serves to facilitate the efficient transfer of peptides from Sis1 to Hsp70. 相似文献
5.
Xiong JP Stehle T Goodman SL Arnaout MA 《The Journal of biological chemistry》2004,279(39):40252-40254
Integrin beta-subunits contain an N-terminal PSI (for plexin-semaphorin-integrin) domain that contributes to integrin activation and harbors the PI(A) alloantigen associated with immune thrombocytopenias and susceptibility to sudden cardiac death. Here we report the crystal structure of PSI in the context of the crystallized alphaVbeta3 ectodomain. The integrin PSI forms a two-stranded antiparallel beta-sheet flanked by two short helices; its long interstrand loop houses Pl(A) and may face the EGF2 domain. The integrin PSI contains four cysteine pairs connected in a 1-4, 2-8, 3-6, 5-7 pattern. An unexpected feature of the structure is that the final, eighth cysteine is located C-terminal to the Ig-like hybrid domain and is thus separated by the hybrid domain from the other seven cysteines of PSI. This architecture may be relevant to the evolution of integrins and should help refine the current models of integrin activation. 相似文献
6.
Jakobsson E Alvite G Bergfors T Esteves A Kleywegt GJ 《Biochimica et biophysica acta》2003,1649(1):40-50
We describe the 1.6 A crystal structure of the fatty-acid-binding protein EgFABP1 from the parasitic platyhelminth Echinococcus granulosus. E. granulosus causes hydatid disease, which is a major zoonosis. EgFABP1 has been implicated in the acquisition, storage, and transport of lipids, and may be important to the organism since it is incapable of synthesising most of its lipids de novo. Moreover, EgFABP1 is a promising candidate for a vaccine against hydatid disease.The crystal structure reveals that EgFABP1 has the expected 10-stranded beta-barrel fold typical of the family of intracellular lipid-binding proteins, and that it is structurally most similar to P2 myelin protein. We describe the comparison of the crystal structure of EgFABP1 with these proteins and with an older homology model for EgFABP1.The electron density reveals the presence of a bound ligand inside the cavity, which we have interpreted as palmitic acid. The carboxylate group of the fatty acid interacts with the protein's P2 motif, consisting of a conserved triad R em leader R-x-Y. The hydrophobic tail of the ligand assumes a fairly flat, U-shaped conformation and has relatively few interactions with the protein.We discuss some of the structural implications of the crystal structure of EgFABP1 for related platyhelminthic FABPs. 相似文献
7.
rap-1A, an anti-oncogene-encoded protein, is aras-p21-like protein whose sequence is over 80% homologous to p21 and which interacts with the same intracellular target proteins and is activated by the same mechanisms as p21, e.g., by binding GTP in place of GDP. Both interact with effector proteins in the same region, involving residues 32–47. However, activated rap-1A blocks the mitogenic signal transducing effects of p21. Optimal sequence alignment of p21 and rap-1A shows two insertions of rap-1A atras positions 120 and 138. We have constructed the three-dimensional structure of rap-1A bound to GTP by using the energy-minimized three-dimensional structure ofras-p21 as the basis for the modeling using a stepwise procedure in which identical and homologous amino acid residues in rap-1A are assumed to adopt the same conformation as the corresponding residues in p21. Side-chain conformations for homologous and nonhomologous residues are generated in conformations that are as close as possible to those of the corresponding side chains in p21. The entire structure has been subjected to a nested series of energy minimizations. The final predicted structure has an overall backbone deviation of 0.7 å from that ofras-p21. The effector binding domains from residues 32–47 are identical in both proteins (except for different side chains of different residues at position 45). A major difference occurs in the insertion region at residue 120. This region is in the middle of another effector loop of the p21 protein involving residues 115–126. Differences in sequence and structure in this region may contribute to the differences in cellular functions of these two proteins. 相似文献
8.
Junbin Hu Yunkun Wu Jingzhi Li Xinguo Qian Zhengqing Fu Bingdong Sha 《BMC structural biology》2008,8(1):3
Background
The mechanism by which Hsp40 and other molecular chaperones recognize and interact with non-native polypeptides is a fundamental question. How Hsp40 co-operates with Hsp70 to facilitate protein folding is not well understood. To investigate the mechanisms, we determined the crystal structure of the putative peptide-binding fragment of Hdj1, a human member of the type II Hsp40 family. 相似文献9.
Vestergaard B Sanyal S Roessle M Mora L Buckingham RH Kastrup JS Gajhede M Svergun DI Ehrenberg M 《Molecular cell》2005,20(6):929-938
Bacterial class I release factors (RFs) are seen by cryo-electron microscopy (cryo-EM) to span the distance between the ribosomal decoding and peptidyl transferase centers during translation termination. The compact conformation of bacterial RF1 and RF2 observed in crystal structures will not span this distance, and large structural rearrangements of RFs have been suggested to play an important role in termination. We have collected small-angle X-ray scattering (SAXS) data from E. coli RF1 and from a functionally active truncated RF1 derivative. Theoretical scattering curves, calculated from crystal and cryo-EM structures, were compared with the experimental data, and extensive analyses of alternative conformations were made. Low-resolution models were constructed ab initio, and by rigid-body refinement using RF1 domains. The SAXS data were compatible with the open cryo-EM conformation of ribosome bound RFs and incompatible with the crystal conformation. These conclusions obviate the need for assuming large conformational changes in RFs during termination. 相似文献
10.
A redox-controlled molecular switch revealed by the crystal structure of a bacterial heme PAS sensor
Kurokawa H Lee DS Watanabe M Sagami I Mikami B Raman CS Shimizu T 《The Journal of biological chemistry》2004,279(19):20186-20193
PAS domains, which have been identified in over 1100 proteins from all three kingdoms of life, convert various input stimuli into signals that propagate to downstream components by modifying protein-protein interactions. One such protein is the Escherichia coli redox sensor, Ec DOS, a phosphodiesterase that degrades cyclic adenosine monophosphate in a redox-dependent manner. Here we report the crystal structures of the heme PAS domain of Ec DOS in both inactive Fe(3+) and active Fe(2+) forms at 1.32 and 1.9 A resolution, respectively. The protein folds into a characteristic PAS domain structure and forms a homodimer. In the Fe(3+) form, the heme iron is ligated to a His-77 side chain and a water molecule. Heme iron reduction is accompanied by heme-ligand switching from the water molecule to a side chain of Met-95 from the FG loop. Concomitantly, the flexible FG loop is significantly rigidified, along with a change in the hydrogen bonding pattern and rotation of subunits relative to each other. The present data led us to propose a novel redox-regulated molecular switch in which local heme-ligand switching may trigger a global scissor-type subunit movement that facilitates catalytic control. 相似文献
11.
Xiao C Bator-Kelly CM Rieder E Chipman PR Craig A Kuhn RJ Wimmer E Rossmann MG 《Structure (London, England : 1993)》2005,13(7):1019-1033
CVA21 and polioviruses both belong to the Enterovirus genus in the family of Picornaviridae, whereas rhinoviruses form a distinct picornavirus genus. Nevertheless, CVA21 and the major group of human rhinoviruses recognize intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor, whereas polioviruses use poliovirus receptor. The crystal structure of CVA21 has been determined to 3.2 A resolution. Its structure has greater similarity to poliovirus structures than to other known picornavirus structures. Cryo-electron microscopy (cryo-EM) was used to determine an 8.0 A resolution structure of CVA21 complexed with an ICAM-1 variant, ICAM-1(Kilifi). The cryo-EM map was fitted with the crystal structures of ICAM-1 and CVA21. Significant differences in the structure of CVA21 with respect to the poliovirus structures account for the inability of ICAM-1 to bind polioviruses. The interface between CVA21 and ICAM-1 has shape and electrostatic complementarity with many residues being conserved among those CVAs that bind ICAM-1. 相似文献
12.
Fan H Ooi A Tan YW Wang S Fang S Liu DX Lescar J 《Structure (London, England : 1993)》2005,13(12):1859-1868
The coronavirus nucleocapsid (N) protein packages viral genomic RNA into a ribonucleoprotein complex. Interactions between N proteins and RNA are thus crucial for the assembly of infectious virus particles. The 45 kDa recombinant nucleocapsid N protein of coronavirus infectious bronchitis virus (IBV) is highly sensitive to proteolysis. We obtained a stable fragment of 14.7 kDa spanning its N-terminal residues 29-160 (IBV-N29-160). Like the N-terminal RNA binding domain (SARS-N45-181) of the severe acute respiratory syndrome virus (SARS-CoV) N protein, the crystal structure of the IBV-N29-160 fragment at 1.85 A resolution reveals a protein core composed of a five-stranded antiparallel beta sheet with a positively charged beta hairpin extension and a hydrophobic platform that are probably involved in RNA binding. Crosslinking studies demonstrate the formation of dimers, tetramers, and higher multimers of IBV-N. A model for coronavirus shell formation is proposed in which dimerization of the C-terminal domain of IBV-N leads to oligomerization of the IBV-nucleocapsid protein and viral RNA condensation. 相似文献
13.
The crystal structure of a fusagenic sperm protein reveals extreme surface properties 总被引:4,自引:0,他引:4
Sp18 is an 18 kDa protein that is released from abalone sperm during the acrosome reaction. It coats the acrosomal process where it is thought to mediate fusion between sperm and egg cell membranes. Sp18 is evolutionarily related to lysin, a 16 kDa abalone sperm protein that dissolves the vitelline envelope surrounding the egg. The two proteins were generated by gene duplication followed by rapid divergence by positive selection. Here, we present the crystal structure of green abalone sp18 resolved to 1.86 A. Sp18 is composed of a bundle of five alpha-helices with surface clusters of basic and hydrophobic residues, giving it a large dipole moment and making it extremely amphipathic. The large clusters of hydrophobic surface residues and domains of high positive electrostatic surface charge explain sp18's ability as a potent fusagen of liposomes. The overall fold of sp18 is similar to that of green abalone lysin; however, the surface features of the proteins are quite different, accounting for their different roles in fertilization. This is the first crystal structure of a protein implicated in sperm-egg fusion during animal fertilization. 相似文献
14.
James M. Chen Rosalyn Grad Regina Monaco Matthew R. Pincus 《Journal of Protein Chemistry》1996,15(1):11-16
rap-1A, an anti-oncogene-encoded protein, is aras-p21-like protein whose sequence is over 80% homologous to p21 and which interacts with the same intracellular target proteins and is activated by the same mechanisms as p21, e.g., by binding GTP in place of GDP. Both interact with effector proteins in the same region, involving residues 32–47. However, activated rap-1A blocks the mitogenic signal transducing effects of p21. Optimal sequence alignment of p21 and rap-1A shows two insertions of rap-1A atras positions 120 and 138. We have constructed the three-dimensional structure of rap-1A bound to GTP by using the energy-minimized three-dimensional structure ofras-p21 as the basis for the modeling using a stepwise procedure in which identical and homologous amino acid residues in rap-1A are assumed to adopt the same conformation as the corresponding residues in p21. Side-chain conformations for homologous and nonhomologous residues are generated in conformations that are as close as possible to those of the corresponding side chains in p21. The entire structure has been subjected to a nested series of energy minimizations. The final predicted structure has an overall backbone deviation of 0.7 å from that ofras-p21. The effector binding domains from residues 32–47 are identical in both proteins (except for different side chains of different residues at position 45). A major difference occurs in the insertion region at residue 120. This region is in the middle of another effector loop of the p21 protein involving residues 115–126. Differences in sequence and structure in this region may contribute to the differences in cellular functions of these two proteins. 相似文献
15.
Some trypsin-like proteases are endowed with Na+-dependent allosteric enhancement of catalytic activity, but this important mechanism has been difficult to engineer in other members of the family. Replacement of 19 amino acids in Streptomyces griseus trypsin targeting the active site and the Na+-binding site were found necessary to generate efficient Na+ activation. Remarkably, this property was linked to the acquisition of a new substrate selectivity profile similar to that of factor Xa, a Na+-activated protease involved in blood coagulation. The X-ray crystal structure of the mutant trypsin solved to 1.05 Å resolution defines the engineered Na+ site and active site loops in unprecedented detail. The results demonstrate that trypsin can be engineered into an efficient allosteric protease, and that Na+ activation is interwoven with substrate selectivity in the trypsin scaffold. 相似文献
16.
17.
Ellinger P Arslan Z Wurm R Tschapek B MacKenzie C Pfeffer K Panjikar S Wagner R Schmitt L Gohlke H Pul Ü Smits SH 《Journal of structural biology》2012,178(3):350-362
The prokaryotic immune system, CRISPR, confers an adaptive and inheritable defense mechanism against invasion by mobile genetic elements. Guided by small CRISPR RNAs (crRNAs), a diverse family of CRISPR-associated (Cas) proteins mediates the targeting and inactivation of foreign DNA. Here, we demonstrate that Csn2, a Cas protein likely involved in spacer integration, forms a tetramer in solution and structurally possesses a ring-like structure. Furthermore, co-purified Ca(2+) was found important for the DNA binding property of Csn2, which contains a helicase fold, with highly conserved DxD and RR motifs found throughout Csn2 proteins. We could verify that Csn2 binds ds-DNA. In addition molecular dynamics simulations suggested a Csn2 conformation that can "sit" on the DNA helix and binds DNA in a groove on the outside of the ring. 相似文献
18.
Emma Jakobsson Gabriela Alvite Terese Bergfors Adriana Esteves Gerard J. Kleywegt 《Biochimica et Biophysica Acta - Proteins and Proteomics》2003,1649(1):40-50
We describe the 1.6 Å crystal structure of the fatty-acid-binding protein EgFABP1 from the parasitic platyhelminth Echinococcus granulosus. E. granulosus causes hydatid disease, which is a major zoonosis. EgFABP1 has been implicated in the acquisition, storage, and transport of lipids, and may be important to the organism since it is incapable of synthesising most of its lipids de novo. Moreover, EgFABP1 is a promising candidate for a vaccine against hydatid disease.The crystal structure reveals that EgFABP1 has the expected 10-stranded β-barrel fold typical of the family of intracellular lipid-binding proteins, and that it is structurally most similar to P2 myelin protein. We describe the comparison of the crystal structure of EgFABP1 with these proteins and with an older homology model for EgFABP1.The electron density reveals the presence of a bound ligand inside the cavity, which we have interpreted as palmitic acid. The carboxylate group of the fatty acid interacts with the protein's P2 motif, consisting of a conserved triad R…R-x-Y. The hydrophobic tail of the ligand assumes a fairly flat, U-shaped conformation and has relatively few interactions with the protein.We discuss some of the structural implications of the crystal structure of EgFABP1 for related platyhelminthic FABPs. 相似文献
19.
A unimolecular oligonucleotide switch, termed here an AlloSwitch, binds the mature HIV-1 nucleocapsid protein, NCp7. This switch can be used as an indicator for the presence of free NCp7 and NC domains in precursor and fusion proteins. It is thermodynamically stable in two conformations, H and O. A FRET pair is covalently attached to the strands to report on the molecular state of the switch. The results show that NC has an affinity for O 170 times higher than its affinity for H and that in the absence of NC the equilibrium ratio K1 = [O]/[H] = 0.10 +/- 0.03 for the switch sequence reported here. The change between the two states happens on a rapid kinetic time scale. A framework is introduced to aid in the design of AlloSwitches aimed at other targets. A high-affinity probe segment must be available to bind the target in the O-form, while a cover segment hides the probe in H. A key is adjusting the cover sequence to favor the H-form by a factor of 10-1000. This affords a robust response to small changes in target concentration, while saturation produces more than 90% of the maximal change in fluorescence. When a competitor displaces the switch from the NC-O complex, the released switch reverts to the H-form. This is the basis for a mix-and-read strategy for high-throughput screening of anti-nucleocapsid drug candidates that is much simpler to execute than traditional assays that require immobilization and washing steps. 相似文献
20.
The ring-hydroxylating dioxygenase (RHD) from Sphingomonas CHY-1 is remarkable due to its ability to initiate the oxidation of a wide range of polycyclic aromatic hydrocarbons (PAHs), including PAHs containing four- and five-fused rings, known pollutants for their toxic nature. Although the terminal oxygenase from CHY-1 exhibits limited sequence similarity with well characterized RHDs from the naphthalene dioxygenase family, the crystal structure determined to 1.85 A by molecular replacement revealed the enzyme to share the same global alpha(3)beta(3) structural pattern. The catalytic domain distinguishes itself from other bacterial non-heme Rieske iron oxygenases by a substantially larger hydrophobic substrate binding pocket, the largest ever reported for this type of enzyme. While residues in the proximal region close to the mononuclear iron atom are conserved, the central region of the catalytic pocket is shaped mainly by the side chains of three amino acids, Phe350, Phe404 and Leu356, which contribute to the rather uniform trapezoidal shape of the pocket. Two flexible loops, LI and LII, exposed to the solvent seem to control the substrate access to the catalytic pocket and control the pocket length. Compared with other naphthalene dioxygenases residues Leu223 and Leu226, on loop LI, are moved towards the solvent, thus elongating the catalytic pocket by at least 2 A. An 11 A long water channel extends from the interface between the alpha and beta subunits to the catalytic site. The comparison of these structures with other known oxygenases suggests that the broad substrate specificity presented by the CHY-1 oxygenase is primarily due to the large size and particular topology of its catalytic pocket and provided the basis for the study of its reaction mechanism. 相似文献