首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Global tuberculosis (TB) control is encumbered by the lack of a rapid and simple detection method for diagnosis, especially in low-resource areas. An isothermal amplification method, hyperbranched rolling circle amplification (HRCA), was optimized to detect Mycobacterium tuberculosis (Mtb) in clinical sputum specimens.

Methods

A clinical validation study was performed to assess the diagnostic accuracy of HRCA. In order to analyze the detection limit of HRCA under optimal conditions, the method was initially used to detect purified H37Rv strain DNA and culture suspensions. Next, three strains of Mycobacterium tuberculosis complex (MTC) and eight strains of non-tuberculosis mycobacterium (NTM) were analyzed in order to evaluate specificity. Sputum specimens from 136 patients with diagnosed pulmonary TB, 38 lung cancer patients, and 34 healthy donors were tested by HRCA to validate the clinical application of HRCA for the rapid detection of Mtb.

Results

The detection limit of HRCA for purified H37Rv DNA and culture suspensions was 740 aM and 200cfu/ml, respectively. The results of all MTC strains were positive in contrast to the NTM specimens which were all negative. The detection sensitivity for the 136 sputum specimens from TB patients was 77.2% (105/136), which was slightly lower than that of quantitative real-time PCR(79.4%, 108/136) and culture (80.9%,110/136). The sensitivity of all three methods was statistically higher than smear microscopy (44.9%, 61/136). The overall specificity of HRCA was 98.6% (71/72) which was similar to that of quantitative real-time PCR (qRT-PCR) and smear/culture methods (100%, 72/72).

Conclusions

Use of the HRCA assay for detection of Mtb within clinical sputum specimens was demonstrated to be highly sensitive and specific. Moreover, the performance of HRCA is simple and cost-effective compared with qRT-PCR and is less time consuming than culture. Therefore, HRCA is a promising TB diagnostic tool that can be used routinely in low-resource clinical settings.  相似文献   

2.

Background

Mycoplasma bovis (M. bovis) is a major etiological agent of bovine mycoplasmosis around the world. Point-of-care testing in the field is lacking owing to the requirement for a simple, robust field applicable test that does not require professional laboratory equipment. The recombinase polymerase amplification (RPA) technique has become a promising isothermal DNA amplify assay for use in rapid and low-resource diagnostics.

Results

Here, a method for specific detection of M. bovis DNA was established, which was RPA combined with lateral flow dipstick (LFD). First, the analytical specificity and sensitivity of the RPA primer and LF-probe sets were evaluated. The assay successfully detected M. bovis DNA in 30?min at 39 °C, with detection limit of 20 copies per reaction, which it was compared the real-time quantitative PCR (qPCR) assay. This method was specific because it did not detect a selection of other bacterial pathogens in cattle. Both qPCR and RPA-LFD assays were used to detect M. bovis 442 field samples from 42 different dairy farms in Shandong Province of China, also the established RPA-LFD assay obtained 99.00% sensitivity, 95.61% specificity, and 0.902 kappa coefficient compared with the qPCR.

Conclusions

To the author’s knowledge, this is the first report using an RPA-FLD assay to visualise and detect M. bovis. Comparative analysis with qPCR indicates the potential of this assay for rapid diagnosis of bovine mycoplasmosis in resource limited settings.
  相似文献   

3.

Background

In case of outbreak of rash illness in remote areas, clinically discriminating monkeypox (MPX) from severe form of chickenpox and from smallpox remains a concern for first responders.

Objective

The goal of the study was therefore to use MPX and chickenpox outbreaks in Democratic Republic of Congo (DRC) as a test case for establishing a rapid and specific diagnosis in affected remote areas.

Methods

In 2008 and 2009, successive outbreaks of presumed MPX skin rash were reported in Bena Tshiadi, Yangala and Ndesha healthcare districts of the West Kasai province (DRC). Specimens consisting of liquid vesicle dried on filter papers or crusted scabs from healing patients were sampled by first responders. A field analytical facility was deployed nearby in order to carry out a real-time PCR (qPCR) assay using genus consensus primers, consensus orthopoxvirus (OPV) and smallpox-specific probes spanning over the 14 kD fusion protein encoding gene. A PCR-restriction fragment length polymorphism was used on-site as backup method to confirm the presence of monkeypox virus (MPXV) in samples. To complete the differential diagnosis of skin rash, chickenpox was tested in parallel using a commercial qPCR assay. In a post-deployment step, a MPXV-specific pyrosequencing was carried out on all biotinylated amplicons generated on-site in order to confirm the on-site results.

Results

Whereas MPXV proved to be the agent causing the rash illness outbreak in the Bena Tshiadi, VZV was the causative agent of the disease in Yangala and Ndesha districts. In addition, each on-site result was later confirmed by MPXV-specific pyrosequencing analysis without any discrepancy.

Conclusion

This experience of rapid on-site dual use DNA-based differential diagnosis of rash illnesses demonstrates the potential of combining tests specifically identifying bioterrorism agents and agents causing natural outbreaks. This opens the way to rapid on-site DNA-based identification of a broad spectrum of causative agents in remote areas.  相似文献   

4.

Background

Early detection is an essential component of cancer management. Unfortunately, visual examination can often be unreliable, and many settings lack the financial capital and infrastructure to operate PET, CT, and MRI systems. Moreover, the infrastructure and expense associated with surgical biopsy and microscopy are a challenge to establishing cancer screening/early detection programs in low-resource settings. Improvements in performance and declining costs have led to the availability of optoelectronic components, which can be used to develop low-cost diagnostic imaging devices for use at the point-of-care. Here, we demonstrate a fiber-optic fluorescence microscope using a consumer-grade camera for in vivo cellular imaging.

Methods

The fiber-optic fluorescence microscope includes an LED light, an objective lens, a fiber-optic bundle, and a consumer-grade digital camera. The system was used to image an oral cancer cell line labeled with 0.01% proflavine. A human tissue specimen was imaged following surgical resection, enabling dysplastic and cancerous regions to be evaluated. The oral mucosa of a healthy human subject was imaged in vivo, following topical application of 0.01% proflavine.

Findings

The fiber-optic microscope resolved individual nuclei in all specimens and tissues imaged. This capability allowed qualitative and quantitative differences between normal and precancerous or cancerous tissues to be identified. The optical efficiency of the system permitted imaging of the human oral mucosa in real time.

Conclusion

Our results indicate this device as a useful tool to assist in the identification of early neoplastic changes in epithelial tissues. This portable, inexpensive unit may be particularly appropriate for use at the point-of-care in low-resource settings.  相似文献   

5.

Background

Shiga toxin-producing Escherichia coli (STEC) are frequent causes of severe human diseases ranging from diarrhea to hemolytic uremic syndrome. The existing strategy for detection of STEC relies on the unique sorbitol-negative fermentation property of the O157 strains, the most commonly identified serotype has been E. coli O157. It is becoming increasingly evident, however, that numerous non-O157 STEC serotypes also cause outbreaks and severe illnesses. It is necessary to have new methods that are capable of detecting all STEC strains.

Methods and Findings

Here we describe the development of a sandwich ELISA assay for detecting both O157 and non-O157 STECs by incorporating a novel polyclonal antibody (pAb) against Stx2. The newly established immunoassay was capable of detecting Stx2a spiked in environmental samples with a limit of detection between 10 and 100 pg/mL in soil and between 100 and 500 pg/mL in feces. When applied to 36 bacterial strains isolated from human and environmental samples, this assay detected Stx2 in all strains that were confirmed to be stx2-positive by real-time PCR, demonstrating a 100% sensitivity and specificity.

Conclusions

The sandwich ELISA developed in this study will enable any competent laboratory to identify and characterize Stx2-producing O157 and non-O157 strains in human and environmental samples, resulting in rapid diagnosis and patient care. The results of epitope mapping from this study will be useful for further development of a peptide-based antibody and vaccine.  相似文献   

6.

Background and Objectives

Access to antiretroviral treatment among adolescents living with HIV (ALH) is increasing. Health-related quality of life (HRQOL) is relevant for monitoring the impact of the disease on both well-being and treatment outcomes. However, adequate screening tools to assess HRQOL in low-resource settings are scarce. This study aims to fill this research gap, by 1) assessing the psychometric properties and reliability of an Eastern African English version of a European HRQOL scale for adolescents (KIDSCREEN) and 2) determining which version of the KIDSCREEN (52-, 27- and 10-item version) is most suitable for low-resource settings.

Methods

The KIDSCREEN was translated into Eastern African English, Luganda (Uganda) and Dholuo (Kenya) according to standard procedures. The reconciled version was administered in 2011 to ALH aged 13–17 in Kenya (n = 283) and Uganda (n = 299). All three KIDSCREEN versions were fitted to the data with confirmatory factor analysis (CFA). After comparison, the most suitable version was adapted based on the CFA outcomes utilizing the results of previous formative research. In order to develop a general HRQOL factor, a second-order measurement model was fitted to the data.

Results

The CFA results showed that without adjustments, the KIDSCREEN cannot be used for measuring the HRQOL of HIV-positive adolescents. After comparison, the most suitable version for low-resource settings - the 27-item version - was adapted further. The introduction of a negative wording factor was required for the Dholuo model. The Dholuo (CFI: 0.93; RMSEA: 0.039) and the Luganda model (CFI: 0.90; RMSEA: 0.052) showed a good fit. All cronbach’s alphas of the factors were 0.70 or above. The alpha value of the Dholuo and Lugandan HRQOL second-order factor was respectively 0.84 and 0.87.

Conclusions

The study showed that the adapted KIDSCREEN-27 is an adequate tool for measuring HRQOL in low-resource settings with high HIV prevalence.  相似文献   

7.

Background

There is an urgent need to develop rapid and accurate point-of-care (POC) technologies for acute scrub typhus diagnosis in low-resource, primary health care settings to guide clinical therapy.

Methodology/Principal Findings

In this study we present the clinical evaluation of loop-mediated isothermal PCR assay (LAMP) in the context of a prospective fever study, including 161 patients from scrub typhus-endemic Chiang Rai, northern Thailand.A robust reference comparator set comprising following ‘scrub typhus infection criteria’ (STIC) was used: a) positive cell culture isolate and/or b) an admission IgM titer ≥1∶12,800 using the ‘gold standard’ indirect immunofluorescence assay (IFA) and/or c) a 4-fold rising IFA IgM titer and/or d) a positive result in at least two out of three PCR assays.Compared to the STIC criteria, all PCR assays (including LAMP) demonstrated high specificity ranging from 96–99%, with sensitivities varying from 40% to 56%, similar to the antibody based rapid test, which had a sensitivity of 47% and a specificity of 95%.

Conclusions/Significance

The diagnostic accuracy of the LAMP assay was similar to realtime and nested conventional PCR assays, but superior to the antibody-based rapid test in the early disease course. The combination of DNA- and antibody-based detection methods increased sensitivity with minimal reduction of specificity, and expanded the timeframe of adequate diagnostic coverage throughout the acute phase of scrub typhus.  相似文献   

8.

Background

The LightCycler® Mycobacterium Detection Kit based on real-time PCR technology for the detection of Mycobacterium tuberculosis, Mycobacterium avium and Mycobacterium kansasii was recently developed. This study evaluated its analytical sensitivity, specificity and reproducibility.

Methodology/Principal Findings

Plasmid standards were prepared and used to determine the limit of detection. The assay was also performed against organisms other than mycobacteria, other mycobacterial strains and interfering substances to exclude cross-reactivity and interference. Reference standards were prepared and tested to assess the assay''s reproducibility. All PCR assays were performed using the LightCycler® 2.0 Instrument. The detection limit for M. tuberculosis was 28 copies per microlitre. Neither cross-reactivity nor interference occurred with non-mycobacterial organisms and substances tested. Overall reproducibility for consecutive measurements, run-to-run, lot-to-lot, day-to-day and laboratory-to-laboratory achieved a coefficient of variance of less than two percent.

Significance

The LightCycler® Mycobacterium Detection kit has shown to be a robust and accurate assay with the potential to be used as a rapid TB diagnostic test.  相似文献   

9.

Background

The sensitivity and specificity of two in-house MAC-ELISA assays were tested and compared with the performance of commercially-available CTK lateral flow rapid test and EUROIMMUN IFA assays for the detection of anti-Chikungunya virus (CHIKV) IgM. Each MAC-ELISA assay used a whole virus-based antigen derived from genetically distinct CHIKV strains involved in two chikungunya disease outbreaks in Singapore (2008); a January outbreak strain with alanine at amino acid residue 226 of the E1 glycoprotein (CHIKV-A226) and a May-to-September outbreak strain that possessed valine at the same residue (CHIKV-226V). We report differences in IgM detection efficacy of different assays between the two outbreaks. The sensitivities of two PCR protocols were also tested.

Methods and Findings

For sera from January outbreak, the average detection threshold of CTK lateral flow test, MAC-ELISAs and EUROIMMUN IFA assays was 3.75, 4.38 and 4.88 days post fever onset respectively. In contrast, IgM detection using CTK lateral flow test was delayed to more than 7 days after fever onset in the second outbreak sera. However, MAC-ELISA using CHIKV-226V detected IgM in the second outbreak sera 3.96 days after fever onset, which was approximately one day earlier compared to the same assay using CHIKV-A226 (4.86 days). Specificity was 100% for both commercial assays, and 95.6% for the in-house MAC-ELISAs. For sensitivity determination of the PCR protocols, the probe-based real time RT-PCR method was found to be 10 times more sensitive than one based on SYBR Green.

Conclusion

Our findings suggested that the two strains of CHIKV using variants A226 and 226V resulted in variation in sensitivities of the assays evaluated. We postulated that the observed difference in antigen efficacy could be due to the amino acid substitution differences in viral E1 and E2 envelope proteins, especially the E1-A226V substitution. This evaluation demonstrates the importance of appraisal of different diagnostic assays before their application in clinical and operational settings.  相似文献   

10.

Background

Detection of Acinetobacter baumannii has been relying primarily on bacterial culture that often fails to return useful results in time. Although DNA-based assays are more sensitive than bacterial culture in detecting the pathogen, the molecular results are often inconsistent and challenged by doubts on false positives, such as those due to system- and environment-derived contaminations. In addition, these molecular tools require expensive laboratory instruments. Therefore, establishing molecular tools for field use require simpler molecular platforms. The loop-mediated isothermal amplification method is relatively simple and can be improved for better use in a routine clinical bacteriology laboratory. A simple and portable device capable of performing both the amplification and detection (by fluorescence) of LAMP in the same platform has been developed in recent years. This method is referred to as real-time loop-mediated isothermal amplification. In this study, we attempted to utilize this method for rapid detection of A. baumannii.

Methodology and Significant Findings

Species-specific primers were designed to test the utility of this method. Clinical samples of A. baumannii were used to determine the sensitivity and specificity of this system compared to bacterial culture and a polymerase chain reaction method. All positive samples isolated from sputum were confirmed to be the species of Acinetobacter by 16S rRNA gene sequencing. The RealAmp method was found to be simpler and allowed real-time detection of DNA amplification, and could distinguish A. baumannii from Acinetobacter calcoaceticus and Acinetobacter genomic species 3. DNA was extracted by simple boiling method. Compared to bacterial culture, the sensitivity and specificity of RealAmp in detecting A. baumannii was 98.9% and 75.0%, respectively.

Conclusion

The RealAmp assay only requires a single unit, and the assay positivity can be verified by visual inspection. Therefore, this assay has great potential of field use as a molecular tool for detection of A. baumannii.  相似文献   

11.

Background

Rapid and cost-effective methods for HIV-1 diagnosis and viral load monitoring would greatly enhance the clinical management of HIV-1 infected adults and children in limited-resource settings. Recent recommendations to treat perinatally infected infants within the first year of life are feasible only if early diagnosis is routinely available. Dried blood spots (DBS) on filter paper are an easy and convenient way to collect and transport blood samples. A rapid and cost effective method to diagnose and quantify HIV-1 from DBS is urgently needed to facilitate early diagnosis of HIV-1 infection and monitoring of antiretroviral therapy.

Methods and Findings

We have developed a real-time LightCycler (rtLC) PCR assay to detect and quantify HIV-1 from DBS. HIV-1 RNA extracted from DBS was amplified in a one-step, single-tube system using primers specific for long-terminal repeat sequences that are conserved across all HIV-1 clades. SYBR Green dye was used to quantify PCR amplicons and HIV-1 RNA copy numbers were determined from a standard curve generated using serially diluted known copies of HIV-1 RNA. This assay detected samples across clades, has a dynamic range of 5 log10, and %CV <8% up to 4 log10 dilution. Plasma HIV-1 RNA copy numbers obtained using this method correlated well with the Roche Ultrasensitive (r = 0.91) and branched DNA (r = 0.89) assays. The lower limit of detection (95%) was estimated to be 136 copies. The rtLC DBS assay was 2.5 fold rapid as well as 40-fold cheaper when compared to commercial assays. Adaptation of the assay into other real-time systems demonstrated similar performance.

Conclusions

The accuracy, reliability, genotype inclusivity and affordability, along with the small volumes of blood required for the assay suggest that the rtLC DBS assay will be useful for early diagnosis and monitoring of pediatric HIV-1 infection in resource-limited settings.  相似文献   

12.

Background

Maternal near misses are increasingly used to study quality of obstetric care. Inclusion criteria for the identification of near misses are diverse and studies not comparable. WHO developed universal near miss inclusion criteria in 2009 and these criteria have been validated in Brazil and Canada.

Objectives

To validate and refine the WHO near miss criteria in a low-resource setting.

Methods

A prospective cross-sectional study was performed in a rural referral hospital in Tanzania. From November 2009 until November 2011, all cases of maternal death (MD) and maternal near miss (MNM) were included. For identification of MNM, a local modification of the WHO near miss criteria was used, because most laboratory-based and some management-based criteria could not be applied in this setting. Disease-based criteria were added as they reflect severe maternal morbidity. In the absence of a gold standard for identification of MNM, the clinical WHO criteria were validated for identification of MD.

Results

32 MD and 216 MNM were identified using the locally adapted near miss criteria; case fatality rate (CFR) was 12.9%. WHO near miss criteria identified only 60 MNM (CFR 35.6%). All clinical criteria, 25% of the laboratory-based criteria and 50% of the management-based criteria could be applied. The threshold of five units of blood for identification of MNM led to underreporting of MNM. Clinical criteria showed specificity of 99.5% (95%CI: 99.4%–99.7%) and sensitivity of 100% (95%CI: 91.1%–100%). Some inclusion criteria did not contribute to the identification of cases and therefore may be eligible for removal.

Conclusion

The applicability of the WHO near miss criteria depends on the local context, e.g. level of health care. The clinical criteria showed good validity. Lowering the threshold for blood transfusion from five to two units in settings without blood bank and addition of disease-based criteria in low-resource settings is recommended.  相似文献   

13.

Background

Buruli ulcer (BU) caused by Mycobacterium ulcerans (M. ulcerans) has emerged as an important public health problem in several rural communities in sub-Saharan Africa. Early diagnosis and prompt treatment are important in preventing disfiguring complications associated with late stages of the disease progression. Presently there is no simple and rapid test that is appropriate for early diagnosis and use in the low-resource settings where M. ulcerans is most prevalent.

Methodology

We compared conventional and pocket warmer loop mediated isothermal amplification (LAMP) methods (using a heat block and a pocket warmer respectively as heat source for amplification reaction) for the detection of M. ulcerans in clinical specimens. The effect of purified and crude DNA preparations on the detection rate of the LAMP assays were also investigated and compared with that of IS2404 PCR, a reference assay for the detection of M. ulcerans. Thirty clinical specimens from suspected BU cases were examined by LAMP and IS2404 PCR.

Principal Findings

The lower detection limit of both LAMP methods at 60°C was 300 copies of IS2404 and 30 copies of IS2404 for the conventional LAMP at 65°C. When purified DNA extracts were used, both the conventional LAMP and IS2404 PCR concordantly detected 21 positive cases, while the pocket warmer LAMP detected 19 cases. Nine of 30 samples were positive by both the LAMP assays as well as IS2404 PCR when crude extracts of clinical specimens were used.

Conclusion/Significance

The LAMP method can be used as a simple and rapid test for the detection of M. ulcerans in clinical specimens. However, obtaining purified DNA, as well as generating isothermal conditions, remains a major challenge for the use of the LAMP method under field conditions. With further improvement in DNA extraction and amplification conditions, the pwLAMP could be used as a point of care diagnostic test for BU  相似文献   

14.
TH Lee  TS Wu  CP Tseng  JT Qiu 《PloS one》2012,7(8):e42051

Background

Genotyping of human papillomarvirus (HPV) is crucial for patient management in a clinical setting. This study accesses the combined use of broad-range real-time PCR and high-resolution melting (HRM) analysis for rapid identification of HPV genotypes.

Methods

Genomic DNA sequences of 8 high-risk genotypes (HPV16/18/39/45/52/56/58/68) were subject to bioinformatic analysis to select for appropriate PCR amplicon. Asymmetric broad-range real-time PCR in the presence of HRM dye and two unlabeled probes specific to HPV16 and 18 was employed to generate HRM molecular signatures for HPV genotyping. The method was validated via assessment of 119 clinical HPV isolates.

Results

A DNA fragment within the L1 region was selected as the PCR amplicon ranging from 215–221 bp for different HPV genotypes. Each genotype displayed a distinct HRM molecular signature with minimal inter-assay variability. According to the HRM molecular signatures, HPV genotypes can be determined with one PCR within 3 h from the time of viral DNA isolation. In the validation assay, a 91% accuracy rate was achieved when the genotypes were in the database. Concomitantly, the HRM molecular signatures for additional 6 low-risk genotypes were established.

Conclusions

This assay provides a novel approach for HPV genotyping in a rapid and cost-effective manner.  相似文献   

15.

Background

syndromic surveillance system has great advantages in promoting the early detection of epidemics and reducing the necessities of disease confirmation, and it is especially effective for surveillance in resource poor settings. However, most current syndromic surveillance systems are established in developed countries, and there are very few reports on the development of an electronic syndromic surveillance system in resource-constrained settings.

Objective

this study describes the design and pilot implementation of an electronic surveillance system (ISS) for the early detection of infectious disease epidemics in rural China, complementing the conventional case report surveillance system.

Methods

ISS was developed based on an existing platform ‘Crisis Information Sharing Platform’ (CRISP), combining with modern communication and GIS technology. ISS has four interconnected functions: 1) work group and communication group; 2) data source and collection; 3) data visualization; and 4) outbreak detection and alerting.

Results

As of Jan. 31st 2012, ISS has been installed and pilot tested for six months in four counties in rural China. 95 health facilities, 14 pharmacies and 24 primary schools participated in the pilot study, entering respectively 74256, 79701, and 2330 daily records into the central database. More than 90% of surveillance units at the study sites are able to send daily information into the system. In the paper, we also presented the pilot data from health facilities in the two counties, which showed the ISS system had the potential to identify the change of disease patterns at the community level.

Conclusions

The ISS platform may facilitate the early detection of infectious disease epidemic as it provides near real-time syndromic data collection, interactive visualization, and automated aberration detection. However, several constraints and challenges were encountered during the pilot implementation of ISS in rural China.  相似文献   

16.

Background

Communicable disease outbreaks of novel or existing pathogens threaten human health around the globe. It would be desirable to rapidly characterize such outbreaks and develop accurate projections of their duration and cumulative size even when limited preliminary data are available. Here we develop a mathematical model to aid public health authorities in tracking the expansion and contraction of outbreaks with explicit representation of factors (other than population immunity) that may slow epidemic growth.

Methodology

The Incidence Decay and Exponential Adjustment (IDEA) model is a parsimonious function that uses the basic reproduction number R0, along with a discounting factor to project the growth of outbreaks using only basic epidemiological information (e.g., daily incidence counts).

Principal Findings

Compared to simulated data, IDEA provides highly accurate estimates of total size and duration for a given outbreak when R0 is low or moderate, and also identifies turning points or new waves. When tested with an outbreak of pandemic influenza A (H1N1), the model generates estimated incidence at the i+1th serial interval using data from the ith serial interval within an average of 20% of actual incidence.

Conclusions and Significance

This model for communicable disease outbreaks provides rapid assessments of outbreak growth and public health interventions. Further evaluation in the context of real-world outbreaks will establish the utility of IDEA as a tool for front-line epidemiologists.  相似文献   

17.

Objective

To report the incidence rates of TB and HIV in household contacts of index patients diagnosed with TB.

Design

A prospective cohort study in the Matlosana sub-district of North West Province, South Africa.

Methods

Contacts of index TB patients received TB and HIV testing after counseling at their first household visit and were then followed up a year later, in 2010. TB or HIV diagnoses that occurred during the period were determined.

Results

For 2,377 household contacts, the overall observed TB incidence rate was 1.3 per 100 person years (95% CI 0.9–1.9/100py) and TB incidence for individuals who were HIV-infected and HIV seronegative at baseline was 5.4/100py (95% CI 2.9–9.0/100py) and 0.7/100py (95% CI 0.3–1.4/100py), respectively. The overall HIV incidence rate was 2.2/100py (95% CI 1.3–8.4/100py).

Conclusions

In the year following a household case finding visit when household contacts were tested for TB and HIV, the incidence rate of both active TB and HIV infection was found to be extremely high. Clearly, implementing proven strategies to prevent HIV acquisition and preventing TB transmission and progression to disease remains a priority in settings such as South Africa.  相似文献   

18.

Background

Serotype-specific PCR assays targeting Salmonella enterica serotypes Typhi and Paratyphi A, the causal agents of typhoid and paratyphoid fevers, are required to accelerate formal diagnosis and to overcome the lack of typing sera and, in some situations, the need for culture. However, the sensitivity and specificity of such assays must be demonstrated on large collections of strains representative of the targeted serotypes and all other bacterial populations producing similar clinical symptoms.

Methodology

Using a new family of repeated DNA sequences, CRISPR (clustered regularly interspaced short palindromic repeats), as a serotype-specific target, we developed a conventional multiplex PCR assay for the detection and differentiation of serotypes Typhi and Paratyphi A from cultured isolates. We also developed EvaGreen-based real-time singleplex PCR assays with the same two sets of primers.

Principal findings

We achieved 100% sensitivity and specificity for each protocol after validation of the assays on 188 serotype Typhi and 74 serotype Paratyphi A strains from diverse genetic groups, geographic origins and time periods and on 70 strains of bacteria frequently encountered in bloodstream infections, including 29 other Salmonella serotypes and 42 strains from 38 other bacterial species.

Conclusions

The performance and convenience of our serotype-specific PCR assays should facilitate the rapid and accurate identification of these two major serotypes in a large range of clinical and public health laboratories with access to PCR technology. These assays were developed for use with DNA from cultured isolates, but with modifications to the assay, the CRISPR targets could be used in the development of assays for use with clinical and other samples.  相似文献   

19.

Aim

The purpose of our review was to evaluate results of radiosurgery for patients with brain metastases from lung cancer.

Background

Lung cancer is the leading cause of death from cancer and the most common source of brain metastases. Radiosurgery allows the precise focal delivery of a high single radiation dose to brain metastases and results in high rates of local control.

Materials and methods

83 patients were treated between 2006 and 2008. We evaluated local control and outcome after radiosurgery and identified prognostic factors.

Results

Median survival in the whole group was 7.8 months from radiosurgery and 11 months from diagnosis. Median survival in classes I, II and III was 13.2, 8.2 and 2.2 months. For 94% of patients symptoms improved or stabilised at the first follow-up visit and this status did not change during 7.1 months. According to the univariate analysis, factors associated with improved survival included: RPA class 1 compared with RPA 2 and 3, RPA class 2 compared with RPA 3, KPS > 70, control of the primary disease, radiosurgery performed more than once, level of haemoglobin >7 mmol/1, absence of extracranial metastases, volume of the biggest lesion <11 cm3. The multivariate analysis confirmed a significant influence on survival for the following factors: RPA class 1 as compared with RPA 3, KPS > 70, absence of extracranial metastases, multiplicity of radiosurgery.

Conclusions

Stereotactic radiosurgery is a safe and effective treatment. It proved to be effective and safe in older patients. Selection of patients who are likely to benefit most should be based on prognostic factors. KPS proved to be the most important prognostic factor. In the RPA III group (patients with KPS < 70) survival time was similar to that achieved after symptomatic medical management.  相似文献   

20.

Background

The influenza A/H1N1/09 pandemic spread quickly during the Southern Hemisphere winter in 2009 and reached epidemic proportions within weeks of the official WHO alert. Vulnerable population groups included indigenous Australians and remote northern population centres visited by international travellers. At the height of the Australian epidemic a large number of troops converged on a training area in northern Australia for an international exercise, raising concerns about their potential exposure to the emerging influenza threat before, during and immediately after their arrival in the area. Influenza A/H1N1/09 became the dominant seasonal variant and returned to Australia during the Southern winter the following year.

Methods

A duplex nucleic acid amplification assay was developed within weeks of the first WHO influenza pandemic alert, demonstrated in northwestern Australia shortly afterwards and deployed as part of the pathology support for a field hospital during a military exercise during the initial epidemic surge in June 2009.

Results

The nucleic acid amplification assay was twice as sensitive as a point of care influenza immunoassay, as specific but a little less sensitive than the reference laboratory nucleic acid amplification assay. Repetition of the field assay with blinded clinical samples obtained during the 2010 winter influenza season demonstrated a 91.7% congruence with the reference laboratory method.

Conclusions

Rapid in-house development of a deployable epidemic influenza assay allowed a flexible laboratory response, effective targeting of limited disease control resources in an austere military environment, and provided the public health laboratory service with a set of verification tools for resource-limited settings. The assay method was suitable for rapid deployment in time for the 2010 Northern winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号