首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human α-, β-, and γ-synuclein (syn) are natively unfolded proteins present in the brain. Deposition of aggregated α-syn in Lewy bodies is associated with Parkinson's disease (PD) and γ-syn is known to be involved in both neurodegeneration and breast cancer. At physiological pH, while α-syn has the highest propensity for fibrillation followed by γ-syn, β-syn does not form any fibrils. Fibril formation in these proteins could be modulated by protein structure stabilizing osmolytes such as trehalose which has an exceptional stabilizing effect for globular proteins. We present a comprehensive study of the effect of trehalose on the conformation, aggregation, and fibril morphology of α-, β-, and γ-syn proteins. Rather than stabilizing the intrinsically disordered state of the synucleins, trehalose accelerates the rate of fibril formation by forming aggregation-competent partially folded intermediate structures. Fibril morphologies are also strongly dependent on the concentration of trehalose with ≤ 0.4M favoring the formation of mature fibrils in α-, and γ-syn with no effect on the fibrillation of β-syn. At ≥ 0.8M, trehalose promotes the formation of smaller aggregates that are more cytotoxic. Live cell imaging of preformed aggregates of a labeled A90C α-syn shows their rapid internalization into neural cells which could be useful in reducing the load of aggregated species of α-syn. The findings throw light on the differential effect of trehalose on the conformation and aggregation of disordered synuclein proteins with respect to globular proteins and could help in understanding the effect of osmolytes on intrinsically disordered proteins under cellular stress conditions.  相似文献   

2.
The small presynaptic protein α-synuclein (α-syn) is involved in the etiology of Parkinson's disease owing to its abnormal misfolding. To date, little information is known on the role of DNA nanostructures in the formation of α-syn amyloid fibrils. Here, the effects of DNA tetrahedrons on the formation of α-syn amyloid fibrils were investigated using various biochemical and biophysical methods such as thioflavin T fluorescence assay, atomic force microscopy, light scattering, transmission electron microscopy, and cell-based cytotoxicity assay. It has been shown that DNA tetrahedrons decreased the level of oligomers and increased the level of amyloid fibrils, which corresponded to decreased cellular toxicity. The ability of DNA tetrahedron to facilitate the formation of α-syn amyloid fibrils demonstrated that structured nucleic acids such as DNA tetrahedrons could modulate the process of amyloid fibril formation. Our study suggests that DNA tetrahedrons could be used as an important facilitator toward amyloid fibril formation of α-synuclein, which may be of significance in finding therapeutic approaches to Parkinson's disease and related synucleinopathies.  相似文献   

3.
In the last decades, a series of compounds, including quinones and polyphenols, has been described as having anti-fibrillogenic action on α-synuclein (α-syn) whose aggregation is associated to the pathogenesis of Parkinson’s disease (PD). Most of these molecules act as promiscuous anti-amyloidogenic agents, interacting with the diverse amyloidogenic proteins (mostly unfolded) through non-specific hydrophobic interactions. Herein we investigated the effect of the vitamins K (phylloquinone, menaquinone and menadione), which are 1,4-naphthoquinone (1,4-NQ) derivatives, on α-syn aggregation, comparing them with other anti-fibrillogenic molecules such as quinones, polyphenols and lipophilic vitamins. Vitamins K delayed α-syn fibrillization in substoichiometric concentrations, leading to the formation of short, sheared fibrils and amorphous aggregates, which are less prone to produce leakage of synthetic vesicles. In seeding conditions, menadione and 1,4-NQ significantly inhibited fibrils elongation, which could be explained by their ability to destabilize preformed fibrils of α-syn. Bidimensional NMR experiments indicate that a specific site at the N-terminal α-syn (Gly31/Lys32) is involved in the interaction with vitamins K, which is corroborated by previous studies suggesting that Lys is a key residue in the interaction with quinones. Together, our data suggest that 1,4-NQ, recently showed up by our group as a potential scaffold for designing new monoamine oxidase inhibitors, is also capable to modulate α-syn fibrillization in vitro.  相似文献   

4.
α-Synuclein (α-Syn) is a presynaptic protein that is accumulated in its amyloid form in the brains of Parkinson's patients. Although its biological function remains unclear, α-syn has been suggested to bind to synaptic vesicles and facilitate neurotransmitter release. Recently, studies have found that α-syn induces membrane tubulation, highlighting a potential mechanism for α-syn to stabilize highly curved membrane structures which could have both functional and dysfunctional consequences. To understand how membrane remodeling by α-syn affects amyloid formation, we have studied the α-syn aggregation process in the presence of phosphatidylglycerol (PG) micellar tubules, which were the first reported example of membrane tubulation by α-syn. Aggregation kinetics, β-sheet content, and macroscopic protein-lipid structures were observed by Thioflavin T fluorescence, circular dichroism spectroscopy and transmission electron microscopy, respectively. Collectively, the presence of PG micellar tubules formed at a stochiometric (L/P = 1) ratio was found to stimulate α-syn fibril formation. Moreover, transmission electron microscopy and solid-state nuclear magnetic resonance spectroscopy revealed the co-assembly of PG and α-syn into fibril structures. However, isolated micellar tubules do not form fibrils by themselves, suggesting an important role of free α-syn monomers during amyloid formation. In contrast, fibrils did not form in the presence of excess PG lipids (≥L/P = 50), where most of the α-syn molecules are in a membrane-bound α-helical form. Our results provide new mechanistic insights into how membrane tubules modulate α-syn amyloid formation and support a pivotal role of protein–lipid interaction in the dysfunction of α-syn.  相似文献   

5.
Alpha-synuclein is one of the causative proteins of familial Parkinson disease, which is characterized by neuronal inclusions named Lewy bodies. Lewy bodies include not only alpha-synuclein but also aggregates of other proteins. This fact raises a question as to whether the formation of alpha-synuclein amyloid fibrils in Lewy bodies may occur via interaction with fibrils derived from different proteins. To probe this hypothesis, we investigated in vitro fibril formation of human alpha-synuclein in the presence of preformed fibril seeds of various different proteins. We used three proteins, Escherichia coli chaperonin GroES, hen lysozyme, and bovine insulin, all of which have been shown to form amyloid fibrils. Very surprisingly, the formation of alpha-synuclein amyloid fibril was accelerated markedly in the presence of preformed seeds of GroES, lysozyme, and insulin fibrils. The structural characteristics of the natively unfolded state of alpha-synuclein may allow binding to various protein particles, which in turn triggers the formation (extension) of alpha-synuclein amyloid fibrils. This finding is very important for understanding the molecular mechanism of Parkinson disease and also provides interesting implications into the mechanism of transmissible conformational diseases.  相似文献   

6.
The formation of fibrillar aggregates by beta-lactoglobulin in the presence of urea has been monitored by using thioflavin T fluorescence and transmission electron microscopy (TEM). Large quantities of aggregated protein were formed by incubating beta-lactoglobulin in 3-5 M urea at 37 degrees C and pH 7.0 for 10-30 days. The TEM images of the aggregates in 3-5 M urea show the presence of fibrils with diameters of 8-10 nm, and increases in thioflavin T fluorescence are indicative of the formation of amyloid structures. The kinetics of spontaneous fibrillogenesis detected by thioflavin T fluorescence show sigmoidal behavior involving a clear lag phase. Moreover, addition of preformed fibrils into protein solutions containing urea shows that fibril formation can be accelerated by seeding processes that remove the lag phase. Both of these findings are indicative of nucleation-dependent fibril formation. The urea concentration where fibril formation is most rapid, both for seeded and unseeded solutions, is approximately 5.0 M, close to the concentration of urea corresponding to the midpoint of unfolding (5.3 M). This result indicates that efficient fibril formation involves a balance between the requirement of a significant population of unfolded or partially unfolded molecules and the need to avoid conditions that strongly destabilize intermolecular interactions.  相似文献   

7.
Indolic derivatives can affect fibril growth of amyloid forming proteins. The neurotransmitter serotonin (5-HT) is of particular interest, as it is an endogenous molecule with a possible link to neuropsychiatric symptoms of Parkinson disease. A key pathomolecular mechanism of Parkinson disease is the misfolding and aggregation of the intrinsically unstructured protein α-synuclein. We performed a biophysical study to investigate an influence between these two molecules. In an isolated in vitro system, 5-HT interfered with α-synuclein amyloid fiber maturation, resulting in the formation of partially structured, SDS-resistant intermediate aggregates. The C-terminal region of α-synuclein was essential for this interaction, which was driven mainly by electrostatic forces. 5-HT did not bind directly to monomeric α-synuclein molecules and we propose a model where 5-HT interacts with early intermediates of α-synuclein amyloidogenesis, which disfavors their further conversion into amyloid fibrils.  相似文献   

8.
The formation of amyloid-like fibrils, which polymerize from various soluble proteins under physiological and acidic conditions, causes a wide range of protein-folding diseases, such as Alzheimer’s disease and Parkinson’s disease. Fibril assembly in in vitro solutions containing nitric oxide, a free radical that functions as an important signalling molecule involved in numerous physiological and pathological processes, has not been reported. Here, we investigated the protein assembly that occur in thyroglobulin under mildly acidic conditions in the presence of nitric oxide. Solution studies, size exclusion chromatography, dynamic light scattering and analytical ultracentrifugation, demonstrated the size changes of thyroglobulin oligomers after nitric oxide treatment. Following electron microscopic analysis visualized their structural changes and revealed that the molecules can morphologically form polymerized fibril assemblies with a length of 2–5 μm and width 10–100 nm. Taken together, these results provide suggestive evidence for the propensity of forming polymerized thyroglobulin fibrils implying their presence in thyroid cells, which may be related to the onset or progression of thyroid diseases.  相似文献   

9.
Huntingtin (HTT) fragments with extended polyglutamine tracts self-assemble into amyloid-like fibrillar aggregates. Elucidating the fibril formation mechanism is critical for understanding Huntington's disease pathology and for developing novel therapeutic strategies. Here, we performed systematic experimental and theoretical studies to examine the self-assembly of an aggregation-prone N-terminal HTT exon-1 fragment with 49 glutamines (Ex1Q49). Using high-resolution imaging techniques such as electron microscopy and atomic force microscopy, we show that Ex1Q49 fragments in cell-free assays spontaneously convert into large, highly complex bundles of amyloid fibrils with multiple ends and fibril branching points. Furthermore, we present experimental evidence that two nucleation mechanisms control spontaneous Ex1Q49 fibrillogenesis: (1) a relatively slow primary fibril-independent nucleation process, which involves the spontaneous formation of aggregation-competent fibrillary structures, and (2) a fast secondary fibril-dependent nucleation process, which involves nucleated branching and promotes the rapid assembly of highly complex fibril bundles with multiple ends. The proposed aggregation mechanism is supported by studies with the small molecule O4, which perturbs early events in the aggregation cascade and delays Ex1Q49 fibril assembly, comprehensive mathematical and computational modeling studies, and seeding experiments with small, preformed fibrillar Ex1Q49 aggregates that promote the assembly of amyloid fibrils. Together, our results suggest that nucleated branching in vitro plays a critical role in the formation of complex fibrillar HTT exon-1 aggregates with multiple ends.  相似文献   

10.
Thioflavin-T (ThT) is a cationic benzothiazole dye that displays enhanced fluorescence upon binding to amyloid fibrils. This property makes ThT the current reagent of choice for the quantification of amyloid fibrils. Herein, we investigate the main pitfalls associated with the use of ThT-based assays to monitor the fibrillation of α-synuclein (α-syn), a protein linked to Parkinson’s disease and other α-synucleinopathies. We demonstrated for the first time that ThT interacts with α-syn disordered monomer and accelerates the protein fibrillation in vitro. As a consequence, misleading conclusions may arise from the use of ThT-based real-time assays in the evaluation of anti-fibrillogenic compounds. Interestingly, NMR experiments indicated that C-terminal domain of α-syn is the main region perturbed by ThT interaction, similarly to that found for the pesticide paraquat, a well-documented accelerator of α-syn fibrillation. Moreover, we demonstrated that certain potent inhibitors of α-syn fibrillation, such as oxidized catecholamines and polyphenols, undergo spontaneous oxidation in aqueous solution, generating compounds that strongly quench ThT fluorescence. In light of these findings, we alert for possible artifacts associated to the measure of the anti-fibrillogenic activity based only on ThT fluorescence approach.  相似文献   

11.
The detailed mechanism of the pathology of α-synuclein in the Parkinson’s disease has not been clearly elucidated. Recent studies suggested a possible chaperone-like role of the acidic C-terminal region of α-synuclein in the formation of amyloid fibrils. It was also previously demonstrated that the α-synuclein amyloid fibril formation is accelerated by mutations of proline residues to alanine in the acidic region. We performed replica exchange molecular dynamics simulations of the acidic and nonamyloid component (NAC) domains of the wild type and proline-to-alanine mutants of α-synuclein under various conditions. Our results showed that structural changes induced by a change in pH or an introduction of mutations lead to a reduction in mutual contacts between the NAC and acidic regions. Our data suggest that the highly charged acidic region of α-synuclein may act as an intramolecular chaperone by protecting the hydrophobic domain from aggregation. Understanding the function of such chaperone-like parts of fibril-forming proteins may provide novel insights into the mechanism of amyloid formation.  相似文献   

12.
The polyglutamine diseases are a family of nine proteins where intracellular protein misfolding and amyloid-like fibril formation are intrinsically coupled to disease. Previously, we identified a complex two-step mechanism of fibril formation of pathologically expanded ataxin-3, the causative protein of spinocerebellar ataxia type-3 (Machado-Joseph disease). Strikingly, ataxin-3 lacking a polyglutamine tract also formed fibrils, although this occurred only via a single-step that was homologous to the first step of expanded ataxin-3 fibril formation. Here, we present the first kinetic analysis of a disease-associated polyglutamine repeat protein. We show that ataxin-3 forms amyloid-like fibrils by a nucleation-dependent polymerization mechanism. We kinetically model the nucleating event in ataxin-3 fibrillogenesis to the formation of a monomeric thermodynamic nucleus. Fibril elongation then proceeds by a mechanism of monomer addition. The presence of an expanded polyglutamine tract leads subsequently to rapid inter-fibril association and formation of large, highly stable amyloid-like fibrils. These results enhance our general understanding of polyglutamine fibrillogenesis and highlights the role of non-poly(Q) domains in modulating the kinetics of misfolding in this family.  相似文献   

13.
含CpG基元核酸疫苗免疫慢性MPTP帕金森病小鼠的治疗作用   总被引:4,自引:2,他引:2  
目的探讨含有CpG基元的α-突触核蛋白(α-synuclein,α-syn)核酸疫苗免疫慢性帕金森病小鼠的治疗效果。方法将本实验室成功构建的含有CpG基元的α-syn核酸疫苗-pVAX1-hα-Syn140用Qiagen试剂盒大量制备α-syn质粒;24只慢性MPTP帕金森病小鼠随机分为3组:实验组、空质粒对照组和PBS对照组,各组小鼠分别肌注pVAX1-hα-Syn140重组质粒、pVAX1空质粒和PBS各100μL,共免疫3次,每次间隔3周,末次免疫后2周,观察小鼠行为学变化及中脑黑质α-syn表达和多巴胺能神经元数目变化。结果pVAX1-hα-Syn140核酸疫苗免疫组小鼠的类帕金森病样症状与pVAX1空质粒和PBS对照组相比减轻,有显著差异(P〈0.01);小鼠中脑黑质α-syn表达较对照组减少约39%(P〈0.01),且多巴胺能神经元数目较空质粒和PBS对照组增多了46%~55%(P〈0.01)。结论pVAX1-hα-Syn140核酸疫苗具有较强的免疫原性,能对帕金森病小鼠产生较好的免疫治疗作用。  相似文献   

14.
15.
COMP acts as a catalyst in collagen fibrillogenesis   总被引:1,自引:0,他引:1  
We have previously reported that COMP (cartilage oligomeric matrix protein) is prominent in cartilage but is also present in tendon and binds to collagens I and II with high affinity. Here we show that COMP influences the fibril formation of these collagens. Fibril formation in the presence of pentameric COMP was much faster, and the amount of collagen in fibrillar form was markedly increased. Monomeric COMP, lacking the N-terminal coiled-coil linker domain, decelerated fibrillogenesis. The data show that stimulation of collagen fibrillogenesis depends on the pentameric nature of COMP and not only on collagen binding. COMP interacts primarily with free collagen I and II molecules, bringing several molecules to close proximity, apparently promoting further assembly. These assemblies further join in discrete steps to a narrow distribution of completed fibril diameters of 149 +/- 16 nm with a banding pattern of 67 nm. COMP is not found associated with the mature fibril and dissociates from the collagen molecules or their early assemblies. However, a few COMP molecules are found bound to more loosely associated molecules at the tip/end of the growing fibril. Thus, COMP appears to catalyze the fibril formation by promoting early association of collagen molecules leading to increased rate of fibrillogenesis and more distinct organization of the fibrils.  相似文献   

16.
17.
α-Synuclein (α-syn) is the major component of filamentous Lewy bodies found in the brains of patients diagnosed with Parkinson's disease (PD). Recent studies demonstrate that, in addition to the wild-type sequence, α-syn is found in several modified forms, including truncated and phosphorylated species. Although the mechanism by which the neuronal loss in PD occurs is unknown, aggregation and fibril formation of α-syn are considered to be key pathological features. In this study, we analyze the rates of fibril formation and the monomer-fibril equilibrium for eight disease-associated truncated and phosphorylated α-syn variants. Comparison of the relative rates of aggregation reveals a strong monotonic relationship between the C-terminal charge of α-syn and the lag time prior to the observation of fibril formation, with truncated species exhibiting the fastest aggregation rates. Moreover, we find that a decrease in C-terminal charge shifts the equilibrium to favor the fibrillar species. An analysis of these findings in the context of linear growth theories suggests that the loss of the charge-mediated stabilization of the soluble state is responsible for the enhanced aggregation rate and increased extent of fibril fraction. Therefore, C-terminal charge is kinetically and thermodynamically protective against α-syn polymerization and may provide a target for the treatment of PD.  相似文献   

18.
The fibrillization of α-synuclein (α-syn) is a key event in the pathogenesis of α-synucleinopathies. Mutant α-syn (A53T, A30P, or E46K), each linked to familial Parkinson's disease, has altered aggregation properties, fibril morphologies, and fibrillization kinetics. Besides α-syn, Lewy bodies also contain several associated proteins including small heat shock proteins (sHsps). Since α-syn accumulates intracellularly, molecular chaperones like sHsps may regulate α-syn folding and aggregation. Therefore, we investigated if the sHsps αB-crystallin, Hsp27, Hsp20, HspB8, and HspB2B3 bind to α-syn and affect α-syn aggregation. We demonstrate that all sHsps bind to the various α-syns, although the binding kinetics suggests a weak and transient interaction only. Despite this transient interaction, the various sHsps inhibited mature α-syn fibril formation as shown by a Thioflavin T assay and atomic force microscopy. Interestingly, HspB8 was the most potent sHsp in inhibiting mature fibril formation of both wild-type and mutant α-syn. In conclusion, sHsps may regulate α-syn aggregation and, therefore, optimization of the interaction between sHsps and α-syn may be an interesting target for therapeutic intervention in the pathogenesis of α-synucleinopathies.  相似文献   

19.
The aggregation of alpha-synuclein (α-syn) and huntingtin (htt) into fibrillar assemblies in nerve and glial cells is a molecular hallmark of Parkinson's and Huntington's diseases. Within the aggregation process, prefibrillar and fibrillar oligomeric species form. Prefibrillar assemblies rather than fibrils are nowadays considered cytotoxic. However, recent reports describing spreading of fibrillar assemblies from one cell to another, in cell cultures, animal models, and brains of grafted patients suggest a critical role for fibrillar assemblies in pathogenesis. Here we compare the cytotoxic effect of defined and comparable particle concentrations of on-assembly pathway oligomeric and fibrillar α-syn and Htt fragment corresponding to the first exon of the protein (HttEx1). We show that homogeneous populations of α-syn and HttEx1 fibrils, rather than their precursor on-assembly pathway oligomers, are highly toxic to cultured cells and induce apoptotic cell death. We document the reasons that make fibrils toxic. We show that α-syn and HttEx1 fibrils bind and permeabilize lipid vesicles. We also show that fibrils binding to the plasma membrane in cultured cells alter Ca(2+) homeostasis. Overall, our data indicate that fibrillar α-syn and HttEx1, rather than their precursor oligomers, are highly cytotoxic, the toxicity being associated to their ability to bind and permeabilize the cell membranes.  相似文献   

20.
《Journal of molecular biology》2019,431(19):3913-3919
Lewy bodies, hallmarks of Parkinson's disease, contain C-terminally truncated (ΔC) α-synuclein (α-syn). Here, we report fibril structures of three N-terminally acetylated (Ac) α-syn constructs, Ac1–140, Ac1–122, and Ac1–103, solved by cryoelectron microscopy. Both ΔC-α-syn variants exhibited faster aggregation kinetics, and Ac1–103 fibrils efficiently seeded the full-length protein, highlighting their importance in pathogenesis. Interestingly, fibril helical twists increased upon the removal of C-terminal residues and can be propagated through cross-seeding. Compared to that of Ac1–140, increased electron densities were seen in the N-terminus of Ac1–103, whereas the C-terminus of Ac1–122 appeared more structured. In accord, the respective termini of ΔC-α-syn exhibited increased protease resistance. Despite similar amyloid core residues, distinctive features were seen for both Ac1–122 and Ac1–103. Particularly, Ac1–103 has the tightest packed core with an additional turn, likely attributable to conformational changes in the N-terminal region. These molecular differences offer insights into the effect of C-terminal truncations on α-syn fibril polymorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号