首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B lymphocytes play a central role in host immunity. They orchestrate humoral immune responses that modulate activities of other immune cells and produce neutralizing antibodies that confer lasting immunity to infectious diseases including smallpox, measles and poliomyelitis. In addition to these traditional functions is the recent recognition that B cells also play critical role in maintaining peripheral tolerance and suppressing the development or severity of autoimmune diseases. Their immune suppressive function is attributed to relatively rare populations of regulatory B cells (Bregs) that produce anti-inflammatory cytokines including interleukin 10 (IL-10), IL-35 and transforming growth factor-β. The IL-35-producing B cell (i35-Breg) is the newest Breg subset described. i35-Bregs suppress central nervous system autoimmune diseases by inducing infectious tolerance whereby conventional B cells acquire regulatory functions that suppress pathogenic Th17 responses. In this review, we discuss immunobiology of i35-Breg cell, i35-Breg therapies for autoimmune diseases and potential therapeutic strategies for depleting i35-Bregs that suppress immune responses against pathogens and tumor cells.  相似文献   

2.
Yang HZ  Li Z  Liu HZ  Mi S  Hu ZW 《生理科学进展》2009,40(4):297-302
B细胞主要通过呈递抗原和产生抗体发挥免疫调节作用.新近研究表明,一种全新的B细胞亚群--调节性B细胞(regulatory B cell,Bregs),可通过产生白细胞介素10(IL-10)或转化生长因子β1(TGF-β1)等抑制性细胞因子介导免疫耐受,抑制过度炎症反应.Bregs在一些慢性炎性疾病包括肠炎、类风湿性关节炎、实验性自身免疫脑脊髓炎、多发性硬化症、感染和肿瘤等发生、发展和转归过程起重要调节作用.Bregs的发现和作用机制的阐明,将为全面、深入了解免疫耐受的机制,寻找和开发更合理治疗慢性炎性疾病的策略提供理论依据.本文综述了Bregs的发现、生物学特征、发育调节及其参与炎性疾病发病的作用和机制.  相似文献   

3.
Osteopontin (OPN) is a pleiotropic cytokine produced both by immune and non-immune cells and active on different cellular targets. OPN production has been associated with several pathological conditions, including autoimmune diseases (e.g. lupus, multiple sclerosis and rheumatoid arthritis) and cancer. Emerging evidence suggests that the role of OPN has been underestimated, as it seems to be working at multiple levels of immune regulation, such as the shaping of T cell effector responses, the regulation of the tumor microenvironment, and the functional interaction with mesenchymal stromal cells. In this context, dendritic cells (DCs) play a crucial role being both an important source and a cellular target for OPN action. DC family is composed by several cell subsets endowed with specific immune functions. OPN exerts its biological functions through multiple receptors and is produced in different intracellular and secreted forms. OPN production by DC subsets is emerging as a crucial mechanism of regulation in normal and pathological conditions and starts to be exploited as a therapeutic target. This review will focus on the role of DC-derived OPN in shaping immune response and on the complex role of this cytokines in the regulation in immune response.  相似文献   

4.
B cells play a pathogenic or regulatory role in many autoimmune diseases through production of autoantibodies, cytokine production, and Ag presentation. However, the mechanisms that regulate these B cell functions under different autoimmune settings remain unclear. In the current study, we found that when B cells overexpress an antiapoptotic gene, Bcl(XL), they significantly increased production of IFN-gamma and enhanced Th1 response. Consistently, Bcl-x(L) transgenic mice developed more severe and sustained collagen-induced arthritis due to the enhanced Th1 response. The production of autoantibodies in Bcl(XL) transgenic mice was comparable to that in wild-type mice. Thus, our results indicate a novel role of Bcl(XL) in regulating B cell functions and immune responses. In patients with rheumatoid arthritis, arthritogenic B cells often up-regulate Bcl(XL) expression, which may not only render B cells resistant to apoptosis but also alter the ability of the autoreactive B cells to produce cytokines and modulate the inflammatory response. This may have therapeutic implications if Bcl(XL) expression can be down-regulated in autoreactive B cells.  相似文献   

5.
Notch家族是一组进化上高度保守的跨膜蛋白,可以广泛调节细胞的发育和分化.越来越多的研究发现,Notch信号通路可以通过调节多种免疫细胞的发育和功能来调节机体的免疫功能.本文综述了Notch家族的组成,其调控因素及其靶基因,Notch信号通路对造血干细胞、固有免疫细胞和适应性免疫细胞的调节作用以及Notch信号通路参与的免疫相关疾病.Notch信号通路对造血干细胞、巨噬细胞、树突状细胞、肥大细胞、T和B淋巴细胞的发育和功能的发挥都有重要的调节作用,并参与肿瘤、病毒感染、炎症反应和自身免疫疾病等免疫相关疾病的发生.  相似文献   

6.
Immune system is a complex network that clears pathogens,toxic substrates,and cancer cells.Distinguishing self-antigens from non-self-antigens is critical for the immune cell-mediated response against foreign antigens.The innate immune system elicits an early-phase response to various stimuli,whereas the adaptive immune response is tailored to previously encountered antigens.During immune responses,B cells differentiate into antibody-secreting cells,while na?ve T cells differentiate into functionally specific effector cells[T helper 1(Th1),Th2,Th17,and regulatory T cells].However,enhanced or prolonged immune responses can result in autoimmune disorders,which are characterized by lymphocytemediated immune responses against self-antigens.Signal transduction of cytokines,which regulate the inflammatory cascades,is dependent on the members of the Janus family of protein kinases.Tyrosine kinase 2(Tyk2)is associated with receptor subunits of immune-related cytokines,such as type I interferon,interleukin(IL)-6,IL-10,IL-12,and IL-23.Clinical studies on the therapeutic effects and the underlying mechanisms of Tyk2 inhibitors in autoimmune or chronic inflammatory diseases are currently ongoing.This review summarizes the findings of studies examining the role of Tyk2 in immune and/or inflammatory responses using Tyk2-deficient cells and mice.  相似文献   

7.
Natural killer T (NKT) and regulatory T cells (Tregs) play an important role in innate immune response. Natural killer (NK) and NKT cells are indispensable factors in the body's ongoing defense against tumor development, as well as viral infection. NKT cells are a subset of T cells that shares properties of natural killer cells and conventional T cells. They are involved in innate immune responses, tumor rejection, post transplantation immunotherapy, immune surveillance and control of autoimmune diseases. They may also play both protective and harmful roles in the progression of certain autoimmune diseases, such as diabetes, lupus, atherosclerosis, and allergen-induced asthma. Immune surveillance involves the process whereby precancerous and malignant cells are recognized by the host immune system as damaged and are consequently targeted for elimination. The pharmacological management of postoperative pain in patients with malignancies uses very different techniques whose possible cytotoxic functions we still known very poor. The present study compared effects of two different postoperative pain management techniques in patients undergoing colorectal cancer surgery on the innate immunity. Our data indicate that the patients with colorectal cancer have significantly increased the percentage of Tregs and NKT cells. The values were statistically higher during epidural analgesia in comparison with intravenous analgesia, indicating that epidural pain management technique ameliorate the immune suppression after surgery.  相似文献   

8.
《Cytokine》2015,76(2):249-255
Cytokines play crucial roles in coordinating the activities of innate and adaptive immune systems. In response to pathogen recognition, innate immune cells secrete cytokines that inform the adaptive immune system about the nature of the pathogen and instruct naïve T cells to differentiate into the appropriate T cell subtypes required to clear the infection. These include Interleukins, Interferons and other immune-regulatory cytokines that exhibit remarkable functional redundancy and pleiotropic effects. The focus of this review, however, is on the enigmatic Interleukin 12 (IL-12) family of cytokines. This family of cytokines plays crucial roles in shaping immune responses during antigen presentation and influence cell-fate decisions of differentiating naïve T cells. They also play essential roles in regulating functions of a variety of effector cells, making IL-12 family cytokines important therapeutic targets or agents in a number of inflammatory diseases, such as the CNS autoimmune diseases, uveitis and multiple sclerosis.  相似文献   

9.
B cells as antigen presenting cells   总被引:5,自引:0,他引:5  
Several characteristics confer on B cells the ability to present antigen efficiently: (1) they can find T cells in secondary lymphoid organs shortly after antigen entrance, (2) BCR-mediated endocytosis allows them to concentrate small amounts of specific antigen, and (3) BCR signaling and HLA-DO expression direct their antigen processing machinery to favor presentation of antigens internalized through the BCR. When presenting antigen in a resting state, B cells can induce T cell tolerance. On the other hand, activation by antigen and T cell help converts them into APC capable of promoting immune responses. Presentation of self antigens by B cells is important in the development of autoimmune diseases, while presentation of tumor antigens is being used in vaccine strategies to generate immunity. Thus, detailed understanding of the antigen presenting function of B cells can lead to their use for the generation or inhibition of immune responses.  相似文献   

10.
Autoimmune diseases can be reduced or even prevented if proinflammatory immune responses are appropriately down-regulated. Receptors (such as CTLA-4), cytokines (such as TGF-beta), and specialized cells (such as CD4+CD25+ T regulatory cells) work together to keep immune responses in check. T cell Ig mucin (Tim) family proteins are key regulators of inflammation, providing an inhibitory signal that dampens proinflammatory responses and thereby reducing autoimmune and allergic responses. We show in this study that reducing Tim-3 signaling during the innate immune response to viral infection in BALB/c mice reduces CD80 costimulatory molecule expression on mast cells and macrophages and reduces innate CTLA-4 levels in CD4+ T cells, resulting in decreased T regulatory cell populations and increased inflammatory heart disease. These results indicate that regulation of inflammation in the heart begins during innate immunity and that Tim-3 signaling on cells of the innate immune system critically influences regulation of the adaptive immune response.  相似文献   

11.
12.
The immune system contains natural regulatory cells important in the maintenance of tolerance. Although this suppressive function is usually attributed to CD4 regulatory T cells, recent reports have revealed an immunoregulatory role for IL-10-producing B cells in the context of several autoimmune diseases including collagen-induced arthritis. In the present study, we attribute this suppressive function to a B cell subset expressing high levels of CD21, CD23, and IgM, previously identified as transitional 2-marginal zone precursor (T2-MZP) B cells. T2-MZP B cells are present in the spleens of naive mice and increase during the remission phase of arthritis. Following adoptive transfer to immunized DBA/1 mice, T2-MZP B cells significantly prevented new disease and ameliorated established disease. The suppressive effect on arthritis was paralleled by an inhibition of Ag-specific T cell activation and a reduction in cells exhibiting Th1-type functional responses. We also provide evidence that this regulatory subset mediates its suppression through the secretion of suppressive cytokines and not by cell-to-cell contact. The ability to regulate an established immune response by T2-MZP B cells endows this subset of B cells with a striking and previously unrecognized immunoregulatory potential.  相似文献   

13.
Regulation of cytokine production during phagocytosis of apoptotic cells   总被引:11,自引:0,他引:11  
Chung EY  Kim SJ  Ma XJ 《Cell research》2006,16(2):154-161
  相似文献   

14.
15.
Known for years as the principal messengers of the immune system, dendritic cells (DC) represent a heterogeneous population of antigen presenting cells critically located at the nexus between innate and adaptive immunity. DC play a central role in the initiation of tumor-specific immune responses as they are endowed with the unique ability to take up, process and present tumor antigens to naïve CD4+ or CD8+ effector T lymphocytes. By virtue of the cytokines they produce, DC also regulate the type, strength and duration of T cell immune responses. In addition, they can participate in anti-tumoral NK and NKT cell activation and in the orchestration of humoral immunity. More recent studies have documented that besides their primary role in the induction and regulation of adaptive anti-tumoral immune responses, DC are also endowed with the capacity to directly kill cancer cells. This dual role of DC as killers and messengers may have important implications for tumor immunotherapy. First, the direct killing of malignant cells by DC may foster the release and thereby the immediate availability of specific tumor antigens for presentation to cytotoxic or helper T lymphocytes. Second, DC may participate in the effector phase of the immune response, potentially augmenting the diversity of the killing mechanisms leading to tumor elimination. This review focuses on this non-conventional cytotoxic function of DC as it relates to the promotion of cancer immunity and discusses the potential application of killer DC (KDC) in tumor immunotherapy.  相似文献   

16.
Recently, accumulating evidence has suggested that B cell depletion therapy with rituximab is effective not only in autoantibody‐associated, but also in T cell‐mediated, autoimmune diseases. It is likely that B cells play an important role in regulating the extent of immune response in both physiological and pathological conditions. When a severe infection occurs, pathogens spread throughout the bloodstream. B cells in the blood capture the pathogens, via their specific antigen receptors (surface immunoglobulins), then present the specific antigen to T cells in the spleen, thus increasing the degree of T‐cell immune responses to systemic infection. Similarly, in the exacerbation stage of autoimmunity, a large amount of autoantigens may be released into the blood and be captured by autoantigen specific B cells, and this may be followed by presentation of the antigen to CD4 positive autoreactive T cells resulting in extensive activation and proliferation of autoreactive T cells. Thus, it has been suggested that B‐cell depletion therapy for autoimmune diseases is most useful for the “vicious cycle” phase of autoreactive immune response. The recognition of this paradigm for the role of B cells in regulating the magnitude of immune response will help to facilitate both basic and clinical research on the regulation of immune responses.  相似文献   

17.
B cell abnormalities contribute to the development and progress of autoimmune disease.Traditionally, the role of B cells in autoimmune disease was thought to be predominantly limited tothe production of autoantibodies. Nevertheless, in addition to autoantibody production, B cells haveother functions potentially relevant to autoimmunity. Such functions include antigen presentation toand activation of T cells, expression of co-stimulatory molecules and cytokine production. Recently,the ability of B cells to negatively regulate cellular immune responses and inflammation has beendescribed and the concept of regulatory B cells has emerged. A variety of cytokines produced byregulatory B cell subsets have been reported, with IL-10 being the most studied. In this review,this specific IL-10-producing subset of regulatory B cells has been labeled B10 cells to highlightthat the regulatory function of these rare B cells is mediated by IL-10, and to distinguish themfrom other B cell subsets that regulate immune responses through different mechanisms. B10 cells area functionally defined subset currently identified only by their competency to produce and secreteIL-10 following appropriate stimulation. Although B10 cells share surface markers with otherpreviously defined B cell subsets, currently there is no cell surface or intracellular phenotypicmarker or set of markers unique to B10 cells. The recent discovery of an effective way to expand B10cells ex vivo opens new horizons in the potential therapeutic applications of this rare Bcell subset. This review highlights the current knowledge on B10 cells and discusses their potentialas novel therapeutic agents in autoimmunity.  相似文献   

18.
Investigating the signals that regulate the function of dendritic cells (DC), the sentinels of the immune system, is critical to understanding the role of DC in the regulation of immune responses. Accumulating lines of evidence indicate that in addition to innate stimuli and T cell-derived signals, B lymphocytes exert a profound regulatory effect in vitro and in vivo on the Ag-presenting function of DC. The identification of B cells as a cellular source of cytokines, chemokines, and autoantibodies that are critically involved in the process of maturation, migration, and function of DC provides a rationale for immunotherapeutic intervention of autoimmune and inflammatory conditions by targeting B cells. Conversely, efficient cross-presentation of Ags by DC pulsed with immune complexes provides an alternative approach in the immunotherapy of cancer and infectious diseases.  相似文献   

19.
Antecedent or current infections can alter the immunopathologic outcome of a subsequent unrelated infection. Immunomodulation by co-infecting pathogens has been referred to as 'heterologous immunity' and has been postulated to play a role in host susceptibility to disease, tolerance to organ transplant, and autoimmune disease. The effect of various infections on heterologous immune responses has been well studied in the context of shared epitopes and cross-reactive T cells. It has been shown that prior infections can modulate protective immunity and immunopathology by forming a pool of memory T cells that can cross-react with antigens from heterologous organisms or through the generation of a network of regulatory cells and cytokines. While it is not feasible to alter a host's history of prior infection, understanding heterologous immune responses in the context of simultaneous unrelated infections could have important therapeutic implications. Here, we outline key evidence from animal and human studies demonstrating the effect of heterologous immunity on the outcome of disease. We briefly review the role of T cells, but expand our discussion to explore other immune mechanisms that may modulate the response to concurrent active infections. In particular, we underscore the role of the innate immune system, polarized responses and regulatory mechanisms on heterologous immune responses.  相似文献   

20.
T cell Ig mucin 3 (Tim-3) has been found to play an important role in Th1-mediated auto- and alloimmune responses, but the function of soluble form of Tim-3 (sTim-3) remains to be elucidated. In this study, we report the inhibitory effect of sTim-3 on T cell-mediated immune response. In this study, sTim-3 mRNA was found, among different tissues and organs, only in splenic cells, and the activation of splenocytes resulted in up-regulated production of both sTim-3 mRNA and protein. We constructed a eukaryotic expression plasmid, psTim-3, which expresses functional murine sTim-3. In C57BL/6 mice inoculated with B16F1 melanoma cells, the growth of tumor was facilitated by the expression of this plasmid in vivo. Furthermore, sTim-3 inhibited the responses of T cells to Ag-specific stimulation or anti-CD3 mAb plus anti-CD28 mAb costimulation and the production of cytokines IL-2 and IFN-gamma in vitro. In tumor rejection model, sTim-3 significantly impaired T cell antitumor immunity, evidenced by decreased antitumor CTL activity and reduced amount of tumor-infiltrating lymphocytes in tumor. Real-time PCR analysis of gene expression in tumor microenvironment revealed the decreased expression of Th1 cytokine genes and the unchanged profile of the genes related to T regulatory cell function, suggesting that the inhibitory effect of sTim-3 on the generation of Ag-specific T cells in vivo is dominated by T effector cells rather than T regulatory cells. Our studies thus define sTim-3 as an immunoregulatory molecule that may be involved in the negative regulation of T cell-mediated immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号