首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UBE2L3 is associated with increased susceptibility to numerous autoimmune diseases, but the underlying mechanism is unexplained. By using data from a genome-wide association study of systemic lupus erythematosus (SLE), we observed a single risk haplotype spanning UBE2L3, consistently aligned across multiple autoimmune diseases, associated with increased UBE2L3 expression in B cells and monocytes. rs140490 in the UBE2L3 promoter region showed the strongest association. UBE2L3 is an E2 ubiquitin-conjugating enzyme, specially adapted to function with HECT and RING-in-between-RING (RBR) E3 ligases, including HOIL-1 and HOIP, components of the linear ubiquitin chain assembly complex (LUBAC). Our data demonstrate that UBE2L3 is the preferred E2 conjugating enzyme for LUBAC in vivo, and UBE2L3 is essential for LUBAC-mediated activation of NF-κB. By accurately quantifying NF-κB translocation in primary human cells from healthy individuals stratified by rs140490 genotype, we observed that the autoimmune disease risk UBE2L3 genotype was correlated with basal NF-κB activation in unstimulated B cells and monocytes and regulated the sensitivity of NF-κB to CD40 stimulation in B cells and TNF stimulation in monocytes. The UBE2L3 risk allele correlated with increased circulating plasmablast and plasma cell numbers in SLE individuals, consistent with substantially elevated UBE2L3 protein levels in plasmablasts and plasma cells. These results identify key immunological consequences of the UBE2L3 autoimmune risk haplotype and highlight an important role for UBE2L3 in plasmablast and plasma cell development.  相似文献   

2.
Proteolysis is important for protein quality control and for the proper regulation of many intracellular processes in prokaryotes and eukaryotes. Discerning substrates from other cellular proteins is a key aspect of proteolytic function. The Escherichia coli HslUV protease is a member of a major family of ATP-dependent AAA+ degradation machines. HslU hexamers recognize and unfold native protein substrates and then translocate the polypeptide into the degradation chamber of the HslV peptidase. Although a wealth of structural information is available for this system, relatively little is known about mechanisms of substrate recognition. Here, we demonstrate that mutations in the unstructured N-terminal and C-terminal sequences of two model substrates alter HslUV recognition and degradation kinetics, including changes in Vmax. By introducing N- or C-terminal sequences that serve as recognition sites for specific peptide-binding proteins, we show that blocking either terminus of the substrate interferes with HslUV degradation, with synergistic effects when both termini are obstructed. These results support a model in which one terminus of the substrate is tethered to the protease and the other terminus is engaged by the translocation/unfolding machinery in the HslU pore. Thus, degradation appears to consist of discrete steps, which involve the interaction of different terminal sequence signals in the substrate with different receptor sites in the HslUV protease.  相似文献   

3.
4.
To maintain protein homeostasis, cells must balance protein synthesis with protein degradation. Accumulation of misfolded or partially degraded proteins can lead to the formation of pathological protein aggregates. Here we report the use of destabilizing domains, proteins whose folding state can be reversibly tuned using a high affinity ligand, as model substrates to interrogate cellular protein quality control mechanisms in mammalian cells using a forward genetic screen. Upon knockdown of UBE3C, an E3 ubiquitin ligase, a reporter protein consisting of a destabilizing domain fused to GFP is degraded more slowly and incompletely by the proteasome. Partial proteolysis is also observed when UBE3C is present but cannot ubiquitinate substrates because its active site has been mutated, it is unable to bind to the proteasome, or the substrate lacks lysine residues. UBE3C knockdown also results in less substrate polyubiquitination. Finally, knockdown renders cells more susceptible to the Hsp90 inhibitor 17-AAG, suggesting that UBE3C protects against the harmful accumulation of protein fragments arising from incompletely degraded proteasome substrates.  相似文献   

5.
The ability of Cre recombinase to excise genetic material has been used extensively for genome engineering in prokaryotic and eukaryotic cells. Recently, split‐Cre fragments have been described that advance control of recombinase activity in mammalian cells. However, whether these fragments can be utilized for monitoring protein‐protein interactions has not been reported. In this work, we developed a protein‐fragment complementation assay (PCA) based on split‐Cre for monitoring and engineering pairwise protein interactions in living Escherichia coli cells. This required creation of a dual‐fluorescent reporter plasmid that permits visualization of reconstituted Cre recombinase activity by switching from red to green in the presence of an interacting protein pair. The resulting split‐Cre PCA faithfully links cell fluorescence with differences in binding affinity, thereby allowing the facile isolation of high‐affinity binders based on phenotype. Given the resolution of its activity and sensitivity to interactions, our system may prove a viable option for poorly expressed or weakly interacting protein pairs that evade detection in other PCA formats. Based on these findings, we anticipate that our split‐Cre PCA will become a highly complementary and useful new addition to the protein‐protein interaction toolbox.  相似文献   

6.
7.
Protein trans-splicing by split inteins has many uses in protein production and research. Splicing proteins with synthetic peptides, which employs atypical split inteins, is particularly useful for site-specific protein modifications and labeling, because the synthetic peptide can be made to contain a variety of unnatural amino acids and chemical modifications. For this purpose, atypical split inteins need to be engineered to have a small N-intein or C-intein fragment that can be more easily included in a synthetic peptide that also contains a small extein to be trans-spliced onto target proteins. Here we have successfully engineered multiple atypical split inteins capable of protein trans-splicing, by modifying and testing more than a dozen natural inteins. These included both S1 split inteins having a very small (11–12 aa) N-intein fragment and S11 split inteins having a very small (6 aa) C-intein fragment. Four of the new S1 and S11 split inteins showed high efficiencies (85–100%) of protein trans-splicing both in E. coli cells and in vitro. Under in vitro conditions, they exhibited reaction rate constants ranging from ∼1.7×10−4 s−1 to ∼3.8×10−4 s−1, which are comparable to or higher than those of previously reported atypical split inteins. These findings should facilitate a more general use of trans-splicing between proteins and synthetic peptides, by expanding the availability of different atypical split inteins. They also have implications on understanding the structure-function relationship of atypical split inteins, particularly in terms of intein fragment complementation.  相似文献   

8.
9.
10.
11.
The mosquitocidal toxin (MTX) produced by Bacillus sphaericus strain SSII-1 is an ~97-kDa single-chain toxin which contains a 27-kDa enzyme domain harboring ADP-ribosyltransferase activity and a 70-kDa putative binding domain. Due to cytotoxicity toward bacterial cells, the 27-kDa enzyme fragment cannot be produced in Escherichia coli expression systems. However, a nontoxic 32-kDa N-terminal truncation of MTX can be expressed in E. coli and subsequently cleaved to an active 27-kDa enzyme fragment. In vitro the 27-kDa enzyme fragment of MTX ADP-ribosylated numerous proteins in E. coli lysates, with dominant labeling of an ~45-kDa protein. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry combined with peptide mapping identified this protein as the E. coli elongation factor Tu (EF-Tu). ADP ribosylation of purified EF-Tu prevented the formation of the stable ternary EF-Tuaminoacyl-tRNAGTP complex, whereas the binding of GTP to EF-Tu was not altered. The inactivation of EF-Tu by MTX-mediated ADP-ribosylation and the resulting inhibition of bacterial protein synthesis are likely to play important roles in the cytotoxicity of the 27-kDa enzyme fragment of MTX toward E. coli.  相似文献   

12.
Immediately before the transition from metaphase to anaphase, the protein kinase activity of maturation or M-phase promoting factor (MPF) is inactivated by a mechanism that involves the degradation of its regulatory subunit, cyclin B. The availability of biologically active goldfish cyclin B produced in Escherichia coli and purified goldfish proteasomes (a nonlysosomal large protease) has allowed the role of proteasomes in the regulation of cyclin degradation to be examined for the first time. The 26S, but not the 20S proteasome, digested recombinant 49-kD cyclin B at lysine 57 (K57), producing a 42-kD truncated form. The 42-kD cyclin was also produced by the digestion of native cyclin B forming a complex with cdc2, a catalytic subunit of MPF, and a fragment transiently appeared during cyclin degradation when eggs were released from metaphase II arrest by egg activation. Mutant cyclin at K57 was resistant to both digestion by the 26S proteasome and degradation at metaphase/anaphase transition in Xenopus egg extracts. The results of this study indicate that the destruction of cyclin B is initiated by the ATP-dependent and ubiquitin-independent proteolytic activity of 26S proteasome through the first cutting in the NH2 terminus of cyclin (at K57 in the case of goldfish cyclin B). We also surmise that this cut allows the cyclin to be ubiquitinated for further destruction by ubiquitin-dependent activity of the 26S proteasome that leads to MPF inactivation.  相似文献   

13.
Ubiquitination plays a crucial role in neurodevelopment as exemplified by Angelman syndrome, which is caused by genetic alterations of the ubiquitin ligase-encoding UBE3A gene. Although the function of UBE3A has been widely studied, little is known about its paralog UBE3B. By using exome and capillary sequencing, we here identify biallelic UBE3B mutations in four patients from three unrelated families presenting an autosomal-recessive blepharophimosis-ptosis-intellectual-disability syndrome characterized by developmental delay, growth retardation with a small head circumference, facial dysmorphisms, and low cholesterol levels. UBE3B encodes an uncharacterized E3 ubiquitin ligase. The identified UBE3B variants include one frameshift and two splice-site mutations as well as a missense substitution affecting the highly conserved HECT domain. Disruption of mouse Ube3b leads to reduced viability and recapitulates key aspects of the human disorder, such as reduced weight and brain size and a downregulation of cholesterol synthesis. We establish that the probable Caenorhabditis elegans ortholog of UBE3B, oxi-1, functions in the ubiquitin/proteasome system in vivo and is especially required under oxidative stress conditions. Our data reveal the pleiotropic effects of UBE3B deficiency and reinforce the physiological importance of ubiquitination in neuronal development and function in mammals.  相似文献   

14.
15.
The Escherichia coli protease Prc (Tsp) exhibits specificity in vitro for proteins with nonpolar carboxyl termini. To determine whether Prc is responsible for the selective degradation in vivo of proteins with nonpolar carboxyl termini, we constructed a prc (tsp) deletion strain. Deletion of the prc gene did not prevent the rapid intracellular degradation of a variant of the amino-terminal domain of λ repressor with a nonpolar carboxyl terminus, even though this protein is a substrate for Prc in vitro. Our results indicate that at least one additional carboxy-terminal-specific proteolytic system must exist in E. coli.  相似文献   

16.
By cloning a 3.6-kb EcoRI fragment of the Escherichia coli chromosome with pBR322 we located more precisely recF relative to dnaN. By deletion mapping we localized functional recF to a 1.65-kb region of the cloned fragment and allowed rough mapping of the C terminus of dnaN. Cloned recF+, separated from functional flanking genes dnaN and gyrB, complemented chromosomal recF mutations presumably by coding for a cytodiffusible product. The protein encoded by dnaN was observed as a band on a polyacrylamide gel from minicells. Identification of a recF protein was not made.  相似文献   

17.
The TP53 gene (encoding the p53 tumor suppressor) is rarely mutated, although frequently inactivated, in medulloblastoma and ependymoma. Recent work in mouse models showed that the loss of p53 accelerated the development of medulloblastoma. The mechanism underlying p53 inactivation in human brain tumors is not completely understood. We show that ubiquitination factor E4B (UBE4B), an E3 and E4 ubiquitin ligase, physically interacts with p53 and Hdm2 (also known as Mdm2 in mice). UBE4B promotes p53 polyubiquitination and degradation and inhibits p53-dependent transactivation and apoptosis. Notably, silencing UBE4B expression impairs xenotransplanted tumor growth in a p53-dependent manner and overexpression of UBE4B correlates with decreased expression of p53 in these tumors. We also show that UBE4B overexpression is often associated with amplification of its gene in human brain tumors. Our data indicate that amplification and overexpression of UBE4B represent previously undescribed molecular mechanisms of inactivation of p53 in brain tumors.  相似文献   

18.
A paper pile filtration technique was used to obtain synchronously dividing populations of E. coli strains B and B/r from cultures in the exponential growth phase. Three generations of highly phased cell division were obtained by rapid pressure filtration which selected approximately 1 per cent of the exponentially growing culture. The sensitivity of E. coli strain B to x-ray and UV inactivation as a function of the cell division cycle was determined on synchronous populations. E. coli strain B showed a sharp decrease in sensitivity to inactivation by both radiations in the middle of the division cycle, and a further decrease near the end of the cycle. The sensitivity of E. coli strain B/r to x-irradiation was also investigated. Only the mid-cycle decrease in sensitivity was found during the division cycle of this strain. It was concluded that the repetition of the observed sensitivity patterns in both strains through the first three cycles after synchronization indicates that the same basic sensitivity patterns are probably also present in the individual cells of an exponential phase culture.  相似文献   

19.
Phage shock proteins B (PspB) and C (PspC) are integral cytoplasmic membrane proteins involved in inducing the Yersinia enterocolitica Psp stress response. A fundamental aspect of these proteins that has not been studied in depth is their membrane topologies. Various in silico analyses universally predict that PspB is a bitopic membrane protein with the C terminus inside. However, similar analyses yield conflicting predictions for PspC: a bitopic membrane protein with the C terminus inside, a bitopic membrane protein with the C terminus outside, or a polytopic protein with both termini inside. Previous studies of Escherichia coli PspB-LacZ and PspC-PhoA fusion proteins supported bitopic topologies, with the PspB C terminus inside and the PspC C terminus outside. Here we have used a series of independent approaches to determine the membrane topologies of PspB and PspC in Y. enterocolitica. Our data support the predicted arrangement of PspB, with its C terminus in the cytoplasm. In contrast, data from multiple independent approaches revealed that both termini of PspC are located in the cytoplasm. Additional experiments suggested that the C terminus of PspC might be the recognition site for the FtsH protease and an interaction interface with PspA, both of which would be compatible with its newly proposed cytoplasmic location. This unexpected arrangement of PspC allows a new model for events underlying activation of the Psp response, which is an excellent fit with observations from various previous studies.  相似文献   

20.
We have used the yeast three-hybrid system (D. J. SenGupta, B. Zhang, B. Kraemer, P. Pochart, S. Fields, and M. Wickens, Proc. Natl. Acad. Sci. USA 93:8496–8501, 1996) to study binding of the human immunodeficiency virus type 1 (HIV-1) Gag protein to the HIV-1 RNA encapsidation signal (HIVΨ). Interaction of these elements results in the activation of a reporter gene in the yeast Saccharomyces cerevisiae. Using this system, we have shown that the HIV-1 Gag protein binds specifically to a 139-nucleotide fragment of the HIVΨ signal containing four stem-loop structures. Mutations in either the Gag protein or the encapsidation signal that have been shown previously to impair this interaction reduced the activation of the reporter gene. Interestingly, the nucleocapsid portion of Gag retained the RNA binding activity but lost its specificity compared to the full-length Gag. These results demonstrate the utility of this system and suggest that a variety of genetic analyses could be performed to study Gag-encapsidation signal interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号