首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In plants, transgenes with inverted repeats are used to induce efficient RNA silencing, which is also frequently induced by highly transcribed sense transgenes. RNA silencing induced by sense transgenes is dependent on RNA-dependent RNA polymerase 6 (RDR6), which converts single-stranded (ss) RNA into double-stranded (ds) RNA. By contrast, it has been proposed that RNA silencing induced by self-complementary hairpin RNA (hpRNA) does not require RDR6, because the hpRNA can directly fold back on itself to form dsRNA. However, it is unclear whether RDR6 plays a role in hpRNA-induced RNA silencing by amplifying dsRNA to spread RNA silencing within the plant. To address the efficiency of hpRNA-induced RNA silencing in the presence or absence of RDR6, Wild type (WT, Col-0) and rdr6-11 Arabidopsis thaliana lines expressing green fluorescent protein (GFP) were generated and transformed with a GFP-RNA interference (RNAi) construct. Whereas most GFP-RNAi-transformed WT lines exhibited almost complete silencing of GFP expression in the T1 generation, various levels of GFP expression remained among the GFP-RNAi-transformed rdr6-11 lines. Homozygous expression of GFP-RNAi in the T3 generation was not sufficient to induce complete GFP silencing in several rdr6-11 lines. Our results indicate that RDR6 is required for efficient hpRNA-induced RNA silencing in plants.  相似文献   

2.
3.
RNA-directed DNA methylation (RdDM) is an epigenetic control mechanism driven by small interfering RNAs (siRNAs) that influence gene function. In plants, little is known of the involvement of the RdDM pathway in regulating traits related to immune responses. In a genetic screen designed to reveal factors regulating immunity in Arabidopsis thaliana, we identified NRPD2 as the OVEREXPRESSOR OF CATIONIC PEROXIDASE 1 (OCP1). NRPD2 encodes the second largest subunit of the plant-specific RNA Polymerases IV and V (Pol IV and Pol V), which are crucial for the RdDM pathway. The ocp1 and nrpd2 mutants showed increases in disease susceptibility when confronted with the necrotrophic fungal pathogens Botrytis cinerea and Plectosphaerella cucumerina. Studies were extended to other mutants affected in different steps of the RdDM pathway, such as nrpd1, nrpe1, ago4, drd1, rdr2, and drm1drm2 mutants. Our results indicate that all the mutants studied, with the exception of nrpd1, phenocopy the nrpd2 mutants; and they suggest that, while Pol V complex is required for plant immunity, Pol IV appears dispensable. Moreover, Pol V defective mutants, but not Pol IV mutants, show enhanced disease resistance towards the bacterial pathogen Pseudomonas syringae DC3000. Interestingly, salicylic acid (SA)-mediated defenses effective against PsDC3000 are enhanced in Pol V defective mutants, whereas jasmonic acid (JA)-mediated defenses that protect against fungi are reduced. Chromatin immunoprecipitation analysis revealed that, through differential histone modifications, SA-related defense genes are poised for enhanced activation in Pol V defective mutants and provide clues for understanding the regulation of gene priming during defense. Our results highlight the importance of epigenetic control as an additional layer of complexity in the regulation of plant immunity and point towards multiple components of the RdDM pathway being involved in plant immunity based on genetic evidence, but whether this is a direct or indirect effect on disease-related genes is unclear.  相似文献   

4.
5.
6.
Macroautophagy is a mechanism employed by eukaryotic cells to recycle non-essential cellular components during starvation, differentiation, and development. Two conjugation reactions related to ubiquitination are essential for autophagy: Apg12p conjugation to Apg5p, and Apg8p conjugation to the lipid phosphatidylethanolamine. These reactions require the action of the E1-like enzyme, Apg7p, and the E2-like enzymes, Apg3p and Apg10p. In Dictyostelium, development is induced by starvation, conditions under which autophagy is required for survival in yeast and plants. We have identified Dictyostelium homologues of 10 budding yeast autophagy genes. We have generated mutations in apg5 and apg7 that produce defects typically associated with an abrogation of autophagy. Mutants are not grossly affected in growth, but survival during nitrogen starvation is severely reduced. Starved mutant cells show little turnover of cellular constituents by electron microscopy, whereas wild-type cells show significant cytoplasmic degradation and reduced organelle number. Bulk protein degradation during starvation-induced development is reduced in the autophagy mutants. Development is aberrant; the autophagy mutants do not aggregate in plaques on bacterial lawns, but they do proceed further in development on nitrocellulose filters, forming defective fruiting bodies. The autophagy mutations are cell autonomous, because wild-type cells in a chimaera do not rescue development of the autophagy mutants. We have complemented the mutant phenotypes by expression of the cognate gene fused to green fluorescent protein. A green fluorescent protein fusion of the autophagosome marker Apg8 mislocalizes in the two autophagy mutants. We show that the Apg5-Apg12 conjugation system is conserved in Dictyostelium.  相似文献   

7.
One of the functions of RNA silencing in plants is antiviral defense. A hallmark of RNA silencing is spreading of the silenced state through the plant. Little is known about the nature of the systemic silencing signal and the proteins required for its production, transport, and reception in plant tissues. Here, we show that the RNA-dependent RNA polymerase RDR6 in Nicotiana benthamiana is involved in defense against potato virus X at the level of systemic spreading and in exclusion of the virus from the apical growing point. It has no effect on primary replication and cell-to-cell movement of the virus and does not contribute significantly to the formation of virus-derived small interfering (si) RNA in a fully established potato virus X infection. In grafting experiments, the RDR6 homolog was required for the ability of a cell to respond to, but not to produce or translocate, the systemic silencing signal. Taking these findings together, we suggest a model of virus defense in which RDR6 uses incoming silencing signal to generate double-stranded RNA precursors of secondary siRNA. According to this idea, the secondary siRNAs mediate RNA silencing as an immediate response that slows down the systemic spreading of the virus into the growing point and newly emerging leaves.  相似文献   

8.
We isolated 11 independent temperature-sensitive (ts) mutants of Schizosaccharomyces pombe RanGAP, SpRna1 that have several amino acid changes in the conserved domains of RanGAP. Resulting Sprna1ts showed a strong defect in mitotic chromosome segregation, but did not in nucleocytoplasmic transport and microtubule formation. In addition to Sprna1+ and Spksp1+, the clr4+ (histone H3-K9 methyltransferase), the S. pombe gene, SPAC25A8.01c, designated snf2SR+ (a member of the chromatin remodeling factors, Snf2 family with DNA-dependent ATPase activity), but not the spi1+ (S. pombe Ran homolog), rescued a lethality of Sprna1ts. Both Clr4 and Snf2 were reported to be involved in heterochromatin formation essential for building the centromeres. Consistently, Sprna1ts was defective in gene-silencing at the centromeres. But a silencing at the telomere, another heterochromatic region, was normal in all of Sprna1ts strains, indicating SpRna1 in general did not function for a heterochromatin formation. snf2SR+ rescued a centromeric silencing defect and Deltaclr4+ was synthetic lethal with Sprna1ts. Taken together, SpRna1 was suggested to function for constructing the centromeres, by cooperating with Clr4 and Snf2SR. Loss of SpRna1 activity, therefore, caused chromosome missegregation.  相似文献   

9.
Ras-related GTPases of the Miro family have been implicated in mitochondrial homeostasis and microtubule-dependent transport. They consist of two GTP-binding domains separated by calcium-binding motifs and of a C-terminal transmembrane domain that targets the protein to the outer mitochondrial membrane. We disrupted the single Miro-encoding gene in Dictyostelium discoideum and observed a substantial growth defect that we attribute to a decreased mitochondrial mass and cellular ATP content. However, mutant cells even showed an increased rate of oxygen consumption, while glucose consumption, mitochondrial transmembrane potential and production of reactive oxygen species were unaltered. Processes characteristic of the multicellular stage of the D. discoideum life cycle were also unaltered. Although mitochondria occasionally use microtubules for transport in D. discoideum, their size and distribution were not visibly affected. We found Miro in all branches of the eukaryotic tree with the exception of a few protist lineages (mainly those lacking typical mitochondria). Trypanosomatids and ciliates possess structurally unique homologs lacking the N-terminal or the C-terminal GTPase domain, respectively. We propose that in D. discoideum, as in yeasts and plants, Miro plays roles in mitochondrial homeostasis, but the ability to build a complex that regulates its association to kinesin for microtubule-dependent transport probably arose in metazoans.  相似文献   

10.
Uridine diphosphoglucose pyrophosphorylase (UDPGP) is a developmentally regulated enzyme in Dictyostelium discoideum, which is involved in trehalose, cellulose, and glycogen synthesis. Two independent UDPGP proteins are believed to be responsible for this activity. To determine the relative contributions of each protein, the genes encoding them were disrupted individually. Cells lacking the udpgp1 gene exhibit normal growth and development and make normal levels of cellulose. In agreement with these phenotypes, udpgp1(-) cells still have UDPGP activity, although at a reduced level. This supports the importance of the second UDPGP gene. This newly identified gene, ugpB, encodes an active UDPGP as determined by complementation in Escherichia coli. When this gene is disrupted, cells undergo aberrant differentiation and development ending with small, gnarled fruiting bodies. These cells also have decreased spore viability and decreased levels of glycogen, whose production requires UDPGP activity. These phenotypes suggest that UgpB constitutes the major UDPGP activity produced during development. Sequence analysis of the two UDPGP genes shows that UgpB has higher homology to other eukaryotic UDPGPs than does UDPGP1. This includes the presence of 5 conserved lysine residues. Udpgp1 only has 1 of these lysines.  相似文献   

11.
12.
The thioredoxin system, consisting of thioredoxin, thioredoxin reductase and NADPH, has been well established to be critical for the redox regulation of protein function and signalling. To investigate the role of thioredoxin reductase (Trr) in Dictyostelium discoideum, we generated mutant cells that underexpress or overexpress Trr. Trr-underexpressing cells exhibited severe defects in axenic growth and development. Trr-overexpressing (TrrOE) cells formed very tiny plaques on a bacterial lawn and had a lower rate of bacterial uptake. When developed in the dark, TrrOE cells exhibited a slugger phenotype, defined by a prolonged migrating slug stage. Like other slugger mutants, they were hypersensitive to ammonia, which has been known to inhibit culmination by raising the pH of intracellular acidic compartments. Interestingly, TrrOE cells showed defective acidification of intracellular compartments and decreased activity of vacuolar H+-ATPase which functions in the acidification of intracellular compartments. Moreover, biochemical studies revealed that the thioredoxin system can directly reduce the catalytic subunit of vacuolar H+-ATPase whose activity is regulated by reversible disulphide bond formation. Taken together, these results suggest that Dictyostelium Trr may be essential for growth and play a role in regulation of phagocytosis and culmination, possibly through the modulation of vacuolar H+-ATPase activity.  相似文献   

13.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), belongs to a class of integral membrane proteins termed tail-anchored proteins. Its membrane association is mediated by the C-terminal 21 amino acid residues, which are dispensable for RdRp activity in vitro. For this study, we investigated the role of this domain, termed the insertion sequence, in HCV RNA replication in cells. Based on a structural model and the amino acid conservation among different HCV isolates, we designed a panel of insertion sequence mutants and analyzed their membrane association and RNA replication. Subgenomic replicons with a duplication of an essential cis-acting replication element overlapping the sequence that encodes the C-terminal domain of NS5B were used to unequivocally distinguish RNA versus protein effects of these mutations. Our results demonstrate that the membrane association of the RdRp is essential for HCV RNA replication. Interestingly, certain amino acid substitutions within the insertion sequence abolished RNA replication without affecting membrane association, indicating that the C-terminal domain of NS5B has functions beyond serving as a membrane anchor and that it may be involved in critical intramembrane protein-protein interactions. These results have implications for the functional architecture of the HCV replication complex and provide new insights into the expanding spectrum of tail-anchored proteins.  相似文献   

14.
15.
16.
RNA structures play key roles in the replication of RNA viruses. Sequence alignment software, thermodynamic RNA folding programs, and classical comparative phylogenetic analysis were used to build models of six RNA elements in the coding region of the hepatitis C virus (HCV) RNA-dependent RNA polymerase, NS5B. The importance of five of these elements was evaluated by site-directed mutagenesis of a subgenomic HCV replicon. Mutations disrupting one of the predicted stem-loop structures, designated 5BSL3.2, blocked RNA replication, implicating it as an essential cis-acting replication element (CRE). 5BSL3.2 is about 50 bases in length and is part of a larger predicted cruciform structure (5BSL3). As confirmed by RNA structure probing, 5BSL3.2 consists of an 8-bp lower helix, a 6-bp upper helix, a 12-base terminal loop, and an 8-base internal loop. Mutational analysis and structure probing were used to explore the importance of these features. Primary sequences in the loops were shown to be important for HCV RNA replication, and the upper helix appears to serve as an essential scaffold that helps maintain the overall RNA structure. Unlike certain picornavirus CREs, whose function is position independent, 5BSL3.2 function appears to be context dependent. Understanding the role of 5BSL3.2 and determining how this new CRE functions in the context of previously identified elements at the 5' and 3' ends of the RNA genome should provide new insights into HCV RNA replication.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号