首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dominant paradigm for the evolution of mutator alleles in bacterial populations is that they spread by indirect selection for linked beneficial mutations when bacteria are poorly adapted. In this paper, we challenge the ubiquity of this paradigm by demonstrating that a clinically important stressor, hydrogen peroxide, generates direct selection for an elevated mutation rate in the pathogenic bacterium Pseudomonas aeruginosa as a consequence of a trade-off between the fidelity of DNA repair and hydrogen peroxide resistance. We demonstrate that the biochemical mechanism underlying this trade-off in the case of mutS is the elevated secretion of catalase by the mutator strain. Our results provide, to our knowledge, the first experimental evidence that direct selection can favour mutator alleles in bacterial populations, and pave the way for future studies to understand how mutation and DNA repair are linked to stress responses and how this affects the evolution of bacterial mutation rates.  相似文献   

2.
In patients afflicted with cystic fibrosis (CF), morbidity and mortality are primarily associated with the adverse consequences of chronic microbial bronchial infections, which are thought to be caused by a few opportunistic pathogens. However, recent evidence suggests the presence of other microorganisms, which may significantly affect the course and outcome of the infection. Using a combination of 16S rRNA gene clone libraries, bacterial culturing and pyrosequencing of barcoded 16S rRNA amplicons, the microbial communities present in CF patient sputum samples were examined. In addition to previously recognized CF pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus, >60 phylogenetically diverse bacterial genera that are not typically associated with CF pathogenesis were also detected. A surprisingly large number of fermenting facultative and obligate anaerobes from multiple bacterial phyla was present in each sample. Many of the bacteria and sequences found were normal residents of the oropharyngeal microflora and with many containing opportunistic pathogens. Our data suggest that these undersampled organisms within the CF lung are part of a much more complex microbial ecosystem than is normally presumed. Characterization of these communities is the first step in elucidating potential roles of diverse bacteria in disease progression and to ultimately facilitate advances in CF therapy.  相似文献   

3.
The high occurrence of nosocomial multidrug-resistant (MDR) microorganisms isconsidered a global health problem. Here, we report the draft genome sequence of aMDR Pseudomonas aeruginosa strain isolated in Brazil that belongsto the endemic clone ST277. The genome encodes important resistance determinantgenes and consists of 6.7 Mb with a G+C content of 66.86% and 6,347 predictedcoding regions including 60 RNAs.  相似文献   

4.
5.
Matthieu de Rivoyre 《BBA》2010,1797(11):1780-1794
Photosynthetic membranes accommodate densely packed light-harvesting complexes which absorb light and convey excitation to the reaction center (RC). The relationship between the fluorescence yield (φ) and the fraction (x) of closed RCs is informative about the probability for an excitation reaching a closed RC to be redirected to another RC. In this work, we have examined in this respect membranes from various bacteria and searched for a correlation with the arrangement of the light-harvesting complexes as known from atomic force or electron microscopies. A first part of the paper is devoted to a theoretical study analyzing the φ(x) relationship in various models: monomeric or dimeric RC-LH1 core complexes, with or without the peripheral LH2 complexes. We show that the simple “homogeneous” kinetic treatment used here agrees well with more detailed master equation calculations. We also discuss the agreement between information derived from the present technique and from singlet annihilation experiments. The experimental results show that the enhancement of the cross section of open RCs due to excitation transfer from closed units varies from 1.5 to 3 depending on species. The ratio of the core to core transfer rate (including the indirect pathway via LH2) to the rate of trapping in open units is in the range of 0.5 to 4. It is about 1 in Rhodobacter sphaeroides and does not increase significantly in mutants lacking LH2—despite the more numerous contacts between the dimeric core complexes expected in this case. The connectivity in this bacterium is due in good part to the fast transfer between the two partners of the dimeric (RC-LH1-PufX)2 complex. The connectivity is however increased in the carotenoidless and LH2-less strain R26, which we ascribe to an anomalous LH1. A relatively high connectivity was found in Rhodospirillum photometricum, although not as high as predicted in the calculations of Fassioli et al. (2010). This illustrates a more general discrepancy between the measured efficiency of core to core excitation transfer and theoretical estimates. We argue that the limited core to core connectivity found in purple bacteria may reflect a trade-off between light-harvesting efficiency and the hindrance to quinone diffusion that would result from too tightly packed LH complexes.  相似文献   

6.
Hylesia metabus larvae are susceptible to several pathogens indigenous to the area in which they are found. Some larvae show symptoms characteristic of bacterial infection; they become flaccid and lethargic, and show a marked loss of appetite. We isolated and identified 29 bacterial strains from live, dead and experimentally infected H. metabus larvae, and evaluated their pathogenic activity. The bacteria which caused mortality in the larvae were: Pseudomonas aeruginosa (60-93.3%), Proteus vulgaris (20%), Alcaligenes faecalis, Planococcus sp. and Bacillus megaterium (10%), at doses of 3-4 x 10(7). Although P. aeruginosa is a well-known insect pathogen, this is the first report of its pathogenic activity on H. metabus. The potential risk to humans and low virulence make it unlikely that P. aeruginosa could be used in an augmentative biological control programme. However its natural incidence may be enhanced using parasites and predators of H. metabus as carriers.  相似文献   

7.
Early acquisition of Pseudomonas aeruginosa is associated with a poorer prognosis in patients with cystic fibrosis. We investigated whether polymorphisms in CD14, the lipopolysaccharide receptor, increase the risk of early infection. Forty-five children with cystic fibrosis were investigated with annual bronchoalveolar lavage (BAL) and plasma sCD14 levels. Plasma sCD14 levels were significantly lower in children from whom P.aeruginosa was subsequently isolated (492.75 μg/ml vs. 1339.43 μg/ml, p = 0.018). Those with the CD14 -159CC genotype had a significantly increased risk of early infection with P.aeruginosa suggesting that CD14 C-159T plays a role in determining the risk of early infection with P.aeruginosa.  相似文献   

8.
Pseudomonas aeruginosa secretes the fluorescent siderophore, pyoverdine (PVD), to enable iron acquisition. Epifluorescence microscopy and cellular fractionation were used to investigate the role of an efflux pump, PvdRT-OpmQ, in PVD secretion. Bacteria lacking this efflux pump accumulated PVD, or a fluorescent precursor, in the periplasm, due to their inability to efficiently secrete into the media newly synthesized PVD. PvdRT-OpmQ is only the second system identified for secretion of newly synthesized siderophores by Gram negative bacteria.  相似文献   

9.
N-3-(Oxododecanoyl)-L-homoserine lactone (C12) is a small bacterial signaling molecule secreted by Pseudomonas aeruginosa (PA), which activates mammalian cells through TLR4-independent mechanisms. C12 acts as an immunosuppressant and it has been shown to modulate murine bone marrow-derived dendritic cell-mediated T-helper 2 (Th2) cell polarizations in vitro. In the present study, we initially examined the impact of C12 on the maturation of human monocyte-derived dendritic cells (Mo-DCs) and the induction of regulatory T-cells (iTregs) in culture. Our findings demonstrate that C12-treated Mo-DCs failed to undergo lipopolysaccharide (LPS)-induced maturation. At the molecular level, C12 blocked the upregulation of surface molecules, including CD11c, HLA-DR, CD40, and CD80, and it switched to an interleukin (IL)-10high, IL-12p70low phenotype. Moreover, C12 selectively inhibited the capacity of Mo-DCs to stimulate the proliferation of allogeneic CD4+ T-cells. Otherwise, the C12-treated Mo-DCs promoted the generation of CD4+CD25+Foxp3+-induced regulatory T-cells (iTregs) and enhanced their IL-10 and transforming growth factor (TGF)-β production associated with reduced interferon (IFN)-γ and IL-12p70 production. These findings provide new insights towards understanding the persistence of chronic inflammation in PA infection.  相似文献   

10.
Bacteriocins are toxins produced by bacteria to kill competitors of the same species. Theory and laboratory experiments suggest that bacteriocin production and immunity play a key role in the competitive dynamics of bacterial strains. The extent to which this is the case in natural populations, especially human pathogens, remains to be tested. We examined the role of bacteriocins in competition using Pseudomonas aeruginosa strains infecting lungs of humans with cystic fibrosis (CF). We assessed the ability of different strains to kill each other using phenotypic assays, and sequenced their genomes to determine what bacteriocins (pyocins) they carry. We found that (i) isolates from later infection stages inhibited earlier infecting strains less, but were more inhibited by pyocins produced by earlier infecting strains and carried fewer pyocin types; (ii) this difference between early and late infections appears to be caused by a difference in pyocin diversity between competing genotypes and not by loss of pyocin genes within a lineage over time; (iii) pyocin inhibition does not explain why certain strains outcompete others within lung infections; (iv) strains frequently carry the pyocin-killing gene, but not the immunity gene, suggesting resistance occurs via other unknown mechanisms. Our results show that, in contrast to patterns observed in experimental studies, pyocin production does not appear to have a major influence on strain competition during CF lung infections.  相似文献   

11.
Pseudomonas quinolone signal (PQS) plays a role in the regulation of virulence genes and it is intertwined in the las/rhl quorum sensing (QS) circuits of Pseudomonas aeruginosa. PQS is synthesized from anthranilate by pqsA-D and pqsH whose expression is influenced by the las/rhl systems. Since anthranilate can be degraded by functions of antABC and catBCA, PQS synthesis might be regulated by the balance between the expression of the pqsA-D/phnAB, pqsH, antABC, and catBCA gene loci. antA and catA are repressed by LasR during log phase and activated by RhlR in late stationary phase, whereas pqsA-E/phnAB is activated by LasR in log phase and repressed by RhlR. QscR represses both but each repression occurs in a different growth phase. This growth phase-differential regulation appears to be accomplished by the antagonistic interplay of LasR, RhlR, and QscR, mediated by two intermediate regulators, AntR and PqsR, and their cofactors, anthranilate and PQS, where the expressions of antR and pqsR and the production of anthranilate and PQS are growth phase-differentially regulated by QS systems. Especially, the anthranilate level increases in an RhlR-dependent manner at late stationary phase. From these results, we suggest that RhlR and LasR regulate the anthranilate metabolism in a mutually antagonistic and growth phase-differential manner by affecting both the expressions and activities of AntR and PqsR, and that QscR also phase-differentially represses both LasR and RhlR functions in this regulation.  相似文献   

12.
The production of many Pseudomonas aeruginosa virulence factors and secondary metabolites is regulated in concert with cell density by quorum sensing (QS). Therefore, strategies designed to inhibit QS are promising for the control of diseases. Here, we succeeded in isolating soil bacteria (56 out of 7,000 isolates) capable of inhibiting violacein production by Chromobacterium violaceum CV026. We focused on an isolate identified as a Pseudomonas sp. based on its 16S rRNA nucleotide sequence. A partially purified inhibitor factor(s) derived from culture supernatants consisted of at least three major components by HPLC analysis. A more highly purified preparation (16 μg/ml) specifically inhibited rhl-controlled pyocyanin and rhamnolipid production by wild type P. aeruginosa PAO1 (PAO1) and a QS double mutant PAO-MW1, without affecting growth. A significant inhibitory effect on elastase, protease and biofilm was also observed. These results provide compelling evidence that the inhibitor(s) interferes with the QS system. The identities of the inhibitors remain to be established.  相似文献   

13.
To gain insights into the effect of MexB gene under the short interfering RNA (siRNA), we synthesized 21 bp siRNA duplexes against the MexB gene. RT-PCR was performed to determine whether the siRNA inhibited the expression of MexB mRNA. Changes in antibiotic susceptibility in response to siRNA were measured by the E-test method. The efficacy of siRNAs was determined in a murine model of chronic P. aeruginosa lung infection. MexB-siRNAs inhibited both mRNA expression and the activity of P. aeruginosain vitro. In vivo, siRNA was effective in reducing the bacterial load in the model of chronic lung infection and the P. aeruginosa-induced pathological changes. MexB-siRNA treatment enhanced the production of inflammatory cytokines in the early infection stage (P < 0.05). Our results suggest that targeting of MexB with siRNA appears to be a novel strategy for treating P. aeruginosa infections. [BMB Reports 2014; 47(4): 203-208]  相似文献   

14.
15.
AmpC is a group I, class C -lactamase present in most Enterobacteriaceae and in Pseudomonas aeruginosa and other nonfermenting gram-negative bacilli. The β-lactam class of antibiotics is one of the most important structural classes of antibacterial compounds and act by inhibiting the bacterial D ,D - transpeptidases that are responsible for the final step of peptidoglycan cross-linking. Our main aim in the study is to screen possible inhibitors against AmpC / β - lactamase (an enzyme responsible for antimicrobial activity in Pseudomonas aeruginosa), through virtual screening of 1364 NCI (National Cancer Institute) diversity set II compounds. Homology Model of AmpC / β - lactamase was constructed using MODELLER and the Model was validated using PROCHECK and Verify 3D programs to obtain a stable structure, which was further used for virtual screening of NCI (National Cancer Institute) diversity set II compounds through molecular Docking studies using Autodock. The amino acid sequence of the β - lactamase was also subjected to ScanProsite web server to find any pattern present in the sequence. After the prediction of 3-dimensional model of AmpC/ β-lactamase, the possible Active sites ofβ - lactamase were determined using LIGSITE(csc) and CastP web servers simultaneously. The Docked complexes were validated and Enumerated based on the Autodock Scoring function to pick out the best inhibitor based on Autodock energy score. Thus from the entire 1364 NCI diversity set II compounds which were Docked, the best four docking solutions were selected (ZINC12670903, ZINC17465965, ZINC11681166 and ZINC13099024). Further the Complexes were analyzed through LIGPLOT for their interaction for the 4 best docked NCI diversity set II compounds. Thus from the Complex scoring and binding ability it is deciphered that these NCI diversity set II compounds could be promising inhibitors for Pseudomonas aeruginosa using AmpC /β - lactamase as Drug target yet pharmacological studies have to confirm it.  相似文献   

16.
Lysozymes are an important component of the innate immune system of animals that hydrolyze peptidoglycan, the major bacterial cell wall constituent. Many bacteria have contrived various means of dealing with this bactericidal enzyme, one of which is to produce lysozyme inhibitors. Recently, a novel family of bacterial lysozyme inhibitors was identified in various Gram-negative bacteria, named MliC (membrane bound lysozyme inhibitor of C-type lysozyme). Here, we report the crystal structure of Pseudomonas aeruginosa MliC in complex with chicken egg white lysozyme. Combined with mutational study, the complex structure demonstrates that the invariant loop of MliC plays a crucial role in the inhibition of the lysozyme by its insertion to the active site cleft of the lysozyme, where the loop forms hydrogen and ionic bonds with the catalytic residues. Since MliC family members have been implicated as putative colonization or virulence factors, the structures and mechanism of action of MliC will be of relevance to the control of bacterial growth in animal hosts.  相似文献   

17.
Understanding adaptation by natural selection requires understanding the genetic factors that determine which beneficial mutations are available for selection. Here, using experimental evolution of rifampicin-resistant Pseudomonas aeruginosa, we show that different genotypes vary in their capacity for adaptation to the cost of antibiotic resistance. We then use sequence data to show that the beneficial mutations associated with fitness recovery were specific to particular genetic backgrounds, suggesting that genotypes had access to different sets of beneficial mutations. When we manipulated the supply rate of beneficial mutations, by altering effective population size during evolution, we found that it constrained adaptation in some selection lines by restricting access to rare beneficial mutations, but that the effect varied among the genotypes in our experiment. These results suggest that mutational neighbourhood varies even among genotypes that differ by a single amino acid change, and this determines their capacity for adaptation as well as the influence of population biology processes that alter mutation supply rate.  相似文献   

18.
Two plant growth promoting rhizobacteria––Sinorhizobium meliloti RMP1 and Pseudomonas aeruginosa GRC2 were studied for integrated nutrient management to obtain improved yield of Brassica juncea. Low concentrations of urea and diammonium phosphate (DAP) stimulated the growth of both S. meliloti RMP1 and P. aeruginosa GRC2. 1 M of urea and 0.35 M of DAP was found lethal for RMP1, while 1.3 M and 0.37 M concentrations of urea and DAP proved to be toxic for GRC2. Lc50 was observed as 0.49 M of urea and 0.15 M of DAP for RMP1, and 0.66 M urea and 0.18 M of DAP for GRC2. Urea and DAP adaptive variants of RMP1 and GRC2 was isolated. Adaptive bacterial variants had better growth rates at sub-lethal (Lc50) concentrations of urea and DAP as compared to non-adaptive variants. They also retained plant growth promoting attributes similar to non adaptive variants. GRC2 and RMP1 did not affect the growth of each other and were chemotactically active for DAP, urea as well as root exudates of B. juncea. Both the isolates colonized well in the rhizosphere of B. juncea, as their populations were recorded ≈5 log10 cfu g−1 after 120 days. Interestingly, the colonization ability was found even better when both strains were co-inoculated, as their population was recorded in the range of ≈6 log10 cfu g−1 after 120 days. In field trials, application of RMP1 and GRC2 resulted in significant increase in biomass and yield of B. juncea as compared to control. However, yield was better with application of half dose and full dose of recommended fertilizers. Interestingly, the biomass as well as yield improved further when both isolates were applied together along with half dose of recommended fertilizers.  相似文献   

19.

Background  

Pseudomonas aeruginosa and Burkholderia cepacia infections of cystic fibrosis patients' lungs are often resistant to conventional antibiotic therapy. Protegrins are antimicrobial peptides with potent activity against many bacteria, including P. aeruginosa. The present study evaluates the correlation between protegrin-1 (PG-1) sensitivity/resistance and protegrin binding in P. aeruginosa and B. cepacia.  相似文献   

20.
Most studies of biofilm biology have taken a reductionist approach, where single-species biofilms have been extensively investigated. However, biofilms in nature mostly comprise multiple species, where interspecies interactions can shape the development, structure and function of these communities differently from biofilm populations. Hence, a reproducible mixed-species biofilm comprising Pseudomonas aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae was adapted to study how interspecies interactions affect biofilm development, structure and stress responses. Each species was fluorescently tagged to determine its abundance and spatial localization within the biofilm. The mixed-species biofilm exhibited distinct structures that were not observed in comparable single-species biofilms. In addition, development of the mixed-species biofilm was delayed 1–2 days compared with the single-species biofilms. Composition and spatial organization of the mixed-species biofilm also changed along the flow cell channel, where nutrient conditions and growth rate of each species could have a part in community assembly. Intriguingly, the mixed-species biofilm was more resistant to the antimicrobials sodium dodecyl sulfate and tobramycin than the single-species biofilms. Crucially, such community level resilience was found to be a protection offered by the resistant species to the whole community rather than selection for the resistant species. In contrast, community-level resilience was not observed for mixed-species planktonic cultures. These findings suggest that community-level interactions, such as sharing of public goods, are unique to the structured biofilm community, where the members are closely associated with each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号