首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steroid receptors in the stromal cells of endometrium and its disease counterpart tissue endometriosis play critical physiologic roles. We found that mRNA and protein levels of estrogen receptor 2 (ESR2) were strikingly higher, whereas levels of estrogen receptor 1 (ESR1), total progesterone receptor (PGR), and progesterone receptor B (PGR B) were significantly lower in endometriotic versus endometrial stromal cells. Because ESR2 displayed the most striking levels of differential expression between endometriotic and endometrial cells, and the mechanisms for this difference are unknown, we tested the hypothesis that alteration in DNA methylation is a mechanism responsible for severely increased ESR2 mRNA levels in endometriotic cells. We identified a CpG island occupying the promoter region (-197/+359) of the ESR2 gene. Bisulfite sequencing of this region showed significantly higher methylation in primary endometrial cells (n = 8 subjects) versus endometriotic cells (n = 8 subjects). The demethylating agent 5-aza-2'-deoxycytidine significantly increased ESR2 mRNA levels in endometrial cells. Mechanistically, we employed serial deletion mutants of the ESR2 promoter fused to the luciferase reporter gene and transiently transfected into both endometriotic and endometrial cells. We demonstrated that the critical region (-197/+372) that confers promoter activity also bears the CpG island, and the activity of the ESR2 promoter was strongly inactivated by in vitro methylation. Taken together, methylation of a CpG island at the ESR2 promoter region is a primary mechanism responsible for differential expression of ESR2 in endometriosis and endometrium. These findings may be applied to a number of areas ranging from diagnosis to the treatment of endometriosis.  相似文献   

2.
Angiogenesis is a prerequisite for the formation and development of endometriosis. Pigment epithelium derived factor (PEDF) is a natural inhibitor of angiogenesis. We previously demonstrated a reduction of PEDF in the peritoneal fluid, serum and endometriotic lesions from women with endometriosis compared with women without endometriosis. Here, we aim to investigate the inhibitory effect of PEDF on human endometriotic cells in vivo and in vitro. We found that PEDF markedly inhibited the growth of human endometrial implants in nude mice and of ovarian endometriotic stromal cells in vitro by up-regulating PEDF expression and down-regulating vascular endothelial growth factor (VEGF) expression. Moreover, apoptotic index was significantly increased in endometriotic lesions in vivo and endometriotic stromal cells in vitro when treated with PEDF. In mice treated with PEDF, decreased microvessel density labeled by Von Willebrand factor but not by α-Smooth Muscle Actin was observed in endometriotic lesions. And it showed no increase in PEDF expression of the ovary and uterus tissues. These findings suggest that PEDF gene therapy may be a new treatment for endometriosis.  相似文献   

3.

Background

Our previous studies suggested that aberrant activation of Wnt/ß-catenin signaling might be involved in the pathophysiology of endometriosis. We hypothesized that inhibition of Wnt/ß-catenin signaling might result in inhibition of cell proliferation, migration, and/or invasion of endometrial and endometriotic epithelial and stromal cells of patients with endometriosis.

Objectives

The aim of the present study was to evaluate the effects of a small-molecule antagonist of the Tcf/ß-catenin complex (PKF 115–584) on cell proliferation, migration, and invasion of endometrial and endometriotic epithelial and stromal cells.

Methods

One hundred twenty-six patients (78 with and 48 without endometriosis) with normal menstrual cycles were recruited. In vitro effects of PKF 115–584 on cell proliferation, migration, and invasion and on the Tcf/ß-catenin target genes were evaluated in endometrial epithelial and stromal cells of patients with and without endometriosis, and in endometrial and endometriotic epithelial and stromal cells of the same patients.

Results

The inhibitory effects of PKF 115–584 on cell migration and invasion in endometrial epithelial and stromal cells of patients with endometriosis prepared from the menstrual phase were significantly higher than those of patients without endometriosis. Levels of total and active forms of MMP-9 were significantly higher in epithelial and stromal cells prepared from menstrual endometrium in patients with endometriosis compared to patients without endometriosis. Treatment with PKF 115–584 inhibited MMP-9 activity to undetectable levels in both menstrual endometrial epithelial and stromal cells of patients with endometriosis. The number of invasive cells was significantly higher in epithelial and stromal cells of endometriotic tissue compared with matched eutopic endometrium of the same patients. Treatment with PKF 115–584 decreased the number of invasive endometriotic epithelial cells by 73% and stromal cells by 75%.

Conclusions

The present findings demonstrated that cellular mechanisms known to be involved in endometriotic lesion development are inhibited by targeting the Wnt/β-catenin pathway.  相似文献   

4.
5.
Rai P  Shivaji S 《PloS one》2011,6(3):e18074

Background

Endometriosis is an estrogen-dependent disease causing pelvic pain and infertility in 10% of reproductive-aged women. Despite a long history of the disease the pathogenesis of endometriosis is poorly understood. It is known that the expression of several proteins is either up or down regulated during endometriosis, but their precise role remains to be determined. DJ-1 is one such protein that is upregulated in eutopic endometrium of women having endometriosis suggesting that DJ-1 may be involved in the pathogenesis of endometriosis.

Methodology and Principal Findings

The role of DJ-1 in the pathogenesis of endometriosis was investigated. For this purpose the influence of DJ-1 on endometrial cell survival, attachment, proliferation, migration, and invasion either by overexpressing DJ-1 in normal endometrial cells or by knocking down DJ-1 expression in endometriotic cells using siRNA was investigated. The results indicated that DJ-1 protects endometrial cells from oxidative stress mediated apoptosis. Overexpression of DJ-1 in normal endometrial epithelial cells increases the adhesion on collagen type IV. However, no significant difference was observed incase of stromal cells. It was further demonstrated that DJ-1 regulates cell proliferation, migration, and invasion in normal endometrial and endometriotic epithelial cells whereas in the case of normal endometrial and endometriotic stromal cells, it regulates cell proliferation and invasion but not migration. Furthermore, the present study also indicated that DJ-1 regulates these cellular processes by modulating PI3K/Akt pathway by interacting and negatively regulating PTEN.

Conclusions

Abnormally high levels of DJ-1 expression may be involved in endometriosis, possibly by stimulating endometrial cell survival, proliferation, migration, and invasion.  相似文献   

6.
Endometriosis is considered to be an estrogen-dependent inflammatory disease, but its etiology is unclear. Thus far, a mechanistic role for steroid receptor coactivators (SRCs) in the progression of endometriosis has not been elucidated. An SRC-1-null mouse model reveals that the mouse SRC-1 gene has an essential role in endometriosis progression. Notably, a previously unidentified 70-kDa SRC-1 proteolytic isoform is highly elevated both in the endometriotic tissue of mice with surgically induced endometriosis and in endometriotic stromal cells biopsied from patients with endometriosis compared to normal endometrium. Tnf?/? and Mmp9?/? mice with surgically induced endometriosis showed that activation of tumor necrosis factor a (TNF-α)-induced matrix metallopeptidase 9 (MMP9) activity mediates formation of the 70-kDa SRC-1 C-terminal isoform in endometriotic mouse tissue. In contrast to full-length SRC-1, the endometriotic 70-kDa SRC-1 C-terminal fragment prevents TNF-α-mediated apoptosis in human endometrial epithelial cells and causes the epithelial-mesenchymal transition and the invasion of human endometrial cells that are hallmarks of progressive endometriosis. Collectively, the newly identified TNF-α-MMP9-SRC-1 isoform functional axis promotes pathogenic progression of endometriosis.  相似文献   

7.

Background

The DNA demethylating agent 5-aza-2′-deoxycytidine (5-aza-CdR) incorporates into DNA and decreases DNA methylation, sparking interest in its use as a potential therapeutic agent. We aimed to determine the effects of maternal 5-aza-CdR treatment on embryo implantation in the mouse and to evaluate whether these effects are associated with decreased levels of DNA methyltransferases (Dnmts) and three genes (estrogen receptor α [Esr1], progesterone receptor [Pgr], and homeobox A10 [Hoxa10]) that are vital for control of endometrial changes during implantation.

Methods and Principal Findings

Mice treated with 5-aza-CdR had a dose-dependent decrease in number of implantation sites, with defected endometrial decidualization and stromal cell proliferation. Western blot analysis on pseudo-pregnant day 3 (PD3) showed that 0.1 mg/kg 5-aza-CdR significantly repressed Dnmt3a protein level, and 0.5 mg/kg 5-aza-CdR significantly repressed Dnmt1, Dnmt3a, and Dnmt3b protein levels in the endometrium. On PD5, mice showed significantly decreased Dnmt3a protein level with 0.1 mg/kg 5-aza-CdR, and significantly decreased Dnmt1 and Dnmt3a with 0.5 mg/kg 5-aza-CdR. Immunohistochemical staining showed that 5-aza-CdR repressed DNMT expression in a cell type–specific fashion within the uterus, including decreased expression of Dnmt1 in luminal and/or glandular epithelium and of Dnmt3a and Dnmt3b in stroma. Furthermore, the 5′ flanking regions of the Esr1, Pgr, and Hoxa10 were hypomethylated on PD5. Interestingly, the higher (0.5 mg/kg) dose of 5-aza-CdR decreased protein expression of Esr1, Pgr, and Hoxa10 in the endometrium on PD5 in both methylation-dependent and methylation-independent manners.

Conclusions

The effects of 5-aza-CdR on embryo implantation in mice were associated with altered expression of endometrial Dnmts and genes controlling endometrial changes, suggesting that altered gene methylation, and not cytotoxicity alone, contributes to implantation defects induced by 5-aza-CdR.  相似文献   

8.
Endometriosis is a common chronic gynecologic disorder characterized by the presence and growth of endometrial‐like tissue outside of the uterine cavity. Although the exact etiology remains unclear, epigenetic modifications, such as DNA methylation, are thought to contribute to the pathogenesis of endometriosis. Here, we used the Illumina Human Methylation 450 K BeadChip Array to analyze the genome‐wide DNA methylation profiles of six endometriotic lesions and six eutopic endometria from patients with ovarian endometriosis and six endometria of women without endometriosis. Compared with the eutopic endometria of women with endometriosis, 12,159 differentially methylated CpG sites and 375 differentially methylated promoter regions were identified in endometriotic lesions. GO analyses showed that these putative differentially methylated genes were primarily associated with immune response, inflammatory response, response to steroid hormone stimulus, cell adhesion, negative regulation of apoptosis, and activation of the MAPK activity. In addition, the expression levels of DNMT1, DNMT3A, DNMT3B, and MBD2 in endometriotic lesions and eutopic endometria were significantly decreased compared with control endometria. Our findings suggest that aberrant DNA methylation status in endometriotic lesions may play a significant role in the pathogenesis and progression of endometriosis.  相似文献   

9.
10.

Background

During the development and progression of endometriotic lesions, excess fibrosis may lead to scarring, chronic pain, and altered tissue function. However, the cellular and molecular mechanisms of fibrosis in endometriosis remain to be clarified.

Objectives

The objective of the present study was to investigate whether the Wnt/β-catenin signaling pathway was involved in regulating the cellular and molecular mechanisms of fibrosis in endometriosis in vitro and to evaluate whether fibrosis could be prevented by targeting the Wnt/β-catenin pathway in a xenograft model of endometriosis in immunodeficient nude mice.

Methods

Seventy patients (40 with and 30 without endometriosis) with normal menstrual cycles were recruited. In vitro effects of small-molecule antagonists of the Tcf/β-catenin complex (PKF 115-584 and CGP049090) on fibrotic markers (alpha smooth muscle actin, type I collagen, connective tissue growth factor, fibronectin) and collagen gel contraction were evaluated in endometrial and endometriotic stromal cells from patients with endometriosis. In vitro effects of activation of the Wnt/β-catenin signaling pathway by treatment with recombinant Wnt3a on profibrotic responses were evaluated in endometrial stromal cells of patients without endometriosis. The effects of CGP049090 treatment on the fibrosis of endometriotic implants were evaluated in a xenograft model of endometriosis in immunodeficient nude mice.

Results

Treatment with PKF 115-584 and CGP049090 significantly decreased the expression of alpha smooth muscle actin, type I collagen, connective tissue growth factor and fibronectin mRNAs in both endometriotic and endometrial stromal cells with or without transforming growth factor-β1 stimulation. Both endometriotic and endometrial stromal cell-mediated contraction of collagen gels was significantly decreased by treatment with PKF 115-584 and CGP049090 as compared to that of untreated cells. The animal experiments showed that CGP049090 prevented the progression of fibrosis and reversed established fibrosis in endometriosis.

Conclusion

Aberrant activation of the Wnt/β-catenin pathway may be involved in mediating fibrogenesis in endometriosis.  相似文献   

11.
12.
13.
In each menstrual cycle endometrial stromal cells (hESC) proliferate and differentiate into specialized decidual cells, a process termed decidualization, which regulates endometrial receptivity. Decidualization is mainly controlled by sex ovarian hormones, estradiol (E2) and progesterone. E2 plays an important role in the expression of the progesterone receptor and promotes the endometrial stromal cells differentiation. Our group previously reported that anandamide (AEA) impairs decidualization through cannabinoid receptor 1 (CB1). In this study, we hypothesized whether AEA inhibitory effect on cell decidualization could be mediated through interaction with aromatase and consequent interference in estradiol production/signaling. We used an immortalized human endometrial stromal cell line (St-T1b) and human decidual fibroblasts (HdF) derived from human term placenta. In cells exposed to a differentiation stimulus, AEA-treatment prevents the increase of the expression of CYP19A1 gene encoding aromatase, E2 levels and of estradiol receptor expression, that are observed in differentiating cells. Regarding CYP19A1 mRNA levels, the effect was partially reverted by a CB1 receptor antagonist and by a COX2 inhibitor. In addition, we report that AEA presents anti-aromatase activity in placental microsomes, the nature of the inhibition being the uncommon mixed type as revealed by the kinetic studies. Structural analysis of the AEA-Aromatase complexes determined that AEA may bind to the active site pocket of the enzyme. In overall we report that AEA inhibits aromatase activity and may affect E2 signaling crucial for the decidualization process, indicating that a deregulation of the endocannabinoid system may be implicated in endometrial dysfunction and in fertility/infertility disorders.  相似文献   

14.
Endometriosis, defined as the presence of endometrium outside the uterus, is one of the most frequent gynecological diseases. It has been suggested that modifications of both endometrial and peritoneal factors could be implicated in this disease. Endometriosis is a multifactorial disease in which angiogenesis and proteolysis are dysregulated. MicroRNAs (miRNAs) are small non-coding RNAs that regulate the protein expression and may be the main regulators of angiogenesis. Our hypothesis is that peritoneal fluid from women with endometriosis could modify the expression of several miRNAs that regulate angiogenesis and proteolysis in the endometriosis development. The objective of this study has been to evaluate the influence of endometriotic peritoneal fluid on the expression of six miRNAs related to angiogenesis, as well as several angiogenic and proteolytic factors in endometrial and endometriotic cell cultures from women with endometriosis compared with women without endometriosis.

Methods

Endometrial and endometriotic cells were cultured and treated with endometriotic and control peritoneal fluid pools. We have studied the expression of six miRNAs (miR-16, -17-5p, -20a, -125a, -221, and -222) by RT-PCR and protein and mRNA levels of vascular endothelial growth factor-A, thrombospondin-1, urokinase plasminogen activator and plasminogen activator inhibitor-1 by ELISA and qRT-PCR respectively.

Results

Control and endometriotic peritoneal fluid pools induced a significant reduction of all miRNAs levels in endometrial and endometriotic cell cultures. Moreover, both peritoneal fluids induced a significant increase in VEGF-A, uPA and PAI-1 protein levels in all cell cultures without significant increase in mRNA levels. Endometrial cell cultures from patients treated with endometriotic peritoneal fluid showed lower expression of miRNAs and higher expression of VEGF-A protein levels than cultures from controls. In conclusion, this “in vitro” study indicates that peritoneal fluid from women with endometriosis modulates the expression of miRNAs that could contribute to the angiogenic and proteolytic disequilibrium observed in this disease.  相似文献   

15.
16.
Finely tuned decidualization of endometrial stromal fibroblasts into decidual cells is crucial for successful implantation and a healthy pregnancy. Both insulin and androgens are known to modulate decidualization, however, their complex effect on this process has not been fully elucidated. As hyperinsulinemia and hyperandrogenism are associated in clinical conditions, we aimed to investigate the interaction between insulin and androgens on decidualization. Primary human endometrial stromal cells were decidualized in vitro in the presence of insulin and/or androgens (dihydrotestosterone (DHT), testosterone). Gene or protein expressions of decidualization markers were measured, and cells size characteristics were determined. Migration of decidualizing endometrial stromal cells and invasion of HTR-8/SVneo trophoblast spheroids were assessed. We found that insulin and androgens in combination enhanced the upregulation of several decidualization markers including prolactin, tissue factor, tissue inhibitor of matrix metalloproteinase 3 and connexin-43, and also interacted in modulating cell size characteristics resulting in enlarged decidualizing cells. However, insulin and DHT together restricted the migration of decidualizing cells and invasion of trophoblast spheroids. Our findings suggest that insulin and androgens interact to potentiate the process of decidualization. On the other hand, inhibited cell migration and trophoblast invasion might negatively impact the function of decidualizing endometrial stromal cells.  相似文献   

17.
18.
19.
20.
Under the influence of ovarian steroid hormones, endometrial cells aer able to produce a wide variety of growth factors and peptide hormones that area believed to promote: (1) physiological growth and differentiation during the endometrial cycle; (2) decidualization, an essential preparative event for establishment of pregnancy; and (3) pathological growth and differentiation in endometriosis and cancer. Among the local factors produced by the human endometrium, corticotropin-releasing factor (CRF) and activin A have been evaluated in terms of localization and effects. CRF is a neuropeptide expressed by the epithelial and stromal cells of the human endometrium in increasing amounts from the endometrial proliferative to the secretory phase. CRF expression also increases in the pregnant endometrium, from early in the pregnancy until term. CRF-type 1 receptor mRNA is only expressed by stromal cells. Progesterone induces CRF gene expression and release from decidualized cells and CRF decidualizes cultured stromal endometrial cells. Urocortin, a CRF-related peptide, has been identified in endometrial epithelial and stromal cells, and its function is still under investigation. Activin A is a growth factor expressed in increasing amounts throughout endometrial phases by both epithelial and stromal cells. This growth factor is secreted into the uterine cavity with higher levels in the secretory phase. Maternal decidua expresses activin A mRNA in increasing amounts from early pregnancy until term. Human endometrium also expresses activin-A receptors and follistatin, its binding protein. Activin A decidualizes cultured human endometrial stromal cells (an effect reversed by follistatin) and modulates embryonic trophoblast differentiation and adhesion. Activin A is expressed in endometriosis and endometrial adenocarcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号