首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arginine methylation is a posttranslational protein modification catalyzed by a family of protein arginine methyltransferases (PRMT), the predominant member of which is PRMT1. Despite its major role in arginine methylation of nuclear proteins, surprisingly little is known about the subcellular localization and dynamics of PRMT1. We show here that only a fraction of PRMT1 is located in the nucleus, but the protein is predominantly cytoplasmic. Fluorescence recovery after photobleaching experiments reveal that PRMT1 is highly mobile both in the cytoplasm and the nucleus. However, inhibition of methylation leads to a significant nuclear accumulation of PRMT1, concomitant with the appearance of an immobile fraction of the protein in the nucleus, but not the cytoplasm. Both the accumulation and immobility of PRMT1 is reversed when re-methylation is allowed, suggesting a mechanism where PRMT1 is trapped by unmethylated substrates such as core histones and heterogeneous nuclear ribonucleoprotein proteins until it has executed the methylation reaction.  相似文献   

2.
Protein arginine methyltransferases (PRMTs) catalyze the post-translational methylation of specific arginyl groups within targeted proteins to regulate fundamental biological responses in eukaryotic cells. The major Type I PRMT enzyme, PRMT1, strictly generates monomethyl arginine (MMA) and asymmetric dimethylarginine (ADMA), but not symmetric dimethylarginine (SDMA). Multiple diseases can arise from the dysregulation of PRMT1, including heart disease and cancer, which underscores the need to elucidate the origin of product specificity. Molecular dynamics (MD) simulations were carried out for WT PRMT1 and its M48F, H293A, H293S, and H293S-M48F mutants bound with S-adenosylmethionine (AdoMet) and the arginine substrate in an unmethylated or methylated form. Experimental site-directed mutagenesis and analysis of the resultant products were also performed. Two specific PRMT1 active site residues, Met48 and His293, have been determined to play a key role in dictating product specificity, as: (1) the single mutation of Met48 to Phe enabled PRMT1 to generate MMA, ADMA, and a limited amount of SDMA; (2) the single mutation of His293 to Ser formed the expected MMA and ADMA products only; whereas (3) the double mutant H293S-M48F-PRMT1 produced SMDA as the major product with limited amounts of MMA and ADMA. Calculating the formation of near-attack conformers resembling SN2 transition states leading to either the ADMA or SDMA products finds that Met48 and His293 may enable WT PRMT1 to yield ADMA exclusively by precluding MMA from binding in an orientation more conducive to SDMA formation, i.e., the methyl group bound at the arginine Nη2 position.  相似文献   

3.
4.
The protein arginine methyltransferases (PRMTs) are a family of enzymes that catalyze the mono- and dimethylation of arginine residues in a variety of proteins. Although these enzymes play important roles in a variety of cellular processes, aberrant PRMT activity is associated with several disease states, including heart disease and cancer. In an effort to guide the development of inhibitors targeting individual PRMTs, we initiated studies to characterize the molecular mechanisms of PRMT catalysis. Herein, we report studies on the kinetic mechanism of PRMT6. Initial velocity, product inhibition, and dead-end analog inhibition studies with the AcH4-21 and R1 peptides, as well as their monomethylated versions, indicate, in contrast to a previous report, that PRMT6 utilizes a rapid equilibrium random mechanism with dead-end EAP and EBQ complexes.  相似文献   

5.
Human protein arginine methyltransferase PRMT8 has been recently described as a type I enzyme in brain that is localized to the plasma membrane by N-terminal myristoylation. The amino acid sequence of human PRMT8 is almost 80% identical to human PRMT1, the major protein arginine methyltransferase activity in mammalian cells. However, the activity of a recombinant PRMT8 GST fusion protein toward methyl-accepting substrates is much lower than that of a GST fusion of PRMT1. We show here that both His-tagged and GST fusion species lacking the initial 60 amino acid residues of PRMT8 have enhanced enzymatic activity, suggesting that the N-terminal domain may regulate PRMT8 activity. This conclusion is supported by limited proteolysis experiments showing an increase in the activity of the digested full-length protein, consistent with the loss of the N-terminal domain. In contrast, the activity of the N-terminal truncated protein was slightly diminished by limited proteolysis. Significantly, we detect automethylation at two sites in the N-terminal domain, as well as binding sites for SH3 domain-containing proteins. We suggest that the N-terminal domain may function as an autoregulator that may be displaced by interaction with one or more physiological inducers.  相似文献   

6.
7.
Type I protein arginine methyltransferases catalyze the formation of asymmetric omega-N(G),N(G)-dimethylarginine residues by transferring methyl groups from S-adenosyl-L-methionine to guanidino groups of arginine residues in a variety of eucaryotic proteins. The predominant type I enzyme activity is found in mammalian cells as a high molecular weight complex (300-400 kDa). In a previous study, this protein arginine methyltransferase activity was identified as an additional activity of 10-formyltetrahydrofolate dehydrogenase (FDH) protein. However, immunodepletion of FDH activity in RAT1 cells and in murine tissue extracts with antibody to FDH does not diminish type I methyltransferase activity toward the methyl-accepting substrates glutathione S-transferase fibrillarin glycine arginine domain fusion protein or heterogeneous nuclear ribonucleoprotein A1. Similarly, immunodepletion with anti-FDH antibody does not remove the endogenous methylating activity for hypomethylated proteins present in extracts from adenosine dialdehyde-treated RAT1 cells. In contrast, anti-PRMT1 antibody can remove PRMT1 activity from RAT1 extracts, murine tissue extracts, and purified rat liver FDH preparations. Tissue extracts from FDH(+/+), FDH(+/-), and FDH(-/-) mice have similar protein arginine methyltransferase activities but high, intermediate, and undetectable FDH activities, respectively. Recombinant glutathione S-transferase-PRMT1, but not purified FDH, can be cross-linked to the methyl-donor substrate S-adenosyl-L-methionine. We conclude that PRMT1 contributes the major type I protein arginine methyltransferase enzyme activity present in mammalian cells and tissues.  相似文献   

8.
Lung epithelial cell death is a prominent feature of acute lung injury and acute respiratory distress syndrome (ALI/ARDS), which results from severe pulmonary infection leading to respiratory failure. Multiple mechanisms are believed to contribute to the death of epithelia; however, limited data propose a role for epigenetic modifiers. In this study, we report that a chromatin modulator protein arginine N-methyltransferase 4/coactivator-associated arginine methyltransferase 1 (PRMT4/CARM1) is elevated in human lung tissues with pneumonia and in experimental lung injury models. Here PRMT4 is normally targeted for its degradation by an E3 ubiquitin ligase, SCFFBXO9, that interacts with PRMT4 via a phosphodegron to ubiquitinate the chromatin modulator at K228 leading to its proteasomal degradation. Bacterial-derived endotoxin reduced levels of SCFFBXO9 thus increasing PRMT4 cellular concentrations linked to epithelial cell death. Elevated PRMT4 protein caused substantial epithelial cell death via caspase 3-mediated cell death signaling, and depletion of PRMT4 abolished LPS-mediated epithelial cell death both in cellular and murine injury models. These findings implicate a unique molecular interaction between SCFFBXO9 and PRMT4 and its regulation by endotoxin that impacts the life span of lung epithelia, which may play a key role in the pathobiology of tissue injury observed during critical respiratory illness.Subject terms: Ligases, Epigenetics, Ubiquitin ligases, Infection  相似文献   

9.
The present study was performed to investigate HIF-1alpha (hypoxia-inducible factor-1alpha) expression in a large number of immunohistochemically and ultrastructurally characterized surgically removed pituitary tumours. The potential relation of HIF-1alpha with outcome variables as well as the presence of HIF-1alpha expression in the tumours treated with dopamine agonists and octreotide, a long-acting somatostatin analogue was also investigated. HIF-1alpha immunoreactivity was confined to the nucleoplasm whereas the nucleoli were unconspicuous. The distribution of HIF-1alpha was evident in the tumours whereas normal adenohypophysial cells showed no HIF-1alpha staining. HIF-1alpha expression was detected not only in the tumour cells but also in endothelial cells lining the blood vessels within the tumour. ACTH producing adenomas showed the lowest level of HIF-1alpha expression whereas pituitary carcinomas and GH producing adenomas had the highest counts. The statistical study demonstrated no significant correlation between HIF-1alpha expression, patient age, gender, tumour, size, invasiveness, cell proliferation rate and vascularity. These results suggest that the behaviour of pituitary tumours does not primarily depend of HIF-1alpha expression. Our study demonstrated an increase HIF-1alpha expression in bromocriptine treated PRL producing pituitary adenomas compared with untreated tumours but no increase in octreotide treated tumours.  相似文献   

10.
11.
Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells and induce the accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) in normoxia. In this study, under hypoxic conditions (1% O(2)), we examined the effect of quercetin on the intracellular level of HIF-1alpha and extracellular level of vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Surprisingly, we observed that quercetin suppressed the HIF-1alpha accumulation during hypoxia in human prostate cancer LNCaP, colon cancer CX-1, and breast cancer SkBr3 cells. Quercetin treatment also significantly reduced hypoxia-induced secretion of VEGF. Suppression of HIF-1alpha accumulation during treatment with quercetin in hypoxia was not prevented by treatment with 26S proteasome inhibitor MG132 or PI3K inhibitor LY294002. Interestingly, hypoxia (1% O(2)) in the presence of 100 microM quercetin inhibited protein synthesis by 94% during incubation for 8 h. Significant quercetin concentration-dependent inhibition of protein synthesis and suppression of HIF-1alpha accumulation were observed under hypoxic conditions. Treatment with 100 microM cycloheximide, a protein synthesis inhibitor, replicated the effect of quercetin by inhibiting HIF-1alpha accumulation during hypoxia. These results suggest that suppression of HIF-1alpha accumulation during treatment with quercetin under hypoxic conditions is due to inhibition of protein synthesis.  相似文献   

12.
13.
Protein arginine methyltransferase 3 (PRMT3) is a cytosolic enzyme that catalyzes the formation of mono- and asymmetric dimethyl arginines, with ribosomal protein (RP) S2 as its main in vivo substrate. The interplay of PRMT3-RPS2 homologs in yeast is important for regulating the ribosomal subunit ratio and assembly. Prmt3-null mice display slower embryonic growth and development, although this phenotype is milder than in mouse RP gene knockouts. Defects in ribosome maturation are the hallmark of Diamond-Blackfan anemia (DBA). Sequencing of the PRMT3 gene in patients from the Czech DBA registry revealed a heterozygous mutation encoding the Tyr87Cys substitution. Although later analysis excluded this mutation as the cause of disease, we anticipated that this substitution might be important for PRMT3 function and decided to study it in detail. Tyr87 resides in a highly conserved substrate binding domain and has been predicted to be phosphorylated. To address the impact of putative Tyr87 phosphorylation on PRMT3 properties, we constructed two additional PRMT3 variants, Tyr87Phe and Tyr87Glu PRMT3, mimicking non-phosphorylated and phosphorylated Tyr87, respectively. The Tyr87Cys and Tyr87Glu-PRMT3 variants had markedly decreased affinity to RPS2 and, consequently, reduced enzymatic activity compared to the wild-type enzyme. The activity of the Tyr87Phe-PRMT3 mutant remained unaffected. No evidence of Tyr87 phosphorylation was found using mass spectrometric analysis of purified PRMT3, although phosphorylation of serines 25 and 27 was observed. In conclusion, Tyr87 is important for the interaction between PRMT3 and RPS2 and for its full enzymatic activity.  相似文献   

14.
Protein arginine N-methyltransferases (PRMTs) act in signaling pathways and gene expression by methylating arginine residues within target proteins. PRMT1 is responsible for most cellular arginine methylation activity and can work independently or in collaboration with other PRMTs. In this study, we demonstrate a direct interaction between PRMT1 and PRMT2 using co-immunoprecipitation, bimolecular fluorescence complementation, and enzymatic assays. As a result of this interaction, PRMT2 stimulated PRMT1 activity, affecting its apparent V(max) and K(M) values in vitro and increasing the production of methylarginines in cells. Active site mutations and regional deletions from PRMT1 and -2 were also investigated, which demonstrated that complex formation required full-length, active PRMT1. Although the inhibition of methylation by adenosine dialdehyde prevented the interaction between PRMT1 and -2, it did not prevent the interaction between PRMT1 and a truncation mutant of PRMT2 lacking its Src homology 3 (SH3) domain. This result suggests that the SH3 domain may mediate an interaction between PRMT1 and -2 in a methylation-dependent fashion. On the basis of our findings, we propose that PRMT1 serves as the major methyltransferase in cells by forming higher-order oligomers with itself, PRMT2, and possibly other PRMTs.  相似文献   

15.
16.
17.
Arginine methylation is a post-translational modification found mostly in RNA-binding proteins. Poly(A)-binding protein II from calf thymus was shown by mass spectrometry and sequencing to contain NG, NG-dimethylarginine at 13 positions in its amino acid sequence. Two additional arginine residues were partially methylated. Almost all of the modified residues were found in Arg-Xaa-Arg clusters in the C terminus of the protein. These motifs are distinct from Arg-Gly-Gly motifs that have been previously described as sites and specificity determinants for asymmetric arginine dimethylation. Poly(A)-binding protein II and deletion mutants expressed in Escherichia coli were in vitro substrates for two mammalian protein arginine methyltransferases, PRMT1 and PRMT3, with S-adenosyl-L-methionine as the methyl group donor. Both PRMT1 and PRMT3 specifically methylated arginines in the C-terminal domain corresponding to the naturally modified sites.  相似文献   

18.
19.
The cDNA for PRMT7, a recently discovered human protein-arginine methyltransferase (PRMT), was cloned and expressed in Escherichia coli and mammalian cells. Immunopurified PRMT7 actively methylated histones, myelin basic protein, a fragment of human fibrillarin (GAR) and spliceosomal protein SmB. Amino acid analysis showed that the modifications produced were predominantly monomethylarginine and symmetric dimethylarginine (SDMA). Examination of PRMT7 expressed in E. coli demonstrated that peptides corresponding to sequences contained in histone H4, myelin basic protein, and SmD3 were methylated. Furthermore, analysis of the methylated proteins showed that symmetric dimethylarginine and relatively small amounts of monomethylarginine and asymmetric dimethylarginine were produced. SDMA was also formed when a GRG tripeptide was methylated by PRMT7, indicating that a GRG motif is by itself sufficient for symmetric dimethylation to occur. Symmetric dimethylation is reduced dramatically compared with monomethylation as the concentration of the substrate is increased. The data demonstrate that PRMT7 (like PRMT5) is a Type II methyltransferase capable of producing SDMA modifications in proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号