首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabotropic GABAB receptors are abundantly expressed at glutamatergic synapses where they control excitability of the synapse. Here, we tested the hypothesis that glutamatergic neurotransmission may regulate GABAB receptors. We found that application of glutamate to cultured cortical neurons led to rapid down-regulation of GABAB receptors via lysosomal degradation. This effect was mimicked by selective activation of AMPA receptors and further accelerated by coactivation of group I metabotropic glutamate receptors. Inhibition of NMDA receptors, blockade of L-type Ca2+ channels, and removal of extracellular Ca2+ prevented glutamate-induced down-regulation of GABAB receptors, indicating that Ca2+ influx plays a critical role. We further established that glutamate-induced down-regulation depends on the internalization of GABAB receptors. Glutamate did not affect the rate of GABAB receptor endocytosis but led to reduced recycling of the receptors back to the plasma membrane. Blockade of lysosomal activity rescued receptor recycling, indicating that glutamate redirects GABAB receptors from the recycling to the degradation pathway. In conclusion, the data indicate that sustained activation of AMPA receptors down-regulates GABAB receptors by sorting endocytosed GABAB receptors preferentially to lysosomes for degradation on the expense of recycling. This mechanism may relieve glutamatergic synapses from GABAB receptor-mediated inhibition resulting in increased synaptic excitability.  相似文献   

2.
GABAB receptors are the G-protein coupled receptors (GPCRs) for GABA, the main inhibitory neurotransmitter in the central nervous system. Native GABAB receptors comprise principle and auxiliary subunits that regulate receptor properties in distinct ways. The principle subunits GABAB1a, GABAB1b, and GABAB2 form fully functional heteromeric GABAB(1a,2) and GABAB(1b,2) receptors. Principal subunits regulate forward trafficking of the receptors from the endoplasmic reticulum to the plasma membrane and control receptor distribution to axons and dendrites. The auxiliary subunits KCTD8, -12, -12b, and -16 are cytosolic proteins that influence agonist potency and G-protein signaling of GABAB(1a,2) and GABAB(1b,2) receptors. Here, we used transfected cells to study assembly, surface trafficking, and internalization of GABAB receptors in the presence of the KCTD12 subunit. Using bimolecular fluorescence complementation and metabolic labeling, we show that GABAB receptors associate with KCTD12 while they reside in the endoplasmic reticulum. Glycosylation experiments support that association with KCTD12 does not influence maturation of the receptor complex. Immunoprecipitation and bioluminescence resonance energy transfer experiments demonstrate that KCTD12 remains associated with the receptor during receptor activity and receptor internalization from the cell surface. We further show that KCTD12 reduces constitutive receptor internalization and thereby increases the magnitude of receptor signaling at the cell surface. Accordingly, knock-out or knockdown of KCTD12 in cultured hippocampal neurons reduces the magnitude of the GABAB receptor-mediated K+ current response. In summary, our experiments support that the up-regulation of functional GABAB receptors at the neuronal plasma membrane is an additional physiological role of the auxiliary subunit KCTD12.  相似文献   

3.
N-Methyl-d-aspartate (NMDA) receptors are expressed at excitatory synapses throughout the brain and are essential for neuronal development and synaptic plasticity. Functional NMDA receptors are tetramers, typically composed of NR1 and NR2 subunits (NR2A–D). NR2A and NR2B are expressed in the forebrain and are thought to assemble as diheteromers (NR1/NR2A, NR1/NR2B) and triheteromers (NR1/NR2A/NR2B). NR2A and NR2B contain cytosolic domains that regulate distinct postendocytic sorting events, with NR2A sorting predominantly into the degradation pathway, and NR2B preferentially trafficking through the recycling pathway. However, the interplay between these two subunits remains an open question. We have now developed a novel approach based on the dimeric feature of the α- and β-chains of the human major histocompatibility complex class II molecule. We created chimeras of α- and β-chains with the NR2A and NR2B C termini and evaluated endocytosis of dimers. Like chimeric proteins containing only a single NR2A or NR2B C-terminal domain, major histocompatibility complex class II-NR2A homodimers sort predominantly to late endosomes, whereas NR2B homodimers traffic to recycling endosomes. Interestingly, NR2A/NR2B heterodimers traffic preferentially through the recycling pathway, and NR2B is dominant in regulating dimer trafficking in both heterologous cells and neurons. In addition, the recycling of NR2B-containing NMDARs in wild-type neurons is not significantly different from NR2A−/− neurons. These data support a dominant role for NR2B in regulating the trafficking of triheteromeric NMDARs in vivo. Furthermore, our molecular approach allows for the direct and selective evaluation of dimeric assemblies and can be used to define dominant trafficking domains in other multisubunit protein complexes.  相似文献   

4.
5.
GABA-gated chloride channels (GABAARs) trafficking is involved in the regulation of fast inhibitory transmission. Here, we took advantage of a γ2(R43Q) subunit mutation linked to epilepsy in humans that considerably reduces the number of GABAARs on the cell surface to better understand the trafficking of GABAARs. Using recombinant expression in cultured rat hippocampal neurons and COS-7 cells, we showed that receptors containing γ2(R43Q) were addressed to the cell membrane but underwent clathrin-mediated dynamin-dependent endocytosis. The γ2(R43Q)-dependent endocytosis was reduced by GABAAR antagonists. These data, in addition to a new homology model, suggested that a conformational change in the extracellular domain of γ2(R43Q)-containing GABAARs increased their internalization. This led us to show that endogenous and recombinant wild-type GABAAR endocytosis in both cultured neurons and COS-7 cells can be amplified by their agonists. These findings revealed not only a direct relationship between endocytosis of GABAARs and a genetic neurological disorder but also that trafficking of these receptors can be modulated by their agonist.  相似文献   

6.
Regulation of cell surface expression of neurotransmitter receptors is crucial for determining synaptic strength and plasticity, but the underlying mechanisms are not well understood. We previously showed that proteasomal degradation of GABAB receptors via the endoplasmic reticulum (ER)-associated protein degradation (ERAD) machinery determines the number of cell surface GABAB receptors and thereby GABAB receptor-mediated neuronal inhibition. Here, we show that proteasomal degradation of GABAB receptors requires the interaction of the GABAB2 C terminus with the proteasomal AAA-ATPase Rpt6. A mutant of Rpt6 lacking ATPase activity prevented degradation of GABAB receptors but not the removal of Lys48-linked ubiquitin from GABAB2. Blocking ERAD activity diminished the interaction of Rtp6 with GABAB receptors resulting in increased total as well as cell surface expression of GABAB receptors. Modulating neuronal activity affected proteasomal activity and correspondingly the interaction level of Rpt6 with GABAB2. This resulted in altered cell surface expression of the receptors. Thus, neuronal activity-dependent proteasomal degradation of GABAB receptors by the ERAD machinery is a potent mechanism regulating the number of GABAB receptors available for signaling and is expected to contribute to homeostatic neuronal plasticity.  相似文献   

7.
Regulation of neuronal NMDA receptor (NMDAR) is critical in synaptic transmission and plasticity. Protein kinase C (PKC) promotes NMDAR trafficking to the cell surface via interaction with NMDAR-associated proteins (NAPs). Little is known, however, about the NAPs that are critical to PKC-induced NMDAR trafficking. Here, we showed that calcium/calmodulin-dependent protein kinase II (CaMKII) could be a NAP that mediates the potentiation of NMDAR trafficking by PKC. PKC activation promoted the level of autophosphorylated CaMKII and increased association with NMDARs, accompanied by functional NMDAR insertion, at postsynaptic sites. This potentiation, along with PKC-induced long term potentiation of the AMPA receptor-mediated response, was abolished by CaMKII antagonist or by disturbing the interaction between CaMKII and NR2A or NR2B. Further mutual occlusion experiments demonstrated that PKC and CaMKII share a common signaling pathway in the potentiation of NMDAR trafficking and long-term potentiation (LTP) induction. Our results revealed that PKC promotes NMDA receptor trafficking and induces synaptic plasticity through indirectly triggering CaMKII autophosphorylation and subsequent increased association with NMDARs.  相似文献   

8.
Emerging evidence suggests that functional γ-aminobutyric acid B receptors (GABABRs) are expressed by astrocytes within the mammalian brain. GABABRs are heterodimeric G-protein-coupled receptors that are composed of R1/R2 subunits. To date, they have been characterized in neurons as the principal mediators of sustained inhibitory signaling; however their roles in astrocytic physiology have been ill defined. Here we reveal that the cytoplasmic tail of the GABABR2 subunit binds directly to the astrocytic protein glutamine synthetase (GS) and that this interaction determines the subcellular localization of GS. We further demonstrate that the binding of GS to GABABR2 increases the steady state expression levels of GS in heterologous cells and in mouse primary astrocyte culture. Mechanistically this increased stability of GS in the presence of GABABR2 occurs via reduced proteasomal degradation. Collectively, our results suggest a novel role for GABABRs as regulators of GS stability. Given the critical role that GS plays in the glutamine-glutamate cycle, astrocytic GABABRs may play a critical role in supporting both inhibitory and excitatory neurotransmission.  相似文献   

9.
Understanding the mechanisms that control synaptic efficacy through the availability of neurotransmitter receptors depends on uncovering their specific intracellular trafficking routes. γ-Aminobutyric acid type B (GABAB) receptors (GABABRs) are obligatory heteromers present at dendritic excitatory and inhibitory postsynaptic sites. It is unknown whether synthesis and assembly of GABABRs occur in the somatic endoplasmic reticulum (ER) followed by vesicular transport to dendrites or whether somatic synthesis is followed by independent transport of the subunits for assembly and ER export throughout the somatodendritic compartment. To discriminate between these possibilities we studied the association of GABABR subunits in dendrites of hippocampal neurons combining live fluorescence microscopy, biochemistry, quantitative colocalization, and bimolecular fluorescent complementation. We demonstrate that GABABR subunits are segregated and differentially mobile in dendritic intracellular compartments and that a high proportion of non-associated intracellular subunits exist in the brain. Assembled heteromers are preferentially located at the plasma membrane, but blockade of ER exit results in their intracellular accumulation in the cell body and dendrites. We propose that GABABR subunits assemble in the ER and are exported from the ER throughout the neuron prior to insertion at the plasma membrane. Our results are consistent with a bulk flow of segregated subunits through the ER and rule out a post-Golgi vesicular transport of preassembled GABABRs.The efficacy of synaptic transmission depends on the intracellular trafficking of neurotransmitter receptors (1, 2). The trafficking of glutamatergic and GABAA6 receptors has been extensively studied, and their implications for synaptic plasticity have been well documented (3, 4). For example, differential trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors modifies synaptic strength and influences experience-dependent plasticity in vivo (5). The molecular mechanisms that govern the trafficking of metabotropic GABABRs and their consequences for synaptic inhibition remain less clear. In particular, limited information is available regarding the relationship between the trafficking of GABABRs and the topological complexity of the secretory pathway in neurons.GABABRs mediate the slow component of synaptic inhibition by acting on pre- and postsynaptic targets (68). They are implicated in epilepsy, anxiety, stress, sleep disorders, nociception, depression, and cognition (9). They also represent attractive targets for the treatment of withdrawal symptoms from drugs of addiction such as cocaine (10). They are obligatory heteromers composed of GABABR1 and GABABR2 subunits. GABABR1 contains an RXR-type sequence in the intracellular C-terminal domain that functions as an ER retention motif (11, 12). The ER retention sequence is masked upon assembly with GABABR2 resulting in the appearance of functional receptors at the plasma membrane. Only GABABR1 binds GABA with high affinity, whereas G protein signaling is exclusively mediated by the second and third intracellular loops of GABABR2 (1315). GABABRs are located in dendrites and axons, but their distribution does not coincide with the active zone or the postsynaptic density. Rather, they are adjacent to both compartments constituting perisynaptic receptors (16, 17).If GABABR subunits are synthesized in the soma, at least two possibilities exist for their anterograde transport, assembly, and insertion in dendrites. First, the subunits may be synthesized in the cell body, assembled in the somatic ER, and targeted preassembled in post-Golgi vesicles to their site of insertion in dendrites. Alternatively, they may be synthesized in the soma and transported through the ER membrane as non-heteromeric subunits. In the latter scenario, newly assembled receptors may exit the ER throughout the somatodendritic compartment prior to insertion at the plasma membrane and diffuse laterally for retention at functional sites. No evidence exists to discriminate between these possibilities. We reasoned that a prevalence of associated subunits in post-Golgi vesicles in dendrites would favor the first alternative, whereas the existence of non-associated subunits in intracellular compartments would support a somatodendritic assembly mechanism. Here we explore the presence of associated GABABR subunits using fluorescence recovery after photobleaching (FRAP), biochemistry, and quantitative colocalization. In addition, we report for the first time the use of BiFC (18) to study GABABR assembly in neurons. Our results demonstrate that GABABR subunits are differentially mobile in dendrites and that a high proportion of non-associated subunits prevail in an intracellular fraction of the adult brain. They also show that GABABR subunits are heteromeric at the plasma membrane but segregated in intracellular compartments of dendrites of hippocampal neurons. Importantly, treatment with brefeldin A (BFA) or interference of the coatomer protein complex II impair ER export and result in the accumulation of assembled subunits in intracellular compartments throughout the somatodendritic arbor. We conclude that GABABR subunits are synthesized in the soma and remain segregated in intracellular compartments prior to somatodendritic assembly. Our observations rule out a post-Golgi vesicular transport of preassembled GABABRs and suggest an alternative mechanism of receptor targeting.  相似文献   

10.
Downregulation of GABAergic synaptic transmission contributes to the increase in overall excitatory activity in the ischemic brain. A reduction of GABAA receptor (GABAAR) surface expression partly accounts for this decrease in inhibitory activity, but the mechanisms involved are not fully elucidated. In this work, we investigated the alterations in GABAAR trafficking in cultured rat hippocampal neurons subjected to oxygen/glucose deprivation (OGD), an in vitro model of global brain ischemia, and their impact in neuronal death. The traffic of GABAAR was evaluated after transfection of hippocampal neurons with myc-tagged GABAAR β3 subunits. OGD decreased the rate of GABAAR β3 subunit recycling and reduced the interaction of the receptors with HAP1, a protein involved in the recycling of the receptors. Furthermore, OGD induced a calpain-mediated cleavage of HAP1. Transfection of hippocampal neurons with HAP1A or HAP1B isoforms reduced the OGD-induced decrease in surface expression of GABAAR β3 subunits, and HAP1A maintained the rate of receptor recycling. Furthermore, transfection of hippocampal neurons with HAP1 significantly decreased OGD-induced cell death. These results show a key role for HAP1 protein in the downmodulation of GABAergic neurotransmission during cerebral ischemia, which contributes to neuronal demise.  相似文献   

11.
NMDA receptors (NMDARs) comprise a subclass of neurotransmitter receptors whose surface expression is regulated at multiple levels, including processing in the endoplasmic reticulum (ER), intracellular trafficking via the Golgi apparatus, internalization, recycling, and degradation. With respect to early processing, NMDARs are regulated by the availability of GluN subunits within the ER, the presence of ER retention and export signals, and posttranslational modifications, including phosphorylation and palmitoylation. However, the role of N-glycosylation, one of the most common posttranslational modifications, in regulating NMDAR processing has not been studied in detail. Using biochemistry, confocal and electron microscopy, and electrophysiology in conjunction with a lentivirus-based molecular replacement strategy, we found that NMDARs are released from the ER only when two asparagine residues in the GluN1 subunit (Asn-203 and Asn-368) are N-glycosylated. Although the GluN2A and GluN2B subunits are also N-glycosylated, their N-glycosylation sites do not appear to be essential for surface delivery of NMDARs. Furthermore, we found that removing N-glycans from native NMDARs altered the receptor affinity for glutamate. Our results suggest a novel mechanism by which neurons ensure that postsynaptic membranes contain sufficient numbers of functional NMDARs.  相似文献   

12.
GABAB receptors function as heterodimeric G-protein-coupled receptors for the neurotransmitter γ-aminobutyric acid (GABA). Receptor subtypes, based on isoforms of the ligand-binding subunit GABAB1, are thought to involve a differential set of associated proteins. Here, we describe two mouse lines that allow a straightforward biochemical isolation of GABAB receptors. The transgenic mice express GABAB1 isoforms that contain sequences for a two-step affinity purification, in addition to their endogenous subunit repertoire. Comparative analyses of purified samples from the transgenic mice and wild-type control animals revealed two novel components of the GABAB1 complex. One of the identified proteins, potassium channel tetramerization domain-containing protein 12, associates with heterodimeric GABAB receptors via the GABAB2 subunit. In transfected hippocampal neurons, potassium channel tetramerization domain-containing protein 12 augmented axonal surface targeting of GABAB2. The mice equipped with tags on GABAB1 facilitate validation and identification of native binding partners of GABAB receptors, providing insight into the molecular mechanisms of synaptic modulation.  相似文献   

13.
We have investigated the role of N-methyl-d-aspartate receptors (NMDARs) and γ-aminobutyric acid receptors type A (GABAARs) at an early stage of P19 neuronal differentiation. The subunit expression was profiled in 24-hour intervals with RT-PCR and functionality of the receptors was verified via fluo-3 imaging of Ca2+ dynamics in the immature P19 neurons showing that both NMDA and GABA excite neuronal bodies, but only polyamine-site sensitive NMDAR stimulation leads to enhanced Ca2+ signaling in the growth cones. Inhibition of NR1/NR2B NMDARs by 1 μM ifenprodil severely impaired P19 neurite extension and fasciculation, and this negative effect was fully reversible by polyamine addition. In contrast, GABAAR antagonism by a high dose of 200 μM bicuculline had no observable effect on P19 neuronal differentiation and fasciculation. Except for the differential NMDAR and GABAAR profiles of Ca2+ signaling within the immature P19 neurons, we have also shown that inhibition of NR1/NR2B NMDARs strongly decreased mRNA level of NCAM-180, which has been previously implicated as a regulator of neuronal growth cone protrusion and neurite extension. Our data thus suggest a critical role of NR1/NR2B NMDARs during the process of neuritogenesis and fasciculation of P19 neurons via differential control of local growth cone Ca2+ surges and NCAM-180 signaling.  相似文献   

14.
Metabotropic GABAB receptors are crucial for controlling the excitability of neurons by mediating slow inhibition in the CNS. The strength of receptor signaling depends on the number of cell surface receptors, which is thought to be regulated by trafficking and degradation mechanisms. Although the mechanisms of GABAB receptor trafficking are studied to some extent, it is currently unclear whether receptor degradation actively controls the number of GABAB receptors available for signaling. Here we tested the hypothesis that proteasomal degradation contributes to the regulation of GABAB receptor expression levels. Blocking proteasomal activity in cultured cortical neurons considerably enhanced total and cell surface expression of GABAB receptors, indicating the constitutive degradation of the receptors by proteasomes. Proteasomal degradation required Lys48-linked polyubiquitination of lysines 767/771 in the C-terminal domain of the GABAB2 subunit. Inactivation of these ubiquitination sites increased receptor levels and GABAB receptor signaling in neurons. Proteasomal degradation was mediated by endoplasmic reticulum-associated degradation (ERAD) as shown by the accumulation of receptors in the endoplasmic reticulum upon inhibition of proteasomes, by the increase of receptor levels, as well as receptor signaling upon blocking ERAD function, and by the interaction of GABAB receptors with the essential ERAD components Hrd1 and p97. In conclusion, the data support a model in which the fraction of GABAB receptors available for plasma membrane trafficking is regulated by degradation via the ERAD machinery. Thus, modulation of ERAD activity by changes in physiological conditions may represent a mechanism to adjust receptor numbers and thereby signaling strength.  相似文献   

15.
Patients with generalized epilepsy exhibit cerebral cortical disinhibition. Likewise, mutations in the inhibitory ligand-gated ion channels, GABAA receptors (GABAARs), cause generalized epilepsy syndromes in humans. Recently, we demonstrated that heterozygous knock-out (Hetα1KO) of the human epilepsy gene, the GABAAR α1 subunit, produced absence epilepsy in mice. Here, we determined the effects of Hetα1KO on the expression and physiology of GABAARs in the mouse cortex. We found that Hetα1KO caused modest reductions in the total and surface expression of the β2 subunit but did not alter β1 or β3 subunit expression, results consistent with a small reduction of GABAARs. Cortices partially compensated for Hetα1KO by increasing the fraction of residual α1 subunit on the cell surface and by increasing total and surface expression of α3, but not α2, subunits. Co-immunoprecipitation experiments revealed that Hetα1KO increased the fraction of α1 subunits, and decreased the fraction of α3 subunits, that associated in hybrid α1α3βγ receptors. Patch clamp electrophysiology studies showed that Hetα1KO layer VI cortical neurons exhibited reduced inhibitory postsynaptic current peak amplitudes, prolonged current rise and decay times, and altered responses to benzodiazepine agonists. Finally, application of inhibitors of dynamin-mediated endocytosis revealed that Hetα1KO reduced base-line GABAAR endocytosis, an effect that probably contributes to the observed changes in GABAAR expression. These findings demonstrate that Hetα1KO exerts two principle disinhibitory effects on cortical GABAAR-mediated inhibitory neurotransmission: 1) a modest reduction of GABAAR number and 2) a partial compensation with GABAAR isoforms that possess physiological properties different from those of the otherwise predominant α1βγ GABAARs.  相似文献   

16.
N-Methyl-D-aspartate (NMDA) receptors (NMDARs), which play a key role in synaptic plasticity, are dynamically regulated by many signaling molecules and scaffolding proteins. Although actin cytoskeleton has been implicated in regulating NMDAR stability in synaptic membrane, the role of microtubules in regulating NMDAR trafficking and function is largely unclear. Here we show that microtubule-depolymerizing agents inhibited NMDA receptor-mediated ionic and synaptic currents in cortical pyramidal neurons. This effect was Ca(2+)-independent, required GTP, and was more prominent in the presence of high NMDA concentrations. The NR2B subunit-containing NMDA receptor was the primary target of microtubules. The effect of microtubule depolymerizers on NMDAR currents was blocked by cellular knockdown of the kinesin motor protein KIF17, which transports NR2B-containing vesicles along microtubule in neuronal dendrites. Neuromodulators that can stabilize microtubules, such as brain-derived neurotrophic factor, significantly attenuated the microtubule depolymerizer-induced reduction of NMDAR currents. Moreover, immunocytochemical studies show that microtubule depolymerizers decreased the number of surface NR2B subunits on dendrites, which was prevented by the microtubule stabilizer. Taken together, these results suggest that interfering with microtubule assembly suppresses NMDAR function through a mechanism dependent on kinesin-based dendritic transport of NMDA receptors.  相似文献   

17.
Palmitoylation of NMDARs occurs at two distinct cysteine clusters in the carboxyl-terminus of GluN2A and GluN2B subunits that differentially regulates retention in the Golgi apparatus and surface expression of NMDARs. Mutations of palmitoylatable cysteine residues in the membrane-proximal cluster to non-palmitoylatable serines leads to a reduction in the surface expression of recombinant NMDARs via enhanced internalization of the receptors. Mutations in a cluster of cysteines in the middle of the carboxyl-terminus of GluN2A and GluN2B, leads to an increase in the surface expression of NMDARs via an increase in post-Golgi trafficking. Using a quantitative electrophysiological assay, we investigated whether palmitoylation of GluN2 subunits and the differential regulation of surface expression affect functional synaptic incorporation of NMDARs. We show that a reduction in surface expression due to mutations in the membrane-proximal cluster translates to a reduction in synaptic expression of NMDARs. However, increased surface expression induced by mutations in the cluster of cysteines that regulates post-Golgi trafficking of NMDARs does not increase the synaptic pool of NMDA receptors, indicating that the number of synaptic receptors is tightly regulated.  相似文献   

18.
N-Methyl-D-aspartate receptors (NMDARs), one of three main classes of ionotropic glutamate receptors, play major roles in synaptic plasticity, synaptogenesis, and excitotoxicity. Unlike non-NMDA receptors, NMDARs are thought to comprise obligatory heterotetrameric complexes mainly composed of GluN1 and GluN2 subunits. When expressed alone in heterogenous cells, such as HEK293 cells, most of the NMDAR subunits can neither leave the endoplasmic reticulum (ER) nor be expressed in the cell membrane because of the ER retention signals. Only when NMDARs are heteromerically assembled can the ER retention signals be masked and NMDARs be expressed in the surface membrane. However, the mechanisms underlying NMDAR assembly remain poorly understood. To identify regions in subunits that mediate this assembly, we made a series of truncated or chimeric cDNA constructs. Using FRET measurement in living cells combined with immunostaining and coimmunoprecipitation analysis, we examined the assembly-determining domains of NMDAR subunits. Our results indicate that the transmembrane region of subunits is necessary for the assembly of NMDAR subunits, both for the homodimer and the heteromer.  相似文献   

19.
GABAB receptors assemble from principle and auxiliary subunits. The principle subunits GABAB1 and GABAB2 form functional heteromeric GABAB(1,2) receptors that associate with homotetramers of auxiliary KCTD8, -12, -12b, or -16 (named after their K+ channel tetramerization domain) subunits. These auxiliary subunits constitute receptor subtypes with distinct functional properties. KCTD12 and -12b generate desensitizing receptor responses while KCTD8 and -16 generate largely non-desensitizing receptor responses. The structural elements of the KCTDs underlying these differences in desensitization are unknown. KCTDs are modular proteins comprising a T1 tetramerization domain, which binds to GABAB2, and a H1 homology domain. KCTD8 and -16 contain an additional C-terminal H2 homology domain that is not sequence-related to the H1 domains. No functions are known for the H1 and H2 domains. Here we addressed which domains and sequence motifs in KCTD proteins regulate desensitization of the receptor response. We found that the H1 domains in KCTD12 and -12b mediate desensitization through a particular sequence motif, T/NFLEQ, which is not present in the H1 domains of KCTD8 and -16. In addition, the H2 domains in KCTD8 and -16 inhibit desensitization when expressed C-terminal to the H1 domains but not when expressed as a separate protein in trans. Intriguingly, the inhibitory effect of the H2 domain is sequence-independent, suggesting that the H2 domain sterically hinders desensitization by the H1 domain. Evolutionary analysis supports that KCTD12 and -12b evolved desensitizing properties by liberating their H1 domains from antagonistic H2 domains and acquisition of the T/NFLEQ motif.  相似文献   

20.
Glycine can persistently potentiate or depress AMPA responses through differential actions on two binding sites: NMDA and glycine receptors. Whether glycine can induce long-lasting modifications in NMDA responses, however, remains unknown. Here, we report that glycine induces long-term potentiation (LTP) or long-term depression (LTD) of NMDA responses (Gly-LTPNMDA or Gly-LTDNMDA) in a dose-dependent manner in hippocampal CA1 neurons. These modifications of NMDA responses depend on NMDAR activation. In addition, the induction of Gly-LTPNMDA requires binding of glycine with NMDARs, whereas Gly-LTDNMDA requires that glycine bind with both sites on NMDARs and GlyRs. Moreover, activity-dependent exocytosis and endocytosis of postsynaptic NMDARs underlie glycine-induced bidirectional modification of NMDA excitatory postsynaptic currents. Thus, we conclude that glycine at different levels induces bidirectional plasticity of NMDA responses through differentially regulating NMDA receptor trafficking. Our present findings reveal important functions of the two glycine binding sites in gating the direction of synaptic plasticity in NMDA responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号