首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The Saccharomyces cerevisiae Isw1a and Isw2 ATP-dependent chromatin-remodeling complexes have important roles in vivo in the regulation of nucleosome positioning and modulation of gene activity. We studied the ability of the Isw1a- and Isw2-remodeling enzymes to reposition nucleosomes in mono- and dinucleosomes templates with variably positioned histone octamers (in the center or at the ends of the DNA fragment). To compare the Isw1a and Isw2 nucleosome-mobilizing activities, we utilized mono- and dinucleosome templates reconstituted with purified HeLa cell histones and DNA containing one or two copies of the “601” nucleosome high-affinity sequence used to specifically position nucleosomes on the DNA. The obtained data suggest that Isw1a is able to mobilize HeLa cell histone-assembled mononucleosomes with long (more than 30?bp) extranucleosomal DNAs protruding from both sides, which contrasts to the previously reported inability of Isw1 to mobilize similar nucleosomes assembled with recombinant yeast histones. The results also suggest that Isw1a and Isw2 can mobilize nucleosomes with unfavorably short linker DNA lengths, and the presence of internucleosomal interactions promotes mobilization of nucleosomes even when the linkers are short.  相似文献   

2.
    
  1. Download : Download high-res image (159KB)
  2. Download : Download full-size image
  相似文献   

3.
真核细胞中的染色质重塑因子种类繁多,多数以蛋白多聚体的形式存在于细胞中.不同的染色质重塑因子在特定时间定位于特定的核小体上,通过改变染色质结构,影响基因转录活性,进而确保细胞内各种生物学过程的正确运行.另外,染色质重塑因子根据所含功能结构域的不同,大致分为SWI/SNF、ISWI、CHD和INO80四大家族,不同的染色质重塑因子之间既有蛋白质结构和酶活性的相似性,各自又有其特异性.本综述的宗旨在于全面概括和总结染色质重塑因子的分类、结构特点以及其在细胞内的生物学功能,为深入研究染色质重塑因子的生物学功能,尤其是在发育和疾病发生中的作用机制提供理论基础.  相似文献   

4.
真核细胞中,基因组DNA缠绕组蛋白八聚体形成核小体,核小体再经过多层次折叠压缩形成具有高级结构的染色质.过去30多年,科学家对30 nm染色质纤维的结构进行了大量的研究,然而关于30 nm染色质纤维的精细结构仍然存在很大的争议.本文综述了近年来对30 nm染色质纤维结构的最新研究进展,并重点阐述了最近解析的30 nm染色质纤维左 手双螺旋结构.同时,我们还进一步讨论了一些对30 nm染色质纤维结构起调控作用的因子及其作用机制.最后,我们对30 nm染色质纤维结构与功能领域所面临的挑战和问题进行了展望.  相似文献   

5.
    
The remodel the structure of chromatin (RSC) nucleosome remodeling complex is a conserved chromatin regulator with roles in chromatin organization, especially over nucleosome depleted regions therefore functioning in gene expression. Recent reports in Saccharomyces cerevisiae have identified specificities in RSC activity toward certain types of nucleosomes. RSC has now been shown to preferentially evict nucleosomes containing the histone variant H2A.Z in vitro. Furthermore, biochemical activities of distinct RSC complexes has been found to differ when their nucleosome substrate is partially unraveled. Mammalian BAF complexes, the homologs of yeast RSC and SWI/SNF complexes, are also linked to nucleosomes with H2A.Z, but this relationship may be complex and extent of conservation remains to be determined. The interplay of remodelers with specific nucleosome substrates and regulation of remodeler outcomes by nucleosome composition are tantalizing questions given the wave of structural data emerging for RSC and other SWI/SNF family remodelers.  相似文献   

6.
In June 2015, the fourth European Workshop on Plant Chromatin took place in Uppsala, Sweden, bringing together 80 researchers studying various aspects of plant chromatin and epigenetics. The intricate relationships between plant chromatin dynamics and gene expression change, chromatin organization within the plant cell nucleus, and the impact of chromatin structure on plant development were discussed. Among the main highlights of the meeting were an ever-growing list of newly identified players in chromatin structure establishment and the development of novel tools and approaches to foster our understanding of chromatin-mediated gene regulation, taking into account the context of the plant cell nucleus and its architecture. In this report, we summarize some of the main advances and prospects of plant chromatin research presented at this meeting.  相似文献   

7.
H2A.Z是组蛋白H2A的变异体之一,是高度保守的组蛋白变异体,参与保护常染色体,防止形成异染色质;并且与转录调节、抗沉默、沉默和基因组稳定性有关。组蛋白变异体H2A.Z可能与染色体形成独立的结构域,从而调节染色质结构功能。但是,H2A.Z对染色体结构功能的作用机制还不是很清楚。组蛋白变异体H2A.Z和它的表观遗传修饰对染色体动态结构和功能起重要的作用。该文将对组蛋白变异体H2A.Z进行综述。  相似文献   

8.
    
The effect of phosphorylation on the basicities of amines in histone H3 peptides and their acetylation kinetics is probed with a mild chemical acetylating agent. Phosphorylation of Ser‐10 lowers the rate of chemical acetylation of Lys‐9, Lys‐14, and Lys‐18 by methyl acetyl phosphate in that order consistent with a higher pKa of these Lys residues induced by phosphorylation; basicities increase up to 3 pKa units as a function of distance from Ser‐10 phosphate. Enzymic acetylation of Lys residues with high pKa values in nucleosomes is also expected to be enhanced by phosphorylation, consistent with the known mechanism involving binding of protonated amines to N‐acetyltransferases; fetal hemoglobin has a related linkage of increased basicity at a specific site, its acetylation, and a resulting decrease in subunit interaction strength. In the absence of a phosphate on Ser‐10, the amines of Lys‐9, Lys‐14, and Lys‐18 have lowered pKa values. Chemical acetylation of glycine and glycinamide have analogous kinetic profiles to the histone peptides but the phosphate inductive effect in histone H3 is more potent since the linkage between phosphorylation and acetylation is propagated with a range extending 9–10 amino acids in either direction from the phosphorylation site enhancing protonation of amino groups. We conclude that lysine amine basicities in histone tails are not static but inducible and variable due to a dynamic and immediate interaction between phosphorylation/acetylation that may contribute to inactive heterochromatin by compaction through such Ser phosphate–Lys amine electrostatic interactions and their relaxation by acetylation in euchromatin.  相似文献   

9.
    
SET7/9 is a protein lysine methyltransferase that methylates histone H3 and nonhistone proteins such as p53, TAF10 and oestrogen receptor α. In previous work, novel inhibitors of SET7/9 that are amine analogues of the coenzyme S‐(5′‐adenosyl)‐L‐methionine (AdoMet) have been developed. Here, crystal structures of SET7/9 are reported in complexes with two AdoMet analogues, designated DAAM‐3 and AAM‐1, in which an n‐hexylaminoethyl group or an n‐hexyl group is attached to the N atom that replaces the S atom of AdoMet, respectively. In both structures, the inhibitors bind to the coenzyme‐binding site and their additional alkyl chain binds in the lysine‐access channel. The N atom in the azaalkyl chain of DAAM‐3 is located at almost the same position as the N‐methyl C atom of the methylated lysine side chain in the substrate–peptide complex structures and stabilizes complex formation by hydrogen bonding to the substrate‐binding site residues of SET7/9. On the other hand, the alkyl chain of AAM‐1, which is a weaker inhibitor than DAAM‐3, binds in the lysine‐access channel only through hydrophobic and van der Waals interactions. Unexpectedly, the substrate‐binding site of SET7/9 complexed with AAM‐1 specifically interacts with the artificial N‐terminal sequence of an adjacent symmetry‐related molecule, presumably stabilizing the alkyl chain of AAM‐1.  相似文献   

10.
11.
染色质是真核细胞中遗传物质DNA的载体,染色质结构动态变化与DNA复制、转录、重组、修复等重要生物学事件密切相关.组蛋白是染色质结构的基本组成元件之一,组蛋白变体和组蛋白修饰是两类基本的染色质结构调控因子.在构成核小体的四种核心组蛋白(H2A、H2B、H3、H4)当中,H2A拥有最多的变体类型并在染色质结构调控中发挥重要作用.H2A组蛋白伴侣对H2A组蛋白及其变体的特异识别对于后者的折叠、修饰、传递、转运、组装、移除等生物学功能至关重要.本文着重探讨了组蛋白伴侣特异识别H2A组蛋白的分子机理,二者调控染色质结构的作用机制以及相应的生物学意义.  相似文献   

12.
Histone proteins dynamically regulate chromatin structure and epigenetic signaling to maintain cell homeostasis. These processes require controlled spatial and temporal deposition and eviction of histones by their dedicated chaperones. With the evolution of histone variants, a network of functionally specific histone chaperones has emerged. Molecular details of the determinants of chaperone specificity for different histone variants are only slowly being resolved. A complete understanding of these processes is essential to shed light on the genuine biological roles of histone variants, their chaperones, and their impact on chromatin dynamics.  相似文献   

13.
Yun M  Wu J  Workman JL  Li B 《Cell research》2011,21(4):564-578
Histone modifications not only play important roles in regulating chromatin structure and nuclear processes but also can be passed to daughter cells as epigenetic marks. Accumulating evidence suggests that the key function of histone modifications is to signal for recruitment or activity of downstream effectors. Here, we discuss the latest discovery of histone-modification readers and how the modification language is interpreted.  相似文献   

14.
    
Nucleosome cores were digested with α-chymotrypsin until histone H3 was degraded to a partial histone, CP1. As we reported previously, cleavage occurred at leucine 20 to H3 and resulted in an increase in circular dichroism between 265 to 285 nm. Some modest core unfolding was also observed as determined by a small decrease in the sedimentation coefficient. Studies reported here deal with the analysis of core secondary structure and subsequent perturbation caused by treatment with α-chymotrypsin. Raman spectroscopy indicated that chymotryptic treatment promoted a change in the conformational environment of a population of core histone tyrosines. In addition, a shift from B-form to an intermediate B- or A-form was observed for core DNA. High-resolution thermal denaturation was used to determine alterations in the stabilization of core DNA related to perturbation of the core histones. Brief chymotryptic treatment indicated changes in both pre-melt and irreversible transitions.  相似文献   

15.
依赖ATP的染色质物理修饰   总被引:2,自引:0,他引:2  
染色质重塑是基因表达调控过程中一个非常重要的环节 .染色质重塑主要包括 2种类型 :一种是依赖ATP的物理修饰 ,另一种是依赖共价结合反应的化学修饰 .依赖ATP的物理修饰主要是利用ATP水解释放的能量 ,使DNA超螺旋旋矩和旋相发生变化 ,使转录因子更易接近并结合核小体DNA ,从而调控基因的转录过程  相似文献   

16.
We have applied chromatin sequencing technology to the euryarchaeon Thermococcus kodakarensis, which is known to possess histone‐like proteins. We detect positioned chromatin particles of variable sizes associated with lengths of DNA differing as multiples of 30 bp (ranging from 30 bp to >450 bp) consistent with formation from dynamic polymers of the archaeal histone dimer. T. kodakarensis chromatin particles have distinctive underlying DNA sequence suggesting a genomic particle‐positioning code and are excluded from gene‐regulatory DNA suggesting a functional organization. Beads‐on‐a‐string chromatin is therefore conserved between eukaryotes and archaea but can derive from deployment of histone‐fold proteins in a variety of multimeric forms.  相似文献   

17.
真核细胞的染色质组装是组蛋白和DNA有序地形成核小体和染色质的过程.通过调节DNA的开放或折叠状态,染色质组装不但影响遗传信息的编码和存储,也决定了遗传信息的提取和解读.作为染色质组装的重要调控因子,组蛋白变体和组蛋白伴侣在与DNA相关的生命活动进程中发挥着至关重要的作用.本文综述了组蛋白变体H2A.Z以及CENP-A进行染色质组装的研究进展,并着重讨论了组蛋白变体和组蛋白伴侣在染色质组装中的重要作用.  相似文献   

18.
During meiosis, paternal and maternal homologous chromosomes recombine at specific recombination sites named hotspots. What renders 2% of the mammalian genomes permissive to meiotic recombination by allowing Spo11 endonuclease to initiate double‐strand breaks is largely unknown. Work in yeast has shown that chromatin accessibility seems to be important for this activity. Here, we define nucleosome profiles and dynamics at four mouse recombination hotspots by purifying highly enriched fractions of meiotic cells. We found that nucleosome occupancy is generally stable during meiosis progression. Interestingly, the cores of recombination hotspots have largely open chromatin structure, and the localization of the few nucleosomes present in these cores correlates precisely with the crossover‐free zones in recombinogenic domains. Collectively, these high‐resolution studies suggest that nucleosome occupancy seems to direct, at least in part, how meiotic recombination events are processed.  相似文献   

19.
20.
Chromatin fiber folding: requirement for the histone H4 N-terminal tail   总被引:1,自引:0,他引:1  
We have developed a self-assembly system for nucleosome arrays in which recombinant, post-translationally unmodified histone proteins are combined with DNA of defined-sequence to form chromatin higher-order structure. The nucleosome arrays obtained are highly homogeneous and sediment at 53S when maximally folded in 1mM or 100mM MgCl(2). The folding properties are comparable to established systems. Analytical ultracentrifugation is used to determine the consequence of individual histone tail domain deletions on array folding. Fully compacted chromatin fibers are obtained with any one of the histone tails deleted with the exception of the H4 N terminus. The region of the H4 tail, which mediates compaction, resides in the stretch of amino acids 14-19.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号