首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
The role of Hsp70 chaperones in yeast prion propagation is well established. Highly conserved Hsp90 chaperones participate in a number of cellular processes, such as client protein maturation, protein degradation, cellular signalling and apoptosis, but little is known about their role in propagation of infectious prion like aggregates. Here, we examine the influence of Hsp90 in the maintenance of yeast prion [URE3] which is a prion form of native protein Ure2, and reveal a previously unknown role of Hsp90 as an important regulator of [URE3] stability. We show that the C-terminal MEEVD pentapeptide motif, but not the client maturation activity of Hsp90, is essential for [URE3] prion stability. In testing deletions of various Hsp90 co-chaperones known to bind this motif, we find the immunophilin homolog Cpr7 is essential for [URE3] propagation. We show that Cpr7 interacts with Ure2 and enhances its fibrillation. The requirement of Cpr7 is specific for [URE3] as its deletion does not antagonize both strong and weak variant of another yeast prion [PSI +], suggesting a distinct role of the Hsp90 co-chaperone with different yeast prions. Our data show that, similar to the Hsp70 family, the Hsp90 chaperones also influence yeast prion maintenance, and that immunophilins could regulate protein multimerization independently of their activity as peptidyl-prolyl isomerases.  相似文献   

2.
The [URE3] nonchromosomal genetic element is an infectious form (prion) of the Ure2 protein, apparently a self-propagating amyloidosis. We find that an insertion mutation or deletion of HSP104 results in inability to propagate the [URE3] prion. Our results indicate that Hsp104 is a common factor in the maintenance of two independent yeast prions. However, overproduction of Hsp104 does not affect the stability of [URE3], in contrast to what is found for the [PSI(+)] prion, which is known to be cured by either overproduction or deficiency of Hsp104. Like Hsp104, the Hsp40 class chaperone Ydj1p, with the Hsp70 class Ssa1p, can renature proteins. We find that overproduction of Ydj1p results in a gradual complete loss of [URE3]. The involvement of protein chaperones in the propagation of [URE3] indicates a role for protein conformation in inheritance.  相似文献   

3.
Two infectious proteins (prions) of Saccharomyces cerevisiae have been identified by their unusual genetic properties: (1) reversible curability, (2) de novo induction of the infectious prion form by overproduction of the protein, and (3) similar phenotype of the prion and mutation in the chromosomal gene encoding the protein. [URE3] is an altered infectious form of the Ure2 protein, a regulator of nitrogen catabolism, while [PSI] is a prion of the Sup35 protein, a subunit of the translation termination factor. The altered form of each is inactive in its normal function, but is able to convert the corresponding normal protein into the same altered inactive state. The N-terminal parts of Ure2p and Sup35p (the "prion domains") are responsible for prion formation and propagation and are rich in asparagine and glutamine residues. Ure2p and Sup35p are aggregated in vivo in [URE3]- and [PSI]-containing cells, respectively. The prion domains can form amyloid in vitro, suggesting that amyloid formation is the basis of these two prion diseases. Yeast prions can be cured by growth on millimolar concentrations of guanidine. An excess or deficiency of the chaperone Hsp104 cures the [PSI] prion. Overexpression of fragments of Ure2p or certain fusion proteins leads to curing of [URE3].  相似文献   

4.
Hsp100 family chaperones of microorganisms and plants cooperate with the Hsp70/Hsp40/NEF system to resolubilize and reactivate stress-denatured proteins. In yeast this machinery also promotes propagation of prions by fragmenting prion polymers. We previously showed the bacterial Hsp100 machinery cooperates with the yeast Hsp40 Ydj1 to support yeast thermotolerance and with the yeast Hsp40 Sis1 to propagate [PSI+] prions. Here we find these Hsp40s similarly directed specific activities of the yeast Hsp104-based machinery. By assessing the ability of Ydj1-Sis1 hybrid proteins to complement Ydj1 and Sis1 functions we show their C-terminal substrate-binding domains determined distinctions in these and other cellular functions of Ydj1 and Sis1. We find propagation of [URE3] prions was acutely sensitive to alterations in Sis1 activity, while that of [PIN+] prions was less sensitive than [URE3], but more sensitive than [PSI+]. These findings support the ideas that overexpressing Ydj1 cures [URE3] by competing with Sis1 for interaction with the Hsp104-based disaggregation machine, and that different prions rely differently on activity of this machinery, which can explain the various ways they respond to alterations in chaperone function.  相似文献   

5.
The yeast [PSI(+)], [URE3], and [PIN(+)] genetic elements are prion forms of Sup35p, Ure2p, and Rnq1p, respectively. Overexpression of Sup35p, Ure2p, or Rnq1p leads to increased de novo appearance of [PSI(+)], [URE3], and [PIN(+)], respectively. This inducible appearance of [PSI(+)] was shown to be dependent on the presence of [PIN(+)] or [URE3] or overexpression of other yeast proteins that have stretches of polar residues similar to the prion-determining domains of the known prion proteins. In a similar manner, [PSI(+)] and [URE3] facilitate the appearance of [PIN(+)]. In contrast to these positive interactions, here we find that in the presence of [PIN(+)], [PSI(+)] and [URE3] repressed each other's propagation and de novo appearance. Elevated expression of Hsp104 and Hsp70 (Ssa2p) had little effect on these interactions, ruling out competition between the two prions for limiting amounts of these protein chaperones. In contrast, we find that constitutive overexpression of SSA1 but not SSA2 cured cells of [URE3], uncovering a specific interaction between Ssa1p and [URE3] and a functional distinction between these nearly identical Hsp70 isoforms. We also find that Hsp104 abundance, which critically affects [PSI(+)] propagation, is elevated when [URE3] is present. Our results are consistent with the notion that proteins that have a propensity to form prions may interact with heterologous prions but, as we now show, in a negative manner. Our data also suggest that differences in how [PSI(+)] and [URE3] interact with Hsp104 and Hsp70 may contribute to their antagonistic interactions.  相似文献   

6.
[URE3] and [PSI] are two non-Mendelian genetic elements discovered over 25 years ago and never assigned to a nucleic acid replicon. Their genetic properties led us to propose that they are prions, altered self-propagating forms of Ure2p and Sup35p, respectively, that cannot properly carry out the normal functions of these proteins. Ure2p is partially protease-resistant in [URE3] strains and Sup35p is aggregated specifically in [PSI] strains supporting this idea. Overexpression of Hsp104 cures [PSI], as does the absence of this protein, suggesting that the prion change of Sup35p in [PSI] strains is aggregation. Strains of [PSI], analogous to those described for scrapie, have now been described as well as an in vitro system for [PSI] propagation. Recently, two new potential prions have been described, one in yeast and the other in the filamentous fungus, Podospora.  相似文献   

7.
The [URE3] and [PSI(+)] prions are infectious amyloid forms of Ure2p and Sup35p. Several chaperones influence prion propagation: Hsp104p overproduction destabilizes [PSI(+)], whereas [URE3] is sensitive to excess of Ssa1p or Ydj1p. Here, we show that overproduction of the chaperone, Sse1p, can efficiently cure [URE3]. Sse1p and Fes1p are nucleotide exchange factors for Ssa1p. Interestingly, deletion of either SSE1 or FES1 completely blocked [URE3] propagation. In addition, deletion of SSE1 also interfered with [PSI(+)] propagation.  相似文献   

8.
Molecular chaperones and the assembly of the prion Ure2p in vitro   总被引:2,自引:0,他引:2  
The protein Ure2 from Saccharomyces cerevisiae possesses prion properties at the origin of the [URE3] trait. In vivo, a high molecular weight form of inactive Ure2p is associated to [URE3]. The faithful and continued propagation of [URE3]is dependent on the expression levels of molecular chaperones from the Hsp100, -70, and -40 families; however, so far, their role is not fully documented. Here we investigate the effects of molecular chaperones from the Hsp40, Hsp70, Hsp90, and Hsp100 families and the chaperonin CCT/Tric on the assembly of full-length Ure2p. We show that Hsp104p greatly stimulates Ure2p aggregation, whereas Ssa1p, Ydj1p, Sis1p, and Hsp82p inhibit aggregation to different extents. The nature of the high molecular weight Ure2p species that forms in the presence of the different molecular chaperones and their nucleotide dependence is described. We show that Hsp104p favors the aggregation of Ure2p into non-fibrillar high molecular weight particles, whereas Ssa1p, Ydj1p, Sis1p, and Hsp82p sequester Ure2p in spherical oligomers. Using fluorescently labeled full-length Ure2p and Ure2p-(94-354) and fluorescence polarization, we show that Ssa1p binding to Ure2p is ATP-dependent, whereas that of Hsp104p is not. We also show that Ssa1p preferentially interacts with the N-terminal domain of Ure2p that is critical for prion propagation, whereas Ydj1p preferentially interacts with the C-terminal domain of the protein, and we discuss the significance of this observation. Finally, the affinities of Ssa1p, Ydj1p, and Hsp104p for Ure2p are determined. Our in vitro observations bring new insight into the mechanism by which molecular chaperones influence the propagation of [URE3].  相似文献   

9.
The yeast Saccharomyces cerevisiae contains in its proteome at least three prion proteins. These proteins (Ure2p, Sup35p, and Rnq1p) share a set of remarkable properties. In vivo, they form aggregates that self-perpetuate their aggregation. This aggregation is controlled by Hsp104, which plays a major role in the growth and severing of these prions. In vitro, these prion proteins form amyloid fibrils spontaneously. The introduction of such fibrils made from Ure2p or Sup35p into yeast cells leads to the prion phenotypes [URE3] and [PSI], respectively. Previous studies on evolutionary biology of yeast prions have clearly established that [URE3] is not well conserved in the hemiascomycetous yeasts and particularly in S. paradoxus. Here we demonstrated that the S. paradoxus Ure2p is able to form infectious amyloid. These fibrils are more resistant than S. cerevisiae Ure2p fibrils to shear force. The observation, in vivo, of a distinct aggregation pattern for GFP fusions confirms the higher propensity of SpUre2p to form fibrillar structures. Our in vitro and in vivo analysis of aggregation propensity of the S. paradoxus Ure2p provides an explanation for its loss of infective properties and suggests that this protein belongs to the non-prion amyloid world.  相似文献   

10.
The yeast prions [URE3] and [PSI] are not found in wild strains, suggesting they are not an advantage. Prion-forming ability is not conserved, even within Saccharomyces, suggesting it is a disease. Prion domains have non-prion functions, explaining some conservation of sequence. However, in spite of the sequence being constrained in evolution by these non-prion functions, the prion domains vary more rapidly than the remainder of the molecule, and these changes produce a transmission barrier, suggesting that these changes were selected to block prion infection. Yeast prions [PSI] and [URE3] induce a cellular stress response (Hsp104 and Hsp70 induction), suggesting the cells are not happy about being infected. Recently, we showed that the array of [PSI] and [URE3] prions includes a majority of lethal or very toxic variants, a result not expected if either prion were an adaptive cellular response to stress.Key words: [URE3], [PSI+], prion, Sup35p, Ure2pfMammalian prions are uniformly fatal, but a lethal yeast prion would not be detected by the usual procedure, which requires growth of a colony under some selective condition. As a result, the prion variants commonly studied are quite mild in their effects. This circumstance has led to the suggestion that yeast prions actually benefit their host. Sup35p, the translation termination subunit whose amyloid becomes the [PSI+] prion, is essential for growth and Ure2p, the nitrogen regulation protein whose amyloid constitutes the [URE3] prion, is important for growth, with ure2 mutants showing noticeably slowed growth.When yeast prions were discovered,1 we assumed they were diseases, by analogy with the mammalian diseases and the many non-prion amyloid diseases. Inactivating the essential Sup35p or the desireable Ure2p did not seem like a useful strategy. While control of either protein''s activity might be advantageous, and Ure2p activity control is the key to regulation of nitrogen catabolism, prion formation is a stochastic process, so it makes control of activity of these proteins random instead of appropriate to the circumstances. The [Het-s] prion changed that picture.2 Here was a prion necessary for a normal function, heterokaryon incompatibility, and we suggested that it was the first beneficial prion.3  相似文献   

11.
[URE3] is a prion (infectious protein), a self-propagating amyloid form of Ure2p, a regulator of yeast nitrogen catabolism. We find that overproduction of Btn2p, or its homologue Ypr158 (Cur1p), cures [URE3]. Btn2p is reported to be associated with late endosomes and to affect sorting of several proteins. We find that double deletion of BTN2 and CUR1 stabilizes [URE3] against curing by several agents, produces a remarkable increase in the proportion of strong [URE3] variants arising de novo and an increase in the number of [URE3] prion seeds. Thus, normal levels of Btn2p and Cur1p affect prion generation and propagation. Btn2p-green fluorescent protein (GFP) fusion proteins appear as a single dot located close to the nucleus and the vacuole. During the curing process, those cells having both Ure2p-GFP aggregates and Btn2p-RFP dots display striking colocalization. Btn2p curing requires cell division, and our results suggest that Btn2p is part of a system, reminiscent of the mammalian aggresome, that collects aggregates preventing their efficient distribution to progeny cells.  相似文献   

12.
Ripaud L  Maillet L  Cullin C 《The EMBO journal》2003,22(19):5251-5259
The yeast prion [URE3] is a self-propagating inactive form (the propagon) of the Ure2 protein. Ure2p is composed of two domains: residues 1-93--the prion-forming domain (PFD)--and the remaining C-terminal part of the protein, which forms the functional domain involved in nitrogen catabolite repression. Guanidine hydrochloride, and the overproduction of Ure2p 1-65 or Ure2-GFP have been shown to induce the elimination of [URE3]. We demonstrate here, two different curing mechanisms: the inhibition of [URE3] replication by guanidine hydrochloride and its destruction by Ure2p aggregation. Such aggregation is observed if PFD or Ure2-GFP are overproduced and in heterozygous URE2/URE2-GFP, [URE3] diploids. We found that the GFP foci associated with the presence of the prion were dead-end products, the propagons remaining soluble. Surprisingly, [URE3] propagated via the Ure2-GFP fusion protein alone is resistant to these two curing mechanisms and cannot promote the formation of foci. The relationship between aggregation, prion and Hsp104 gives rise to a model in which the propagon is in equilibrium with larger aggregates and functional protein.  相似文献   

13.
The [URE3] phenotype in Saccharomyces cerevisiae is caused by the inactive, altered (prion) form of the Ure2 protein (Ure2p), a regulator of nitrogen catabolism. Ure2p has two functional domains: an N-terminal domain necessary and sufficient for prion propagation and a C-terminal domain responsible for nitrogen regulation. We show here that the mRNA encoding Ure2p possesses an IRES (internal ribosome entry site). Internal initiation leads to the synthesis of an N-terminally truncated active form of the protein (amino acids 94-354) lacking the prion-forming domain. Expression of the truncated Ure2p form (94-354) mediated by the IRES element cures yeast cells of the [URE3] phenotype. We assume that the balance between the full-length and truncated (94-354) Ure2p forms plays an important role in yeast cell physiology and differentiation.  相似文献   

14.
[URE3] is an amyloid-based prion of Ure2p, a regulator of nitrogen catabolism in Saccharomyces cerevisiae. The Ure2p of the human pathogen Candida albicans can also be a prion in S. cerevisiae. We find that overproduction of the disaggregating chaperone, Hsp104, increases the frequency of de novo [URE3] prion formation by the Ure2p of S. cerevisiae and that of C. albicans. This stimulation is strongly dependent on the presence of the [PIN(+)] prion, known from previous work to enhance [URE3] prion generation. Our data suggest that transient Hsp104 overproduction enhances prion generation through persistent effects on Rnq1 amyloid, as well as during overproduction by disassembly of amorphous Ure2 aggregates (generated during Ure2p overproduction), driving the aggregation toward the amyloid pathway. Overproduction of other major cytosolic chaperones of the Hsp70 and Hsp40 families (Ssa1p, Sse1p, and Ydj1p) inhibit prion formation, whereas another yeast Hsp40, Sis1p, modulates the effects of Hsp104p on both prion induction and prion curing in a prion-specific manner. The same factor may both enhance de novo prion generation and destabilize existing prion variants, suggesting that prion variants may be selected by changes in the chaperone network.  相似文献   

15.
[URE3] is a prion of the yeast Ure2 protein. Hsp40 is a cochaperone that regulates Hsp70 chaperone activity. When overexpressed, the Hsp40 Ydj1p cures yeast of [URE3], but the Hsp40 Sis1p does not. On the basis of biochemical data Ydj1p has been proposed to cure [URE3] by binding soluble Ure2p and preventing it from joining prion aggregates. Here, we mutagenized Ydj1p and find that disrupting substrate binding, dimerization, membrane association, or ability to transfer substrate to Hsp70 had little or no effect on curing. J-domain point mutations that disrupt functional interactions of Ydj1p with Hsp70 abolished curing, and the J domain alone cured [URE3]. Consistent with heterologous J domains possessing similar Hsp70 regulatory activity, the Sis1p J domain also cured [URE3]. We further show that Ydj1p is not essential for [URE3] propagation and that depletion of Ure2p is lethal in cells lacking Ydj1p. Our data imply that curing of [URE3] by overproduced Ydj1p does not involve direct interaction of Ydj1p with Ure2p but rather works through regulation of Hsp70 through a specific J-protein/Hsp70 interaction.  相似文献   

16.
Scrambled prion domains form prions and amyloid   总被引:1,自引:0,他引:1       下载免费PDF全文
The [URE3] prion of Saccharomyces cerevisiae is a self-propagating amyloid form of Ure2p. The amino-terminal prion domain of Ure2p is necessary and sufficient for prion formation and has a high glutamine (Q) and asparagine (N) content. Such Q/N-rich domains are found in two other yeast prion proteins, Sup35p and Rnq1p, although none of the many other yeast Q/N-rich domain proteins have yet been found to be prions. To examine the role of amino acid sequence composition in prion formation, we used Ure2p as a model system and generated five Ure2p variants in which the order of the amino acids in the prion domain was randomly shuffled while keeping the amino acid composition and C-terminal domain unchanged. Surprisingly, all five formed prions in vivo, with a range of frequencies and stabilities, and the prion domains of all five readily formed amyloid fibers in vitro. Although it is unclear whether other amyloid-forming proteins would be equally resistant to scrambling, this result demonstrates that [URE3] formation is driven primarily by amino acid composition, largely independent of primary sequence.  相似文献   

17.
The unexpected discovery of two prions, [URE3] and [PSI+], in Saccharomyces cerevisiae led to questions about how many other proteins could undergo similar prion-based structural conversions. However, [URE3] and [PSI+] were discovered by serendipity in genetic screens. Cataloging the full range of prions in yeast or in other organisms will therefore require more systematic search methods. Taking advantage of some of the unique features of prions, various researchers have developed bioinformatic and experimental methods for identifying novel prion proteins. These methods have generated long lists of prion candidates. The systematic testing of some of these prion candidates has led to notable successes; however, even in yeast, where rapid growth rate and ease of genetic manipulation aid in testing for prion activity, such candidate testing is laborious. Development of better methods to winnow the field of prion candidates will greatly aid in the discovery of new prions, both in yeast and in other organisms, and help us to better understand the role of prions in biology.Key words: yeast, prion, bioinformatics, Sup35, [PSI+], Ure2, [URE3]  相似文献   

18.
The [URE3] yeast prion is a self-propagating inactive form of the Ure2p protein. We show here that Ure2p from the species Saccharomyces paradoxus (Ure2pSp) can be efficiently converted into a prion form and propagate [URE3] when expressed in Saccharomyces cerevisiae at physiological level. We found however that Ure2pSp overexpression prevents efficient prion propagation. We have compared the aggregation rate and propagon numbers of Ure2pSp and of S. cerevisiae Ure2p (Ure2pSc) in [URE3] cells both at different expression levels. Overexpression of both Ure2p orthologues accelerates formation of large aggregates but Ure2pSp aggregates faster than Ure2pSc. Although the yeast cells that contain these large Ure2p aggregates do not transmit [URE3] to daughter cells, the corresponding crude extract retains the ability to induce [URE3] in wild-type [ure3-0] cells. At low expression level, propagon numbers are higher with Ure2pSc than with Ure2pSp. Overexpression of Ure2p decreases the number of [URE3] propagons with Ure2pSc. Together, our results demonstrate that the concentration of a prion protein is a key factor for prion propagation. We propose a model to explain how prion protein overexpression can produce a detrimental effect on prion propagation and why Ure2pSp might be more sensitive to such effects than Ure2pSc.  相似文献   

19.
Ure2 is the protein determinant of the [URE3] prion phenotype in Saccharomyces cerevisiae and consists of a flexible N-terminal prion-determining domain and a globular C-terminal glutathione transferase-like domain. Overexpression of the type I Hsp40 member Ydj1 in yeast cells has been found to result in the loss of [URE3]. However, the mechanism of prion curing by Ydj1 remains unclear. Here we tested the effect of overexpression of Hsp40 members Ydj1, Sis1, and Apj1 and also Hsp70 co-chaperones Cpr7, Cns1, Sti1, and Fes1 in vivo and found that only Ydj1 showed a strong curing effect on [URE3]. We also investigated the interaction of Ydj1 with Ure2 in vitro. We found that Ydj1 was able to suppress formation of amyloid-like fibrils of Ure2 by delaying the process of fibril formation, as monitored by thioflavin T binding and atomic force microscopy imaging. Controls using bovine serum albumin, Sis1, or the human Hsp40 homologues Hdj1 or Hdj2 showed no significant inhibitory effect. Ydj1 was only effective when added during the lag phase of fibril formation, suggesting that it interacts with Ure2 at an early stage in fibril formation and delays the nucleation process. Using surface plasmon resonance and size exclusion chromatography, we demonstrated a direct interaction between Ydj1 and both wild type and N-terminally truncated Ure2. In contrast, Hdj2, which did not suppress fibril formation, did not show this interaction. The results suggest that Ydj1 inhibits Ure2 fibril formation by binding to the native state of Ure2, thus delaying the onset of oligomerization.  相似文献   

20.
[URE3] is a prion of the nitrogen catabolism controller, Ure2p, and [PSI+] is a prion of the translation termination factor Sup35p in S. cerevisiae. Btn2p cures [URE3] by sequestration of Ure2p amyloid filaments. Cur1p, paralogous to Btn2p, also cures [URE3], but by a different (unknown) mechanism. We find that an array of mutations impairing proteasome assembly or MG132 inhibition of proteasome activity result in loss of [URE3]. In proportion to their prion—curing effects, each mutation affecting proteasomes elevates the cellular concentration of the anti-prion proteins Btn2 and Cur1. Of >4,600 proteins detected by SILAC, Btn2p was easily the most overexpressed in a pre9Δ (α3 core subunit) strain. Indeed, deletion of BTN2 and CUR1 prevents the prion—curing effects of proteasome impairment. Surprisingly, the 15 most unstable yeast proteins are not increased in pre9Δ cells suggesting altered proteasome specificity rather than simple inactivation. Hsp42, a chaperone that cooperates with Btn2 and Cur1 in curing [URE3], is also necessary for the curing produced by proteasome defects, although Hsp42p levels are not substantially altered by a proteasome defect. We find that pre9Δ and proteasome chaperone mutants that most efficiently lose [URE3], do not destabilize [PSI+] or alter cellular levels of Sup35p. A tof2 mutation or deletion likewise destabilizes [URE3], and elevates Btn2p, suggesting that Tof2p deficiency inactivates proteasomes. We suggest that when proteasomes are saturated with denatured/misfolded proteins, their reduced degradation of Btn2p and Cur1p automatically upregulates these aggregate-handling systems to assist in the clean-up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号