首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
哺乳动物脑中的海马结构被发现已经有几个世纪了,而初步确定其功能却是近几十年神经科学领域的重大发现.目前普遍认为海马是与记忆密切相关的,并把海马作为揭示学习记忆等认知过程细胞分子基础的重要模型.就近年在《生物化学与生物物理进展》上发表的相关文章进行了评论.  相似文献   

2.
3.
The aim of the present study was to investigate cognitive effects of a continuous, vertical extremely low frequency (ELF) magnetic field (MF) of 20 and 400 microT 50 Hz in healthy young men during performance on cognitive tests. Thirty-two volunteers (20-30 years old, mean 22.6 +/- 2.2 years) participated in this double blind study. The test protocol consisted of a set of tests: divided attention, flexibility, memory updating, digit span, digit span with articulary suppression, and time perception. The total duration of the exposure was 65 min. Participants were assigned four sessions: three conditions in the helmet (sham exposure, 20 and 400 microT) and one condition out of the helmet (to control the expectancy effect). No effect of MF exposure was observed on performance.  相似文献   

4.
Manousakis E 《Bio Systems》2012,109(2):115-125
We have carried out binocular rivalry experiments with a large number of subjects to obtain high quality statistics on probability distribution of dominance duration (PDDD) for two cases where (a) the rival stimulus is continuously presented and (b) the rival stimulus is periodically removed, with stimulus-on and stimulus-off intervals T(on) and T(off) respectively. In the present study we have chosen to study the regime of relatively long stimulus-on time, i.e., T(on)> 1s, where the stimulus presentation duration is significantly longer than the human reaction and recognition time. In the case of periodically removed stimulus, the total probability for percept reversal during each of the successive stimulus-on intervals T(on) can be predicted using the PDDD for continuous viewing. More importantly, this total probability for percept reversal during any stimulus-on interval is independent of the length T(off) of the preceding blank time, which can be quite long. We argue that this suggests that, in the regime of long T(on) and T(off) considered here, the variables representing the perceptual state do not change significantly during long blank intervals. We discuss that these findings impose challenges to theoretical models which aim at describing visual perception.  相似文献   

5.
The functional relationship between correct response probability and response time is investigated in data sets from Rubin, Hinton and Wenzel, J Exp Psychol Learn Mem Cogn 25:1161–1176, 1999 and Anderson, J Exp Psychol [Hum Learn] 7:326–343, 1981. The two measures are linearly related through stimulus presentation lags from 0 to 594 s in the former experiment and for repeated learning of words in the latter. The Tagging/Retagging interpretation of short term memory is introduced to explain this linear relationship. At stimulus presentation the words are tagged. This tagging level drops slowly with time. When a probe word is reintroduced the tagging level has to increase for the word to be properly identified leading to a delay in response time. The tagging time is related to the meaningfulness of the words used—the more meaningful the word the longer the tagging time. After stimulus presentation the tagging level drops in a logarithmic fashion to 50% after 10 s and to 20% after 240 s. The incorrect recall and recognition times saturate in the Rubin et al. data set (they are not linear for large time lags), suggesting a limited time to search the short term memory structure: the search time for recall of unusual words is 1.7 s. For recognition of nonsense words the corresponding time is about 0.4 s, similar to the 0.243 s found in Cavanagh (1972).  相似文献   

6.
One of the most contested areas in the field of animal cognition is non-human future-oriented cognition. We critically examine key underlying assumptions in the debate, which is mainly preoccupied with certain dichotomous positions, the most prevalent being whether or not ‘real’ future orientation is uniquely human. We argue that future orientation is a theoretical construct threatening to lead research astray. Cognitive operations occur in the present moment and can be influenced only by prior causation and the environment, at the same time that most appear directed towards future outcomes. Regarding the current debate, future orientation becomes a question of where on various continua cognition becomes ‘truly’ future-oriented. We question both the assumption that episodic cognition is the most important process in future-oriented cognition and the assumption that future-oriented cognition is uniquely human. We review the studies on future-oriented cognition in the great apes to find little doubt that our closest relatives possess such ability. We conclude by urging that future-oriented cognition not be viewed as expression of some select set of skills. Instead, research into future-oriented cognition should be approached more like research into social and physical cognition.  相似文献   

7.
Musicality can be defined as a natural, spontaneously developing trait based on and constrained by biology and cognition. Music, by contrast, can be defined as a social and cultural construct based on that very musicality. One critical challenge is to delineate the constituent elements of musicality. What biological and cognitive mechanisms are essential for perceiving, appreciating and making music? Progress in understanding the evolution of music cognition depends upon adequate characterization of the constituent mechanisms of musicality and the extent to which they are present in non-human species. We argue for the importance of identifying these mechanisms and delineating their functions and developmental course, as well as suggesting effective means of studying them in human and non-human animals. It is virtually impossible to underpin the evolutionary role of musicality as a whole, but a multicomponent perspective on musicality that emphasizes its constituent capacities, development and neural cognitive specificity is an excellent starting point for a research programme aimed at illuminating the origins and evolution of musical behaviour as an autonomous trait.  相似文献   

8.
目的构建不同程度恐惧应激大鼠模型,探究恐惧应激对LE大鼠视觉认知能力的影响。方法采用足底电击作为应激刺激,设计认知抉择实验,采集杏仁核脑区神经响应信号进行功能网络分析,评价大鼠视觉认知效果。首先,将实验大鼠分成强(S+)、弱(S)恐惧应激组与对照组(N),分别设定不同强度的足底电击刺激;然后对其进行单一图形"△"的视觉认知强化训练;最后,采用双图("△"和"十"图形)进行视觉抉择测试实验。另外结合复杂网络理论,构建恐惧应激大鼠杏仁核神经核团的视觉认知功能网络,通过平均路径长度和聚类系数表征脑功能网路的信息传递效率。结果完成视觉认知强化训练所需时间,S+组显著高于S、N组,强化训练前期S组显著高于N组,后期两组无显著性差异;认知抉择实验中,S组与N组均形成视觉认知联结,而S+组未形成视觉认知联结;脑功能网络分析中,S组与N组杏仁核神经元之间形成有效的视觉信息传递,而S+组未形成。结论恐惧应激对视觉认知造成消极影响,且随着恐惧程度的增强认知效果显著变差。  相似文献   

9.
The burst-death model has been developed to describe the life history of organisms with variable generation times and a burst of a fixed number of offspring. The model also includes an optional constant clearance rate, such as washout from a chemostat, and the possibility of sustained periods of population growth followed by severe bottlenecks, as in serial passaging. In this model, a beneficial mutation can either increase the burst rate or the burst size, or reduce the clearance rate, thus increasing survival. In this article we examine the effects of these three possible mechanisms on both the Malthusian fitness and the fixation probability of the lineage. We find that equivalent relative increases in the burst rate or burst size confer equivalent increases in the Malthusian fitness of a lineage, whereas increasing survival typically has a more moderate effect on Malthusian fitness. In contrast, for beneficial mutations that confer the same increase in fitness, mutations that increase survival are the most likely to fix, followed by mutations that increase the burst rate. Mutations that increase the burst size are the least likely to fix. These results imply that mutant lineages with the highest Malthusian fitness are not, in many cases, the most likely to escape extinction.  相似文献   

10.
Following encoding, memory remains temporarily vulnerable to disruption. Consolidation refers to offline time-dependent processes that continue after encoding and stabilize, transform or enhance the memory trace. Memory consolidation resulting from sleep has been reported for declarative and non-declarative memories in humans. We first investigated the temporal course of memory retrieval in chimpanzees, bonobos and orangutans. We found that the amount of retrieved information was time dependent: apes' performance degraded after 1 and 2 h, stabilized after 4 h, started to increase after 8 and 12 h and fully recovered after 24 h. Second, we show that although memories during wakefulness were highly vulnerable to interference from events similar to those witnessed during the original encoding event, an intervening period of sleep not only stabilized apes' memories into more permanent ones but also protected them against interference.  相似文献   

11.
Social animals cooperate with bonding partners to outcompete others. Predicting a competitor''s supporter is likely to be beneficial, regardless of whether the supporting relationship is stable or transient, or whether the support happens immediately or later. Although humans make such predictions frequently, it is unclear to what extent animals have the cognitive abilities to recognize others’ transient bond partners and to predict others'' coalitions that extend beyond the immediate present. We conducted playback experiments with wild chimpanzees to test this. About 2 h after fighting, subjects heard recordings of aggressive barks of a bystander, who was or was not a bond partner of the former opponent. Subjects looked longer and moved away more often from barks of the former opponents’ bond partners than non-bond partners. In an additional experiment, subjects moved away more from barks than socially benign calls of the same bond partner. These effects were present despite differences in genetic relatedness and considerable time delays between the two events. Chimpanzees, it appears, integrate memories of social interactions from different sources to make inferences about current interactions. This ability is crucial for connecting triadic social interactions across time, a requirement for predicting aggressive support even after a time delay.  相似文献   

12.
Professional ball game players report the feeling of the ball ‘slowing-down’ before hitting it. Because effective motor preparation is critical in achieving such expert motor performance, these anecdotal comments imply that the subjective passage of time may be influenced by preparation for action. Previous reports of temporal illusions associated with action generally emphasize compensation for suppressed sensory signals that accompany motor commands. Here, we show that the time is perceived slowed-down during preparation of a ballistic reaching movement before action, involving enhancement of sensory processing. Preparing for a reaching movement increased perceived duration of a visual stimulus. This effect was tightly linked to action preparation, because the amount of temporal dilation increased with the information about the upcoming movement. Furthermore, we showed a reduction of perceived frequency for flickering stimuli and an enhanced detection of rapidly presented letters during action preparation, suggesting increased temporal resolution of visual perception during action preparation. We propose that the temporal dilation during action preparation reflects the function of the brain to maximize the capacity of sensory information-acquisition prior to execution of a ballistic movement. This strategy might facilitate changing or inhibiting the planned action in response to last-minute changes in the external environment.  相似文献   

13.
居民对农业文化遗产的认知态度影响其行为选择,并对农业文化遗产的保护及可持续发展具有重要意义。基于人文地理学及环境心理学领域的地方认同理论,选择历史认同、现实认同、情感认同及行为认同4个维度变量,通过问卷调查,以福州居民对全球重要农业文化遗产"福州茉莉花与茶文化系统"的认知及保护态度作为研究对象,并通过构建福州居民农业文化遗产认知及保护规律定量分析居民认知态度、保护行为与人口特征之间的关系。结果表明:(1)福州居民对茉莉花与茶文化系统的行为认同维度得分高于其他维度,且福州市民各维度得分均高于外来居民;(2)受访居民对农业文化遗产的地方认同与其年龄、受教育水平、收入水平及在福州居住时间长短的关系较为密切;(3)通过构建福州居民农业文化遗产认知及保护规律发现,福州居民对农业文化遗产的保护行为主要受其对该遗产项目认知态度的影响,与居民人口特征相关性较弱。拓展农业文化遗产领域的研究视角及方法,促进农业文化遗产地动态保护与可持续发展具有参考价值。  相似文献   

14.
Towards a quantum physics of the living state   总被引:2,自引:0,他引:2  
In this paper, we review the concepts, based upon experimental results, which allow us to conclude that living matter is one of the steps of the Weisskopf quantum ladder. Some necessary conditions for responding selectively in frequency to low intensity microwave EMR are formulated. A model of an organism's electromagnetic frame is used for interpretation and to reveal the nature of Chinese meridians and the laws of papillar pattern formation in embryos. The statement has been made that an organism's macroscopic stability is determined by its functional coherent microwave field. The complementarity of synergetic and quantum mechanical approaches towards the problem of the variable, differential stability of living organisms is discussed.  相似文献   

15.
Understanding the evolution of inter and intraspecific variation in cognitive abilities is one of the main goals in cognitive ecology. In scatter‐caching species, spatial memory is critical for the recovery of food caches and overwinter survival, but its effects on reproduction are less clear. Better spatial cognition may improve pre‐breeding condition allowing for earlier reproduction. Alternatively, when mated to males with better spatial memory, females may be able to invest more in reproduction which may allow increased offspring survival and hence higher fitness. Using wild food‐caching mountain chickadees, we found that when environmental conditions were favourable for breeding, females mated to males with better spatial cognition laid larger clutches and fledged larger broods than females mated to males with worse cognitive performance. Our results support the hypothesis that females may increase their reproductive investment to gain indirect, genetic benefits when mated to high‐quality males with better spatial cognitive abilities.  相似文献   

16.
Experiments are the foundation of empirical science, and experimental paradigms that are broadly applicable across settings and species are particularly useful for comparative research. Originally developed to address questions related to perception and cognition of pre‐verbal human infants, the looking time experimental paradigm has been increasingly used to study animal behavior and cognition, particularly in non‐human primates. Looking time experiments are based on the assumption that animals direct eye gaze toward objects or scenes based on their degree of interest, and use looking behavior to infer perceptual or cognitive characteristics of subjects. This paradigm can be used in a variety of contexts and is not based on species‐typical behaviors, allowing for intra‐ and interspecific comparisons. Here, we describe the history of use of looking time measures, provide an overview of the problems and controversies related to this method, and offer recommendations on how to implement looking time tasks, focusing on the preparation of stimuli, experimental procedures, and data analysis. Our overview focuses on non‐human primates, where most work has been carried out, but the issues discussed should be applicable to a wide range of species. We conclude that despite pertinent criticism, looking time tasks are practical when executed and interpreted properly. The further implementation of these methods in studies of animal behavior and cognition is likely to be fruitful.  相似文献   

17.
The impact of the Internet across multiple aspects of modern society is clear. However, the influence that it may have on our brain structure and functioning remains a central topic of investigation. Here we draw on recent psychological, psychiatric and neuroimaging findings to examine several key hypotheses on how the Internet may be changing our cognition. Specifically, we explore how unique features of the online world may be influencing: a) attentional capacities, as the constantly evolving stream of online information encourages our divided attention across multiple media sources, at the expense of sustained concentration; b) memory processes, as this vast and ubiquitous source of online information begins to shift the way we retrieve, store, and even value knowledge; and c) social cognition, as the ability for online social settings to resemble and evoke real‐world social processes creates a new interplay between the Internet and our social lives, including our self‐concepts and self‐esteem. Overall, the available evidence indicates that the Internet can produce both acute and sustained alterations in each of these areas of cognition, which may be reflected in changes in the brain. However, an emerging priority for future research is to determine the effects of extensive online media usage on cognitive development in youth, and examine how this may differ from cognitive outcomes and brain impact of uses of Internet in the elderly. We conclude by proposing how Internet research could be integrated into broader research settings to study how this unprecedented new facet of society can affect our cognition and the brain across the life course.  相似文献   

18.
Photosynthesis-irradiance (P-E) curves are widely used to describe photosynthetic efficiency and potential. Contemporary models assume maximal photosynthetic quantum yield () at low irradiances. But P-E observations made with both oxygen evolution and carbon uptake techniques show that this is not always the case. Using new and published data in conjunction with modeling exercises, we demonstrate that regardless of the mechanism there can be reductions in at low irradiances that are not readily observable using conventional P-E analyses. We also show that analytical errors, such as inaccurate estimation of dark oxygen consumption or carbon uptake, can markedly affect the structure of -E curves with negligible effect on P-E curve structure. Whether from respiration `corrections' or other mechanisms, these deviations in at low light levels from the maximum quantum yield of photosynthesis (max) can lead to significant errors (> 50%) in the estimation of the linear portion of the P-E curve and ultimately max. Non-linear models of P-E, such as the rectangular hyperbola, quadratic, exponential and hyperbolic tangent that are commonly used to estimate the initial slope () of the P-E curve assume that is maximal at low light levels and therefore can err in the estimation of max when is reduced at low light levels. Using a diverse data set of 622 P-E curves with a total of 7623 points, we show that although model skills are high (r 2 = 0.96 ± 0.05, 0.97 ± 0.04, 0.97 ± 0.04 and 0.97 ± 0.04, respectively), a large fraction of the model-predicted max differ by greater than 10% from true max values (91%, 50%, 82% and 46%, respectively). Data from these observations and modeling exercises lead us to suggest that max be determined by directly estimating the true maximum of a -E curve rather than using the more conventional methodology employing the initial slope of the P-E curve.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

19.
Humans possess an ability to perceive and synchronize movements to the beat in music (‘beat perception and synchronization’), and recent neuroscientific data have offered new insights into this beat-finding capacity at multiple neural levels. Here, we review and compare behavioural and neural data on temporal and sequential processing during beat perception and entrainment tasks in macaques (including direct neural recording and local field potential (LFP)) and humans (including fMRI, EEG and MEG). These abilities rest upon a distributed set of circuits that include the motor cortico-basal-ganglia–thalamo-cortical (mCBGT) circuit, where the supplementary motor cortex (SMA) and the putamen are critical cortical and subcortical nodes, respectively. In addition, a cortical loop between motor and auditory areas, connected through delta and beta oscillatory activity, is deeply involved in these behaviours, with motor regions providing the predictive timing needed for the perception of, and entrainment to, musical rhythms. The neural discharge rate and the LFP oscillatory activity in the gamma- and beta-bands in the putamen and SMA of monkeys are tuned to the duration of intervals produced during a beat synchronization–continuation task (SCT). Hence, the tempo during beat synchronization is represented by different interval-tuned cells that are activated depending on the produced interval. In addition, cells in these areas are tuned to the serial-order elements of the SCT. Thus, the underpinnings of beat synchronization are intrinsically linked to the dynamics of cell populations tuned for duration and serial order throughout the mCBGT. We suggest that a cross-species comparison of behaviours and the neural circuits supporting them sets the stage for a new generation of neurally grounded computational models for beat perception and synchronization.  相似文献   

20.
The catalytic cycle for the heterolytic splitting of H2 by Ni-Fe hydrogenase has been investigated in four recent quantum chemical studies. The mechanisms proposed are described and compared. Although there are clear differences in these mechanisms and in the assignments of the different states observed experimentally, there are also important points of concensus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号