首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The NADP-dependent malate dehydrogenase (MDH) in the supernatant fraction of mouse tissues is known to occur in two allelic forms which are electrophoretically distinguishable; each produces a single band in starch gel. We have investigated the subunit structure and synthesis of NADP—MDH through electrophoretic patterns obtained from several experimental sources. (1) Heterozygotes containing both alleles yield a five-banded pattern. The bands are in an approximate frequency of 1:4:6:4:1; the two extremes correspond to the pure types and the three intermediates are presumably hybrid enzymes. The NADP—MDH molecule therefore appears to be a tetramer. (2) In muscle heterokaryons of allophenic mice (with homozygous nuclei of each genotype within a common cytoplasm), hybrid enzymes are formed; they are not formed in other allophenic tissues. Therefore the gene at this locus codes only for monomeric subunits and the tetramer is assembled in a second step in the cytoplasm. Also, both genes must function in a nucleus when the locus is active (e.g., in F1 uninucleated cells). (3) Dissociation in vitro of mixtures of both pure types of enzymes, followed by reassociation among fragments, leads to a three-banded pattern, even after repeated cycles. Thus the tetramer must cleave in a fixed plane, to form dimers, which reassociate, rather than in a random fashion to form monomers. The most likely interpretation is that mouse NADP—MDH is an example of the type of tetramer postulated by Monod et al. (1965) and termed isologous. The dimers are held symmetrically in the tetrameric conformation by relatively weak forces; the monomeric subunits comprising the dimer are held together by stronger forces.These investigations were supported by U.S.P.H.S. grants No. HD-01646, CA-06927, and FR-05539, and by an appropriation from the Commonwealth of Pennsylvania.  相似文献   

2.
1. Superovulated rat ovary was found to contain high activities of NADP-malate dehydrogenase and NADP-isocitrate dehydrogenase. The activity of each enzyme was approximately four times that of glucose 6-phosphate dehydrogenase and equalled or exceeded the activities reported to be present in other mammalian tissues. Fractionation of a whole tissue homogenate of superovulated rat ovary indicated that both enzymes were exclusively cytoplasmic. The tissue was also found to contain pyruvate carboxylase (exclusively mitochondrial), NAD-malate dehydrogenase and aspartate aminotransferase (both mitochondrial and cytoplasmic) and ATP-citrate lyase (exclusively cytoplasmic). 2. The kinetic properties of glucose 6-phosphate dehydrogenase, NADP-malate dehydrogenase and NADP-isocitrate dehydrogenase were determined and compared with the whole-tissue concentrations of their substrates and NADPH; NADPH is a competitive inhibitor of all three enzymes. The concentrations of glucose 6-phosphate, malate and isocitrate in incubated tissue slices were raised at least tenfold by the addition of glucose to the incubation medium, from the values below to values above the respective K(m) values of the dehydrogenases. Glucose doubled the tissue concentration of NADPH. 3. Steroidogenesis from acetate is stimulated by glucose in slices of superovulated rat ovary incubated in vitro. It was found that this stimulatory effect of glucose can be mimicked by malate, isocitrate, lactate and pyruvate. 4. It is concluded that NADP-malate dehydrogenase or NADP-isocitrate dehydrogenase or both may play an important role in the formation of NADPH in the superovulated rat ovary. It is suggested that the stimulatory effect of glucose on steroidogenesis from acetate results from an increased rate of NADPH formation through one or both dehydrogenases, brought about by the increases in the concentrations of malate, isocitrate or both. Possible pathways involving the two enzymes are discussed.  相似文献   

3.
1. NADP-malate dehydrogenase and ;malic' enzyme in maize leaf extracts were separated from NAD-malate dehydrogenase and their properties were examined. 2. The NADP-malate dehydrogenase was nicotinamide nucleotide-specific but otherwise catalysed a reaction comparable with that with the NAD-specific enzyme. By contrast with the latter enzyme, a thiol was absolutely essential for maintaining the activity of the NADP-malate dehydrogenase, and the initial velocity in the direction of malate formation, relative to the reverse direction, was faster. 3. For the ;malic' enzyme reaction the K(m) for malate was dependent on pH and the pH optimum varied with the malate concentration. At their respective optimum concentrations the maximum velocity for this enzyme was higher with Mg(2+) than with Mn(2+). 4. The NADP-malate dehydrogenase in green leaves was rapidly inactivated in the dark and was reactivated when plants were illuminated. Reactivation of the enzyme extracted from darkened leaves was achieved simply by adding a thiol compound. 5. The activity of both enzymes was low in etiolated leaves of maize plants grown in the dark but increased 10-20-fold, together with chlorophyll, when leaves were illuminated. 6. The activity of these enzymes in different species with the C(4)-dicarboxylic acid pathway was compared and their possible role in photosynthesis was considered.  相似文献   

4.
The inhibition of lactate dehydrogenase at high pyruvate concentration was studied in three ways. First, a rapid decrease in the rate of the enzyme reaction was observed; secondly, the rate of formation of a pyruvate-NAD(+) compound was followed by the change in E(325); thirdly, the rate of quenching of the protein fluorescence was measured. The data obtained at pH6.0 at different temperatures and ionic strengths as functions of pyruvate, NAD(+) and enzyme concentrations show that the extent of inhibition can be correlated with the reversible formation of a compound between pyruvate and enzyme-bound NAD(+). It is suggested that the detailed kinetic analysis of the formation of this abortive ternary compound will give pertinent information about properties of the enzyme-NAD(+) compound involved in the normal catalytic process.  相似文献   

5.
Liquid–liquid phase separation (LLPS) is now recognized as a common mechanism underlying regulation of enzyme activity in cells. Insights from studies in cells are complemented by in vitro studies aimed at developing a better understanding of mechanisms underlying such control. These mechanisms are often based on the influence of LLPS on the physicochemical properties of the enzyme's environment. Biochemical mechanisms underlying such regulation include the potential for concentrating reactants together, tuning reaction rates, and controlling competing metabolic pathways. LLPS is thus a powerful tool with extensive utilities at the cell's disposal, e.g. for consolidating cell survival under stress or rerouting metabolic pathways in response to the energy state of the cell. Here, we examin the evidence for how LLPS affects enzyme catalysis and begin to understand emerging concepts and expand our understanding of enzyme catalysis in living cells.  相似文献   

6.
Plant vacuoles play several roles in controlling development, pathogen defence, and stress response. γVPE is a vacuolarlocalised cysteine protease with a caspase-1 like activity involved in the activation and maturation of downstream vacuolar hydrolytic enzymes that trigger hypersensitive cell death and tissue senescence. This work provides evidence that γVPE is strongly expressed in Arabidopsis guard cells and is involved in water stress response. The γvpe knock-out mutants showed reduced stomatal opening and an increased resistance to desiccation suggesting a new role of γVPE in control of stomatal movements.  相似文献   

7.
The polyamines are ubiquitous in nature and appear to fulfil several important functions, mostly related to growth, in the cell. The first, and often rate-limiting, step in the biosynthesis of the polyamines is catalysed by ornithine decarboxylase (ODC), which is subject to a variety of control mechanisms. The polyamines exert a strong feedback regulation of the expression - as well as the degradation of the enzyme. The regulation of ODC expression appears to occur at the translational level. The ODC mRNA contains a long GC-rich 5 untranslated region (UTR), which has been demonstrated to hamper the translation of the mRNA. However, it has not yet been conclusively established whether this part of the mRNA fulfils any function in relation to the polyamine-mediated control of ODC synthesis. In the present study, we have used stable transgenic CHO cells, expressing either full-length ODC mRNA or 5 UTR-truncated ODC mRNA, to elucidate the role, if any, of the 5 UTR in the translational regulation of the enzyme by polyamines. No differences in regulatory properties were observed between the cells expressing the full-length ODC mRNA and those expressing the ODC mRNA devoid of most the 5 UTR. The cell lines down-regulated ODC (synthesis as well as activity) to the same extent upon exposure to an excess of polyamines, demonstrating that the feedback control of ODC mRNA translation occurs by a mechanism independent of the major part of the 5 UTR of the ODC mRNA.  相似文献   

8.
A detailed understanding of the catalytic mechanism of enzymes is an important step toward improving their activity for use in biotechnology. In this paper, crystal soaking experiments and X-ray crystallography were used to analyse the mechanism of the Agrobacterium radiobacter phosphotriesterase, OpdA, an enzyme capable of detoxifying a broad range of organophosphate pesticides. The structures of OpdA complexed with ethylene glycol and the product of dimethoate hydrolysis, dimethyl thiophosphate, provide new details of the catalytic mechanism. These structures suggest that the attacking nucleophile is a terminally bound hydroxide, consistent with the catalytic mechanism of other binuclear metallophosphoesterases. In addition, a crystal structure with the potential substrate trimethyl phosphate bound non-productively demonstrates the importance of the active site cavity in orienting the substrate into an approximation of the transition state.  相似文献   

9.
The role of the highly conserved C266 and L268 of pea ferredoxin–NADP+ reductase (FNR) in formation of the catalytically competent complex of the enzyme with NADP(H) was investigated. Previous studies suggest that the volume of these side-chains, situated facing the side of the C-terminal Y308 catalytic residue not stacking the flavin isoalloxazine ring, may be directly involved in the fine-tuning of the catalytic efficiency of the enzyme. Wild-type pea FNR as well as single and double mutants of C266 and L268 residues were analysed by fast transient-kinetic techniques and their midpoint reduction potentials were determined. For the C266A, C266M and C266A/L268A mutants a significant reduction in the overall hydride transfer (HT) rates was observed along with the absence of charge-transfer complex formation. The HT rate constants for NADPH oxidation were lower than those for NADP+ reduction, reaching a 30-fold decrease in the double mutant. In agreement, these variants exhibited more negative midpoint potentials with respect to the wild-type enzyme. The three-dimensional structures of C266M and L268V variants were solved. The C266M mutant shows a displacement of E306 away from the relevant residue S90 to accommodate the bulky methionine introduced. The overall findings indicate that in FNR the volume of the residue at position 266 is essential to attain the catalytic architecture between the nicotinamide and isoalloxazine rings at the active site and, therefore, for an efficient HT process. In addition, flexibility of the 268–270 loop appears to be critical for FNR to achieve catalytically competent complexes with NADP(H).  相似文献   

10.
The assembly of iron–sulfur (Fe–S) clusters requires dedicated protein factors inside the living cell. Striking similarities between prokaryotic and eukaryotic assembly proteins suggest that plant cells inherited two different pathways through endosymbiosis: the ISC pathway in mitochondria and the SUF pathway in plastids. Fe–S proteins are also found in the cytosol and nucleus, but little is known about how they are assembled in plant cells. Here, we show that neither plastid assembly proteins nor the cytosolic cysteine desulfurase ABA3 are required for the activity of cytosolic aconitase, which depends on a [4Fe–4S] cluster. In contrast, cytosolic aconitase activity depended on the mitochondrial cysteine desulfurase NFS1 and the mitochondrial transporter ATM3. In addition, we were able to complement a yeast mutant in the cytosolic Fe–S cluster assembly pathway, dre2, with the Arabidopsis homologue AtDRE2, but only when expressed together with the diflavin reductase AtTAH18. Spectroscopic characterization showed that purified AtDRE2 could bind up to two Fe–S clusters. Purified AtTAH18 bound one flavin per molecule and was able to accept electrons from NAD(P)H. These results suggest that the proteins involved in cytosolic Fe–S cluster assembly are highly conserved, and that dependence on the mitochondria arose before the second endosymbiosis event leading to plastids.  相似文献   

11.
Enzyme kinetic parameters for rate equations are vital in metabolic network simulation, a major part of systems biology research efforts. Measurements of Michaelis–Menten kinetic parameters Km and Kcat have been performed for enzymes glucose-6-phosphate dehydrogenase (G6P DH) under crowded conditions using molecular crowding agents bovine serum albumin (BSA) and polyethylene glycol (PEG) of 8000 Da molecular weight. An increase in Kcat was observed at very low concentrations of crowding agent, and also at high crowder concentrations when the experiment was performed at 45 °C with PEG. The observed pattern in Kcat for G6P DH at high crowder concentrations has been explained via modelling using excluded volume theory. An increase in rate was observed at 45 °C for G6P DH versus 30 °C; this has been modelled via the Arrhenius equation.  相似文献   

12.
Transcatheter aortic valve implantation is increasingly used to treat patients with severe aortic stenosis who are at increased risk for surgical aortic valve replacement and is projected to be the preferred treatment modality. As patient selection and operator experience have improved, it is hypothesised that device-host interactions will play a more dominant role in outcome. This, in combination with the increasing number of valve types and sizes, confronts the physician with the dilemma to choose the valve that best fits the individual patient. This necessitates the availability of pre-procedural computer simulation that is based upon the integration of the patient-specific anatomy, the physical and (bio)mechanical properties of the valve and recipient anatomy derived from in-vitro experiments. The objective of this paper is to present such a model and illustrate its potential clinical utility via a few case studies.  相似文献   

13.
14.
15.
In the presence of NAD(+) the acylation by 1,3-diphosphoglycerate of the four active sites of pig muscle d-glyceraldehyde 3-phosphate dehydrogenase can be monitored at 365nm by the disappearance of the absorption band present in the binary complex of NAD(+) and the enzyme. A non-specific salt effect decreased the acylation rate 25-fold when the ionic strength was increased from 0.10 to 1.0. This caused acylation to be the rate-limiting process in the enzyme-catalysed reductive dephosphorylation of 1,3-diphosphoglycerate at high ionic strength at pH8. The salt effect permitted investigation of the acylation over a wide range of conditions. Variation of pH from 5.4 to 8.6 produced at most a two-fold change in the acylation rate. One proton was taken up per site acylated at pH8.0. By using a chromophoric H(+) indicator the rate of proton uptake could be monitored during the acylation and was also almost invariant in the pH range 5.5-8.5. Transient kinetic studies of the overall enzyme-catalysed reaction indicated that acylation was the process involving proton uptake at pH8.0. The enzyme mechanism is discussed in the light of these results.  相似文献   

16.
EcoP15I is a Type III DNA restriction and modification enzyme of Escherichia coli. We show that it contains two modification (Mod) subunits for sequence-specific methylation of DNA and one copy of a restriction endonuclease (Res) subunit for cleavage of DNA containing unmethylated target sequences. Previously the Mod2 dimer in the presence of cofactors was shown to use nucleotide flipping to gain access to the adenine base targeted for methylation (Reddy and Rao, J. Mol. Biol. 298 (2000) 597–610.). Surprisingly the Mod2 enzyme also appeared to flip a second adenine in the target sequence, one which was not subject to methylation. We show using fluorescence lifetime measurements of the adenine analogue, 2-aminopurine, that only the methylatable adenine undergoes flipping by the complete Res1Mod2 enzyme and that this occurs even in the absence of cofactors. We suggest that this is due to activation of the Mod2 core by the Res subunit.  相似文献   

17.
18.
Leaf area expansion is affected by environmental conditions because of differences in cell number and/or cell size. Increases in the DNA content (ploidy) of a cell by endoreduplication are related to its size. The aim of this work was to determine how cell ploidy interacts with the regulation of cell size and with leaf area expansion. The approach used was to grow Arabidopsis thaliana plants performing increased or decreased rounds of endoreduplication under shading and water deficit. The shading and water deficit treatments reduced final leaf area and cell number; however, cell area was increased and decreased, respectively. These differences in cell size were unrelated to alterations of the endocycle, which was reduced by these treatments. The genetic modification of the extent of endoreduplication altered leaf growth responses to shading and water deficit. An increase in the extent of endoreduplication in a leaf rendered it more sensitive to the shade treatment but less sensitive to water deficit conditions. The link between the control of whole organ and individual cell expansion under different environmental conditions was demonstrated by the correlation between the plasticity of cell size and the changes in the duration of leaf expansion.  相似文献   

19.
Soylu S 《Mycopathologia》2004,158(4):457-464
In this study transmission electron microscopy (TEM) was used to examine details of the host–pathogen interface in Arabidopsis thaliana cotyledons infected by Albugo candida, causal agent of white blister. After successful entry through stomatal pores, the pathogen developed a substomatal vesicle and subsequently produced intercellular hyphae. TEM observations revealed that coenocytic intercellular hyphae ramified and spread intercellularly throughout the host tissue forming several haustoria in host mesophyll cells. Intracellular haustoria were spherical and 4.5 μm in diameter. Each haustorium was connected to intercellular hyphae by a narrow, slender haustorium neck. The cytoplasm of the haustorium included the organelles characteristic of the pathogen. No obvious response was observed in host cells following formation of haustoria. Most of the mesophyll cells contained normal haustoria and the host cytoplasm displayed a high degree of structural integrity. Absence of host cell wall alteration and cell death in penetrated host cells suggest that the pathogen exerts considerable control over basic cellular processes and in this respect, response to this biotrophic Oomycete differs considerably from responses to other pathogens such as necrotrophs. Modification of the host plasma membrane (PM) along the cell wall and around the haustoria, was detected by applying the periodic acid-chromic acid-phosphotungstic acid (PACP) staining technique. After staining with PACP, the host PM was found to be intensely electron dense where it was adjacent to the host cell wall and the distal region of the haustorial neck. By contrast, the extrahaustorial membrane, where the host PM surrounded the haustorium, was consistently very lightly stained.  相似文献   

20.
Lu SX  Liu H  Knowles SM  Li J  Ma L  Tobin EM  Lin C 《Plant physiology》2011,157(3):1537-1545
Circadian rhythms are autoregulatory, endogenous rhythms with a period of approximately 24 h. A wide variety of physiological and molecular processes are regulated by the circadian clock in organisms ranging from bacteria to humans. Phosphorylation of clock proteins plays a critical role in generating proper circadian rhythms. Casein Kinase2 (CK2) is an evolutionarily conserved serine/threonine protein kinase composed of two catalytic α-subunits and two regulatory β-subunits. Although most of the molecular components responsible for circadian function are not conserved between kingdoms, CK2 is a well-conserved clock component modulating the stability and subcellular localization of essential clock proteins. Here, we examined the effects of a cka1a2a3 triple mutant on the Arabidopsis (Arabidopsis thaliana) circadian clock. Loss-of-function mutations in three nuclear-localized CK2α subunits result in period lengthening of various circadian output rhythms and central clock gene expression, demonstrating that the cka1a2a3 triple mutant affects the pace of the circadian clock. Additionally, the cka1a2a3 triple mutant has reduced levels of CK2 kinase activity and CIRCADIAN CLOCK ASSOCIATED1 phosphorylation in vitro. Finally, we found that the photoperiodic flowering response, which is regulated by circadian rhythms, was reduced in the cka1a2a3 triple mutant and that the plants flowered later under long-day conditions. These data demonstrate that CK2α subunits are important components of the Arabidopsis circadian system and their effects on rhythms are in part due to their phosphorylation of CIRCADIAN CLOCK ASSOCIATED1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号