共查询到20条相似文献,搜索用时 0 毫秒
1.
Theodoros K. Karamanos 《Biopolymers》2023,114(3):e23530
Coevolution between protein residues is normally interpreted as direct contact. However, the evolutionary record of a protein sequence contains rich information that may include long-range functional couplings, couplings that report on homo-oligomeric states or even conformational changes. Due to the complexity of the sequence space and the lack of structural information on various members of a protein family, it has been difficult to effectively mine the additional information encoded in a multiple sequence alignment (MSA). Here, taking advantage of the recent release of the AlphaFold (AF) database we attempt to identify coevolutionary couplings that cannot be explained simply by spatial proximity. We propose a simple computational method that performs direct coupling analysis on a MSA and searches for couplings that are not satisfied in any of the AF models of members of the identified protein family. Application of this method on 2012 protein families suggests that ~12% of the total identified coevolving residue pairs are spatially distant and more likely to be disordered than their contacting counterparts. We expect that this analysis will help improve the quality of coevolutionary distance restraints used for structure determination and will be useful in identifying potentially functional/allosteric cross-talk between distant residues. 相似文献
2.
Stanislav O. Fedechkin Jacob Brockerman Elizabeth J. Luna Michail Yu. Lobanov Serge L. Smirnov 《Journal of biomolecular structure & dynamics》2013,31(10):1150-1159
Supervillin, the largest member of the villin/gelsolin family, is a cytoskeleton regulating, peripheral membrane protein. Supervillin increases cell motility and promotes invasive activity in tumors. Major cytoskeletal interactors, including filamentous actin and myosin II, bind within the unique supervillin amino terminus, amino acids 1–830. The structural features of this key region of the supervillin polypeptide are unknown. Here, we utilize circular dichroism and bioinformatics sequence analysis to demonstrate that the N-terminal part of supervillin forms an extended intrinsically disordered region (IDR). Our combined data indicate that the N-terminus of human and bovine supervillin sequences (positions 1–830) represents an IDR, which is the largest IDR known to date in the villin/gelsolin family. Moreover, this result suggests a potentially novel mechanism of regulation of myosin II and F-actin via the intrinsically disordered N-terminal region of hub protein supervillin. 相似文献
3.
4.
5.
I. N. Serdyuk 《Molecular Biology》2007,41(2):262-277
Until recently, the point of view that the unique tertiary structure is necessary for protein function has prevailed. However, recent data have demonstrated that many cell proteins do not possess such structure in isolation, although displaying a distinct function under physiological conditions. These proteins were named the naturally, or intrinsically, disordered proteins. The fraction of intrinsically disordered regions in such proteins may vary from several amino acid residues to a completely unordered sequence of several tens or even several hundreds of residues. The main distinction of these proteins from structured (globular) proteins is that they have no unique tertiary structure in isolation and acquire it only upon interaction with their partners. The conformation of these proteins in a complex is determined not only by their own amino acid sequence (as is typical of structured, or globular, proteins) but also by the interacting partner. This review discusses the structure-function relationships in structured and intrinsically disordered proteins. The intricateness of this problem and the possible ways to solve it are illustrated by the example of the EF1A elongation factor family. 相似文献
6.
Evgenia Deryusheva Ekaterina Nemashkalova Marie Galloux Charels‐Adrien Richard Jean‐Franois Elouët Denis Kovacs Karo Van Belle Peter Tompa Vladimir Uversky Sergei Permyakov 《Proteomics》2019,19(6)
Intrinsically disordered proteins (IDPs) are implicated in a range of human diseases, some of which are associated with the ability to bind to lipids. Although the presence of solvent‐exposed hydrophobic regions in IDPs should favor their interactions with low‐molecular‐weight hydrophobic/amphiphilic compounds, this hypothesis has not been systematically explored as of yet. In this study, the analysis of the DisProt database with regard to the presence of lipid‐binding IDPs (LBIDPs) reveals that they comprise, at least, 15% of DisProt entries. LBIDPs are classified into four groups by ligand type, functional categories, domain structure, and conformational state. 57% of LBIDPs are classified as ordered according to the CH‐CDF analysis, and 70% of LBIDPs possess lengths of disordered regions below 50%. To investigate the lipid‐binding properties of IDPs for which lipid binding is not reported, three proteins from different conformational groups are rationally selected. They all are shown to bind linoleic (LA) and oleic (OA) acids with capacities ranging from 9 to 34 LA/OA molecules per protein molecule. The association with LA/OA causes the formation of high‐molecular‐weight lipid–protein complexes. These findings suggest that lipid binding is common among IDPs, which can favor their involvement in lipid metabolism. 相似文献
7.
8.
Gunnar Jeschke 《Proteins》2016,84(4):544-560
Conformational ensembles of intrinsically disordered peptide chains are not fully determined by experimental observations. Uncertainty due to lack of experimental restraints and due to intrinsic disorder can be distinguished if distance distributions restraints are available. Such restraints can be obtained from pulsed dipolar electron paramagnetic resonance (EPR) spectroscopy applied to pairs of spin labels. Here, we introduce a Monte Carlo approach for generating conformational ensembles that are consistent with a set of distance distribution restraints, backbone dihedral angle statistics in known protein structures, and optionally, secondary structure propensities or membrane immersion depths. The approach is tested with simulated restraints for a terminal and an internal loop and for a protein with 69 residues by using sets of sparse restraints for underlying well‐defined conformations and for published ensembles of a premolten globule‐like and a coil‐like intrinsically disordered protein. Proteins 2016; 84:544–560. © 2016 Wiley Periodicals, Inc. 相似文献
9.
Vladimir N. Uversky 《Proteomics》2019,19(6)
Articles assembled in the second part of this Special Issue describe some experimental and computational approaches for the structural and functional characterization of intrinsically disordered proteins. Since these tools represent specialized gear for the focused analysis of various aspects of dark proteome, they can be viewed as torches, candles, lamps, lanterns, flashlights, spotlights, night vision goggles, and other means needed to see in darkness. 相似文献
10.
11.
Anna Battisti 《Molecular simulation》2013,39(2):139-143
Intrinsically disordered proteins are biomolecules that do not have a definite 3D structure; therefore, their dynamical simulation cannot start from a known list of atomistic positions, such as a Protein Data Bank file. We describe a method to start a computer simulation of these proteins. The first step of the procedure is the creation of a multi-rod configuration of the molecule, derived from its primary sequence. This structure is dynamically evolved in vacuo until its gyration radius reaches the experimental average value; at this point solvent molecules, in explicit or implicit implementation, are added to the protein and a regular molecular dynamics simulation follows. We have applied this procedure to the simulation of tau, one of the largest totally disordered proteins. 相似文献
12.
Gaurav Ghag Christopher J. Holler Georgia Taylor Thomas L. Kukar Vladimir N. Uversky Vijayaraghavan Rangachari 《Protein science : a publication of the Protein Society》2017,26(9):1759-1772
Granulins (GRNs) are a family of small (~6 kDa) proteins generated by the proteolytic processing of their precursor, progranulin (PGRN), in many cell types. Both PGRN and GRNs are implicated in a plethora of biological functions, often in opposing roles to each other. Lately, GRNs have generated significant attention due to their implicated roles in neurodegenerative disorders. Despite their physiological and pathological significance, the structure‐function relationships of GRNs are poorly defined. GRNs contain 12 conserved cysteines forming six intramolecular disulfide bonds, making them rather exceptional, even among a few proteins with high disulfide bond density. Solution NMR investigations in the past have revealed a unique structure containing putative interdigitated disulfide bonds for several GRNs, but GRN‐3 was unsolvable due to its heterogeneity and disorder. In our previous report, we showed that abrogation of disulfide bonds in GRN‐3 renders the protein completely disordered (Ghag et al., Prot Eng Des Sel 2016). In this study, we report the cellular expression and biophysical analysis of fully oxidized, native GRN‐3. Our results indicate that both E. coli and human embryonic kidney (HEK) cells do not exclusively make GRN‐3 with homogenous disulfide bonds, likely due to the high cysteine density within the protein. Biophysical analysis suggests that GRN‐3 structure is dominated by irregular loops held together only by disulfide bonds, which induced remarkable thermal stability to the protein despite the lack of regular secondary structure. This unusual handshake between disulfide bonds and disorder within GRN‐3 could suggest a unique adaptation of intrinsically disordered proteins towards structural stability. 相似文献
13.
固有无序蛋白质是一类在生理条件下缺乏稳定三维结构而具有正常功能,参与信号转导、转录调控、胁迫应答等多种生物学过程的蛋白质.植物中许多逆境响应蛋白是固有无序蛋白质,通过其结构无序或部分无序区域在蛋白质 蛋白质、蛋白质 膜脂、蛋白质 核酸的互作中发挥重要作用.本文主要对固有无序蛋白质的类别、氨基酸组成和结构特点以及在逆境胁迫下其稳定细胞膜、保护核酸和蛋白质、调控基因表达等分子功能进行综述,以拓展对逆境胁迫下蛋白质作用分子机制的认识. 相似文献
14.
Akila Katuwawala Christopher J. Oldfield Lukasz Kurgan 《Protein science : a publication of the Protein Society》2020,29(1):184-200
The intense interest in the intrinsically disordered proteins in the life science community, together with the remarkable advancements in predictive technologies, have given rise to the development of a large number of computational predictors of intrinsic disorder from protein sequence. While the growing number of predictors is a positive trend, we have observed a considerable difference in predictive quality among predictors for individual proteins. Furthermore, variable predictor performance is often inconsistent between predictors for different proteins, and the predictor that shows the best predictive performance depends on the unique properties of each protein sequence. We propose a computational approach, DISOselect, to estimate the predictive performance of 12 selected predictors for individual proteins based on their unique sequence‐derived properties. This estimation informs the users about the expected predictive quality for a selected disorder predictor and can be used to recommend methods that are likely to provide the best quality predictions. Our solution does not depend on the results of any disorder predictor; the estimations are made based solely on the protein sequence. Our solution significantly improves predictive performance, as judged with a test set of 1,000 proteins, when compared to other alternatives. We have empirically shown that by using the recommended methods the overall predictive performance for a given set of proteins can be improved by a statistically significant margin. DISOselect is freely available for non‐commercial users through the webserver at http://biomine.cs.vcu.edu/servers/DISOselect/ . 相似文献
15.
16.
固有无序蛋白质(intrinsically disordered proteins,IDPs)是天然条件下自身不能折叠为明确唯一的空间结构,却具有生物学功能的一类新发现的蛋白质.这类蛋白质的发现是对传统的\"结构-功能\"关系认识模式的挑战.本文首先总结了无序蛋白质的实验鉴定手段、预测方法、数据库;并介绍了无序蛋白质结构(包括一级结构、二级结构、结构域无序性及变构效应)和功能特征;然后重点总结了无序蛋白质在进化角度研究的进展,包括无序区域产生的进化机制、进化速率,蛋白无序性的进化在蛋白质功能进化及生物学复杂性增加等方面的重要作用;最后展望了无序蛋白质在医药方面的应用前景.本文对于深入认识无序蛋白质的形成机制、结构和功能特征及其潜在的临床应用前景具有重要意义. 相似文献
17.
18.
Although intrinsically disordered proteins are prevalent and functionally important, it has never been asked whether structural disorder should be considered as a separate structural category on its own or merely as a lack of secondary and/or tertiary structure. We address this issue by showing that its length distribution in the human proteome follows a power law, with many short regions but also a significant incidence of very long disordered regions. This behavior is in sharp contrast with that of conventional secondary structural elements and is highly reminiscent of the distribution of tertiary structural units in proteins. We interpret this finding by the direct functional involvement of disorder, which distinguishes it from secondary structural elements and endows it with tertiary structural attributes. 相似文献
19.
Tartaglia GG Pellarin R Cavalli A Caflisch A 《Protein science : a publication of the Protein Society》2005,14(10):2735-2740
We introduce a novel approach to estimate differences in the beta-aggregation potential of eukaryotic proteomes. The approach is based on a statistical analysis of the beta-aggregation propensity of polypeptide segments, which is calculated by an equation derived from first principles using the physicochemical properties of the natural amino acids. Our analysis reveals a significant decreasing trend of the overall beta-aggregation tendency with increasing organism complexity and longevity. A comparison with randomized proteomes shows that natural proteomes have a higher degree of polarization in both low and high beta-aggregation prone sequences. The former originates from the requirement of intrinsically disordered proteins, whereas the latter originates from the necessity of proteins with a stable folded structure. 相似文献
20.
Elena I. Leonova 《Journal of biomolecular structure & dynamics》2013,31(5):1037-1050
Because intrinsically disordered proteins are incapable of forming unique tertiary structures in isolation, their interaction with partner structures enables them to play important roles in many different biological functions. Therefore, such proteins are usually multifunctional, and their ability to perform their major function, as well as accessory functions, depends on the characteristics of a given interaction. The present paper demonstrates, using predictions from two programs, that the transmembrane proteoglycans syndecans are natively disordered because of their diverse functions and large number of interaction partners. Syndecans perform multiple functions during development, damage repair, tumor growth, angiogenesis, and neurogenesis. By mediating the binding of a large number of extracellular ligands to their receptors, these proteoglycans trigger a cascade of reactions that subsequently regulate various cell processes: cytoskeleton formation, proliferation, differentiation, adhesion, and migration. The occurrences of 20 amino acids in syndecans 1–4 from 25 animals were compared with those in 17 animal proteomes. Gly?+?Ala, Thr, Glu, and Pro were observed to predominate in the syndecans, contributing to the lack of an ordered structure. In contrast, there were many fewer amino acids in syndecans that promote an ordered structure, such as Cys, Trp, Asn, and His. In addition, a region rich in Asp has been identified between two heparan sulfate-binding sites in the ectodomains, and a region rich in Lys has been identified in the conserved C1 site of the cytoplasmic domain. These particular regions play an essential role in the various functions of syndecans due to their lack of structure. 相似文献