共查询到20条相似文献,搜索用时 0 毫秒
1.
Young-Dan Cho Won-Joon Yoon Woo-Jin Kim Kyung-Mi Woo Jeong-Hwa Baek Gene Lee Young Ku Andre J. van Wijnen Hyun-Mo Ryoo 《The Journal of biological chemistry》2014,289(29):20120-20128
Mesenchymal cells alter and retain their phenotype during skeletal development through activation or suppression of signaling pathways. For example, we have shown that Wnt3a only stimulates osteoblast differentiation in cells with intrinsic osteogenic potential (e.g. MC3T3-E1 pre-osteoblasts) and not in fat cell precursors or fibroblasts (3T3-L1 pre-adipocytes or NIH3T3 fibroblasts, respectively). Wnt3a promotes osteogenesis in part by stimulating autocrine production of the osteoinductive ligand Bmp2. Here, we show that the promoter regions of the genes for Bmp2 and the osteoblast marker Alp are epigenetically locked to prevent their expression in nonosteogenic cells. Both genes have conserved CpG islands that exhibit increased CpG methylation, as well as decreased acetylation and increased methylation of histone H3 lysine 9 (H3-K9) specifically in nonosteogenic cells. Treatment of pre-adipocytes or fibroblasts with the CpG-demethylating agent 5′-aza-2′-deoxycytidine or the histone deacetylase inhibitor trichostatin-A renders Bmp2 and Alp responsive to Wnt3a. Hence, drug-induced epigenetic activation of Bmp2 gene expression contributes to Wnt3a-mediated direct trans-differentiation of pre-adipocytes or fibroblasts into osteoblasts. We propose that direct conversion of nonosteogenic cells into osteoblastic cell types without inducing pluripotency may improve prospects for novel epigenetic therapies to treat skeletal afflictions. 相似文献
2.
Maria P. Alfaro Alicia Vincent Sarika Saraswati Curtis A. Thorne Charles C. Hong Ethan Lee Pampee P. Young 《The Journal of biological chemistry》2010,285(46):35645-35653
Transplantation of mesenchymal stem cells (MSCs) is a promising therapy for ischemic injury; however, inadequate survival of implanted cells in host tissue is a substantial impediment in the progress of cellular therapy. Secreted Frizzled-related protein 2 (sFRP2) has recently been highlighted as a key mediator of MSC-driven myocardial and wound repair. Notably, sFRP2 mediates significant enhancement of MSC engraftment in vivo. We hypothesized that sFRP2 improves MSC engraftment by modulating self-renewal through increasing stem cell survival and by inhibiting differentiation. In previous studies we demonstrated that sFRP2-expressing MSCs exhibited an increased proliferation rate. In the current study, we show that sFRP2 also decreased MSC apoptosis and inhibited both osteogenic and chondrogenic lineage commitment. sFRP2 activity occurred through the inhibition of both Wnt and bone morphogenic protein (BMP) signaling pathways. sFRP2-mediated inhibition of BMP signaling, as assessed by levels of pSMAD 1/5/8, was independent of its effects on the Wnt pathway. We further hypothesized that sFRP2 inhibition of MSC lineage commitment may reduce heterotopic osteogenic differentiation within the injured myocardium, a reported adverse side effect. Indeed, we found that sFRP2-MSC-treated hearts and wound tissue had less ectopic calcification. This work provides important new insight into the mechanisms by which sFRP2 increases MSC self-renewal leading to superior tissue engraftment and enhanced wound healing. 相似文献
3.
Guobin Yang Guohua Yuan Wenduo Ye Ken W. Y. Cho YiPing Chen 《The Journal of biological chemistry》2014,289(45):31492-31502
Bone morphogenetic protein (BMP) signaling plays an essential role in early tooth development, evidenced by disruption of BMP signaling leading to an early arrested tooth development. Despite being a central mediator of BMP canonical signaling pathway, inactivation of Smad4 in dental mesenchyme does not result in early developmental defects. In the current study, we investigated the mechanism of receptor-activated Smads (R-Smads) and Smad4 in the regulation of the odontogenic gene Msx1 expression in the dental mesenchyme. We showed that the canonical BMP signaling is not operating in the early developing tooth, as assessed by failed activation of the BRE-Gal transgenic allele and the absence of phospho-(p)Smad1/5/8-Smad4 complexes. The absence of pSmad1/5/8-Smad4 complex appeared to be the consequence of saturation of Smad4 by pSmad2/3 in the dental mesenchyme as knockdown of Smad2/3 or overexpression of Smad4 led to the formation of pSmad1/5/8-Smad4 complexes and activation of canonical BMP signaling in dental mesenchymal cells. We showed that Smad1/5 but not Smad4 are required for BMP-induced expression of Msx1 in dental mesenchymal cells. We further presented evidence that in the absence of Smad4, BMPs are still able to induce pSmad1/5/8 nuclear translocation and their binding to the Msx1 promoter directly in dental mesenchymal cells. Our results demonstrate the functional operation of an atypical canonical BMP signaling (Smad4-independent and Smad1/5/8-dependent) pathway in the dental mesenchyme during early odontogenesis, which may have general implication in the development of other organs. 相似文献
4.
Luigi Aloia Silvia Parisi Ludovico Fusco Lucio Pastore Tommaso Russo 《The Journal of biological chemistry》2010,285(10):7776-7783
5.
Hironori Kakoi Shingo Maeda Naohiro Shinohara Kanehiro Matsuyama Katsuyuki Imamura Ichiro Kawamura Satoshi Nagano Takao Setoguchi Masahiro Yokouchi Yasuhiro Ishidou Setsuro Komiya 《The Journal of biological chemistry》2014,289(12):8135-8150
Although bone morphogenic protein (BMP) signaling promotes chondrogenesis, it is not clear whether BMP-induced chondrocyte maturation is cell-autonomously terminated. Loss of function of Smpd3 in mice results in an increase in mature hypertrophic chondrocytes. Here, we report that in chondrocytes the Runx2-dependent expression of Smpd3 was increased by BMP-2 stimulation. Neutral sphingomyelinase 2 (nSMase2), encoded by the Smpd3 gene, was detected both in prehypertrophic and hypertrophic chondrocytes of mouse embryo bone cartilage. An siRNA for Smpd3, as well as the nSMase inhibitor GW4869, significantly enhanced BMP-2-induced differentiation and maturation of chondrocytes. Conversely, overexpression of Smpd3 or C2-ceramide, which mimics the function of nSMase2, inhibited chondrogenesis. Upon induction of Smpd3 siRNA or GW4869, phosphorylation of both Akt and S6 proteins was increased. The accelerated chondrogenesis induced by Smpd3 silencing was negated by application of the Akt inhibitor MK2206 or the mammalian target of rapamycin inhibitor rapamycin. Importantly, in mouse bone culture, GW4869 treatment significantly promoted BMP-2-induced hypertrophic maturation and calcification of chondrocytes, which subsequently was eliminated by C2-ceramide. Smpd3 knockdown decreased the apoptosis of terminally matured ATDC5 chondrocytes, probably as a result of decreased ceramide production. In addition, we found that expression of hyaluronan synthase 2 (Has2) was elevated by a loss of Smpd3, which was restored by MK2206. Indeed, expression of Has2 protein decreased in nSMase2-positive hypertrophic chondrocytes in the bones of mouse embryos. Our data suggest that the Smpd3/nSMase2-ceramide-Akt signaling axis negatively regulates BMP-induced chondrocyte maturation and Has2 expression to control the rate of endochondral ossification as a negative feedback mechanism. 相似文献
6.
Ku-Chi Tsao Cheng-Fen Tu Shyh-Jye Lee Ruey-Bing Yang 《The Journal of biological chemistry》2013,288(7):5017-5026
scube1 (signal
peptide-CUB (complement protein C1r/C1s, Uegf, and
Bmp1)-EGF domain-containing protein
1), the founding member of a novel secreted and cell
surface SCUBE protein family, is expressed predominantly in various developing
tissues in mice. However, its function in primitive hematopoiesis remains
unknown. In this study, we identified and characterized zebrafish
scube1 and analyzed its function by injecting antisense
morpholino-oligonucleotide into embryos. Whole-mount in situ
hybridization revealed that zebrafish scube1 mRNA is maternally
expressed and widely distributed during early embryonic development. Knockdown
of scube1 by morpholino-oligonucleotide down-regulated the
expression of marker genes associated with early primitive hematopoietic
precursors (scl) and erythroid (gata1 and
hbbe1), as well as early (pu.1) and late
(mpo and l-plastin) myelomonocytic
lineages. However, the expression of an early endothelial marker
fli1a and vascular morphogenesis appeared normal in
scube1 morphants. Overexpression of bone morphogenetic
protein (bmp) rescued the expression of scl in
the posterior lateral mesoderm during early primitive hematopoiesis in
scube1 morphants. Biochemical and molecular analysis
revealed that Scube1 could be a BMP co-receptor to augment BMP signaling. Our
results suggest that scube1 is critical for and functions at
the top of the regulatory hierarchy of primitive hematopoiesis by modulating BMP
activity during zebrafish embryogenesis. 相似文献
7.
Carola Krause Olexandr Korchynskyi Karien de Rooij Stella E. Weidauer David J. J. de Gorter Rutger L. van Bezooijen Sarah Hatsell Aris N. Economides Thomas D. Mueller Clemens W. G. M. L?wik Peter ten Dijke 《The Journal of biological chemistry》2010,285(53):41614-41626
Sclerostin is expressed by osteocytes and has catabolic effects on bone. It has been shown to antagonize bone morphogenetic protein (BMP) and/or Wnt activity, although at present the underlying mechanisms are unclear. Consistent with previous findings, Sclerostin opposed direct Wnt3a-induced but not direct BMP7-induced responses when both ligand and antagonist were provided exogenously to cells. However, we found that when both proteins are expressed in the same cell, sclerostin can antagonize BMP signaling directly by inhibiting BMP7 secretion. Sclerostin interacts with both the BMP7 mature domain and pro-domain, leading to intracellular retention and proteasomal degradation of BMP7. Analysis of sclerostin knock-out mice revealed an inhibitory action of sclerostin on Wnt signaling in both osteoblasts and osteocytes in cortical and cancellous bones. BMP7 signaling was predominantly inhibited by sclerostin in osteocytes of the calcaneus and the cortical bone of the tibia. Our results suggest that sclerostin exerts its potent bone catabolic effects by antagonizing Wnt signaling in a paracrine and autocrine manner and antagonizing BMP signaling selectively in the osteocytes that synthesize simultaneously both sclerostin and BMP7 proteins. 相似文献
8.
9.
Ting Zhang Qingqing Zhu Zhihui Xie Yongfeng Chen Yunbo Qiao Lingyu Li Naihe Jing 《The Journal of biological chemistry》2013,288(9):6166-6177
10.
Makoto Matsuyama Akane Nomori Kyomi Nakakuni Akihiko Shimono Masaki Fukushima 《The Journal of biological chemistry》2014,289(45):31526-31533
Renal fibrosis is responsible for progressive renal diseases that cause chronic renal failure. Sfrp1 (secreted Frizzled-related protein 1) is highly expressed in kidney, although little is known about connection between the protein and renal diseases. Here, we focused on Sfrp1 to investigate its roles in renal fibrosis using a mouse model of unilateral ureteral obstruction (UUO). In wild-type mice, the expression of Sfrp1 protein was markedly increased after UUO. The kidneys from Sfrp1 knock-out mice showed significant increase in expression of myofibrobast markers, α-smooth muscle actin (αSMA). Sfrp1 deficiency also increased protein levels of the fibroblast genes, vimentin, and decreased those of the epithelial genes, E-cadherin, indicated that enhanced epithelial-to-mesenchymal transition. There was no difference in the levels of canonical Wnt signaling; rather, the levels of phosphorylated c-Jun and JNK were more increased in the Sfrp1−/− obstructed kidney. Moreover, the apoptotic cell population was significantly elevated in the obstructed kidneys from Sfrp1−/− mice following UUO but was slightly increased in those from wild-type mice. These results indicate that Sfrp1 is required for inhibition of renal damage through the non-canonical Wnt/PCP pathway. 相似文献
11.
Asja Guzman Monika Zelman- Femiak Jan H. Boergermann Sandra Paschkowsky Peter A. Kreuzaler Peter Fratzl Gregory S. Harms Petra Knaus 《The Journal of biological chemistry》2012,287(47):39492-39504
Bone (or body) morphogenetic proteins (BMPs) belong to the TGFβ superfamily and are crucial for embryonic patterning and organogenesis as well as for adult tissue homeostasis and repair. Activation of BMP receptors by their ligands leads to induction of several signaling cascades. Using fluorescence recovery after photobleaching, FRET, and single particle tracking microscopy, we demonstrate that BMP receptor type I and II (BMPRI and BMPRII) have distinct lateral mobility properties within the plasma membrane, which is mandatory for their involvement in different signaling pathways. Before ligand binding, BMPRI and a subpopulation of BMPRII exhibit confined motion, reflecting preassembled heteromeric receptor complexes. A second free diffusing BMPRII population only becomes restricted after ligand addition. This paper visualizes time-resolved BMP receptor complex formation and demonstrates that the lateral mobility of BMPRI has a major impact in stabilizing heteromeric BMPRI-BMPRII receptor complexes to differentially stimulate SMAD versus non-SMAD signaling. 相似文献
12.
13.
14.
Cheng Sun Diankun Yu Wenduo Ye Chao Liu Shuping Gu Nathan R. Sinsheimer Zhongchen Song Xihai Li Chun Chen Yingnan Song Shusheng Wang Laura Schrader YiPing Chen 《The Journal of biological chemistry》2015,290(4):2007-2023
The atrioventricular (AV) junction plays a critical role in chamber septation and transmission of cardiac conduction pulses. It consists of structures that develop from embryonic dorsal mesenchymal protrusion (DMP) and the embryonic AV canal. Despite extensive studies on AV junction development, the genetic regulation of DMP development remains poorly understood. In this study we present evidence that Shox2 is expressed in the developing DMP. Intriguingly, this Shox2-expressing domain possesses a pacemaker-specific genetic profile including Hcn4 and Tbx3. This genetic profile leads to nodal-like electrophysiological properties, which is gradually silenced as the AV node becomes matured. Phenotypic analyses of Shox2−/− mice revealed a hypoplastic and defectively differentiated DMP, likely attributed to increased apoptosis, accompanied by dramatically reduced expression of Bmp4 and Hcn4, ectopic activation of Cx40, and an aberrant pattern of action potentials. Interestingly, conditional deletion of Bmp4 or inhibition of BMP signaling by overexpression of Noggin using a Shox2-Cre allele led to a similar DMP hypoplasia and down-regulation of Hcn4, whereas activation of a transgenic Bmp4 allele in Shox2−/− background attenuated DMP defects. Moreover, the lack of Hcn4 expression in the DMP of mice carrying Smad4 conditional deletion and direct binding of pSmad1/5/8 to the Hcn4 regulatory region further confirm the Shox2-BMP genetic cascade in the regulation of DMP development. Our results reveal that Shox2 regulates DMP fate and development by controlling BMP signaling through the Smad-dependent pathway to drive tissue growth and to induce Hcn4 expression and suggest a temporal pacemaking function for the DMP during early cardiogenesis. 相似文献
15.
Zhenquan Wei Richard M. Salmon Paul D. Upton Nicholas W. Morrell Wei Li 《The Journal of biological chemistry》2014,289(45):31150-31159
BMP9, a member of the TGFβ superfamily, is a homodimer that forms a signaling complex with two type I and two type II receptors. Signaling through high-affinity activin receptor-like kinase 1 (ALK1) in endothelial cells, circulating BMP9 acts as a vascular quiescence factor, maintaining endothelial homeostasis. BMP9 is also the most potent BMP for inducing osteogenic signaling in mesenchymal stem cells in vitro and promoting bone formation in vivo. This activity requires ALK1, the lower affinity type I receptor ALK2, and higher concentrations of BMP9. In adults, BMP9 is constitutively expressed in hepatocytes and secreted into the circulation. Optimum concentrations of BMP9 are essential to maintain the highly specific endothelial-protective function. Factors regulating BMP9 stability and activity remain unknown. Here, we showed by chromatography and a 1.9 Å crystal structure that stable BMP9 dimers could form either with (D-form) or without (M-form) an intermolecular disulfide bond. Although both forms of BMP9 were capable of binding to the prodomain and ALK1, the M-form demonstrated less sustained induction of Smad1/5/8 phosphorylation. The two forms could be converted into each other by changing the redox potential, and this redox switch caused a major alteration in BMP9 stability. The M-form displayed greater susceptibility to redox-dependent cleavage by proteases present in serum. This study provides a mechanism for the regulation of circulating BMP9 concentrations and may provide new rationales for approaches to modify BMP9 levels for therapeutic purposes. 相似文献
16.
Elfie Kathrin Roedel Elisabeth Schwarz Sandip Madhav Kanse 《The Journal of biological chemistry》2013,288(10):7193-7203
Factor VII-activating protease (FSAP) is a circulating protease involved in the pathogenesis of atherosclerosis, calcification, and fibrotic processes. To understand how FSAP controls the balance of local growth factors, we have investigated its effect on the regulation of bone morphogenetic proteins (BMPs). BMP-2 is produced as a large pro-form and secreted as a mature heparin-binding growth factor after intracellular processing by pro-protein convertases (PCs). In this study, we discovered that FSAP enhances the biological activity of mature BMP-2 as well as its pro-form, as shown by osteogenic differentiation of C2C12 myoblasts. These findings were complemented by knockdown of FSAP in hepatocytes, which revealed BMP-2 processing by endogenous FSAP. N-terminal sequencing indicated that pro-BMP-2 was cleaved by FSAP at the canonical PC cleavage site, giving rise to mature BMP-2 (Arg282↓Gln283), as well as in the N-terminal heparin binding region of mature BMP-2, generating a truncated mature BMP-2 peptide (Arg289↓Lys290). Similarly, mature BMP-2 was also cleaved to a truncated peptide within its N-terminal region (Arg289↓Lys290). Plasmin exhibited a similar activity, but it was weaker compared with FSAP. Thrombin, Factor VIIa, Factor Xa, and activated protein C were not effective. These results were further supported by the observation that the mutation of the heparin binding region of BMP-2 inhibited the processing by FSAP but not by PC. Thus, the proteolysis and activation of pro-BMP-2 and mature BMP-2 by FSAP can regulate cell differentiation and calcification in vasculature and may explain why polymorphisms in the gene encoding for FSAP are related to vascular diseases. 相似文献
17.
18.
19.
20.
Shimizu T Tanaka T Iso T Matsui H Ooyama Y Kawai-Kowase K Arai M Kurabayashi M 《The Journal of biological chemistry》2011,286(21):19138-19148